syne_tune.optimizer.schedulers.transfer_learning.transfer_learning_mixin module
- class syne_tune.optimizer.schedulers.transfer_learning.transfer_learning_mixin.TransferLearningMixin(config_space, transfer_learning_evaluations, metric, random_seed=None, **kwargs)[source]
Bases:
object
- top_k_hyperparameter_configurations_per_task(transfer_learning_evaluations, num_hyperparameters_per_task, do_minimize=False)[source]
Returns the best hyperparameter configurations for each task. :type transfer_learning_evaluations:
Dict
[str
,TransferLearningTaskEvaluations
] :param transfer_learning_evaluations: Set of candidates to choose from. :type num_hyperparameters_per_task:int
:param num_hyperparameters_per_task: The number of top hyperparameters per task to return. :type do_minimize:bool
:param do_minimize: indicating if the optimization problem is minimized. :rtype:Dict
[str
,List
[Dict
[str
,Any
]]] :returns: Dict which maps from task name to list of hyperparameters in order.