Source code for syne_tune.optimizer.schedulers.searchers.searcher

import logging
import numpy as np

from copy import deepcopy
from typing import Optional, List, Dict, Any

logger = logging.getLogger(__name__)


[docs] class BaseSearcher: """ Base class of searchers, which are components of schedulers responsible for implementing :meth:`get_config`. # TODO: Update docstrings .. note:: This is an abstract base class. In order to implement a new searcher, try to start from :class:`~syne_tune.optimizer.scheduler.searcher.StochasticAndFilterDuplicatesSearcher` or :class:`~syne_tune.optimizer.scheduler.searcher.StochasticSearcher`, which implement generally useful properties. :param config_space: Configuration space :param points_to_evaluate: List of configurations to be evaluated initially (in that order). Each config in the list can be partially specified, or even be an empty dict. For each hyperparameter not specified, the default value is determined using a midpoint heuristic. If ``None`` (default), this is mapped to ``[dict()]``, a single default config determined by the midpoint heuristic. If ``[]`` (empty list), no initial configurations are specified. """ def __init__( self, config_space: Dict[str, Any], points_to_evaluate: Optional[List[Dict[str, Any]]] = None, random_seed: int = None, ): self.config_space = config_space if points_to_evaluate is None: self.points_to_evaluate = [] else: self.points_to_evaluate = deepcopy(points_to_evaluate) if random_seed is None: self.random_seed = np.random.randint(0, 2**31 - 1) else: self.random_seed = random_seed def _next_points_to_evaluate(self) -> Optional[Dict[str, Any]]: """ :return: Next entry from remaining ``points_to_evaluate`` (popped from front), or None """ if self.points_to_evaluate: return self.points_to_evaluate.pop(0) else: return None # No more initial configs
[docs] def suggest(self, **kwargs) -> Optional[Dict[str, Any]]: """Suggest a new configuration. Note: Query :meth:`_next_points_to_evaluate` for initial configs to return first. :param kwargs: Extra information may be passed from scheduler to searcher :return: New configuration. The searcher may return None if a new configuration cannot be suggested. In this case, the tuning will stop. This happens if searchers never suggest the same config more than once, and all configs in the (finite) search space are exhausted. """ raise NotImplementedError
[docs] def on_trial_result( self, trial_id: int, config: Dict[str, Any], metrics: List[float], ): """Inform searcher about result The scheduler passes every result. If ``update == True``, the searcher should update its surrogate model (if any), otherwise ``result`` is an intermediate result not modelled. The default implementation calls :meth:`_update` if ``update == True``. It can be overwritten by searchers which also react to intermediate results. :param trial_id: See :meth:`~syne_tune.optimizer.schedulers.TrialScheduler.on_trial_result` :param config: See :meth:`~syne_tune.optimizer.schedulers.TrialScheduler.on_trial_result` :param metrics: See :meth:`~syne_tune.optimizer.schedulers.TrialScheduler.on_trial_result` """ return
[docs] def on_trial_error(self, trial_id: int): """Called by scheduler if an evaluation job for a trial failed. The searcher should react appropriately (e.g., remove pending evaluations for this trial, not suggest the configuration again). :param trial_id: ID of trial whose evaluated failed """ return
[docs] def on_trial_complete( self, trial_id: int, config: Dict[str, Any], metrics: List[float], ): """Inform searcher about result The scheduler passes every result. If ``update == True``, the searcher should update its surrogate model (if any), otherwise ``result`` is an intermediate result not modelled. The default implementation calls :meth:`_update` if ``update == True``. It can be overwritten by searchers which also react to intermediate results. :param trial_id: See :meth:`~syne_tune.optimizer.schedulers.TrialScheduler.on_trial_result` :param config: See :meth:`~syne_tune.optimizer.schedulers.TrialScheduler.on_trial_result` :param metrics: See :meth:`~syne_tune.optimizer.schedulers.TrialScheduler.on_trial_result` """ return