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This package provides state-of-the-art algorithms for hyperparameter optimization (HPO) with the following key features:


	Wide coverage (>20) of different HPO methods, including:


	Asynchronous versions to maximize utilization and distributed versions (i.e., with multiple workers);


	Multi-fidelity methods supporting model-based decisions (BOHB, MOBSTER, Hyper-Tune, DyHPO, BORE);


	Hyperparameter transfer learning to speed up (repeated) tuning jobs;


	Multi-objective optimizers that can tune multiple objectives simultaneously (such as accuracy and latency).






	HPO can be run in different environments (locally, AWS, simulation) by changing just one line of code.


	Out-of-the-box tabulated benchmarks that allows you simulate results in seconds while preserving the real dynamics of asynchronous or synchronous HPO with any number of workers.





What’s New?


	Andreas Mueller, co-creator and core contributor to scikit-learn [https://scikit-learn.org/stable/],
used Syne Tune extensively to optimize parameters of a hypernetwork which solves
tabular classification tasks faster than state of the art boosted decision tree
algorithms. Check out the video [https://www.youtube.com/watch?v=-pAuQSAW5w0].


	The experimentation framework of Syne Tune, providing an easy access to all the
different methods, execution backends, and ways to run many experiments in parallel,
is now available in syne_tune.experiments, there is no need to install from
source anymore. This framework is the best place to start serious
experimentation work with Syne Tune.


	New tutorial:
Distributed Hyperparameter Tuning: Finding the Right Model can be Fast and Fun.
Provides an overview of Syne Tune and its experimentation framework.


	You can now create comparative plots, combining the results of many experiments,
as shown here.


	Local Backend supports
training with more than one GPU per trial.


	Speculative early checkpoint removal for asynchronous multi-fidelity optimization.
Retaining all checkpoints often exhausts all available disk space when training
large models. With this feature, Syne Tune automatically removes checkpoints
that are unlikely to be needed.
Details.


	New Multi-Objective Scheduler:
LinearScalarizedScheduler.
The method works by taking a multi-objective problem and turning it into a
single-objective task by optimizing for a linear combination of all objectives.
This wrapper works with all single-objective schedulers.


	Support for automatic termination criterion proposed by Makarova et al.
Instead of defining a fixed number of iterations or wall-clock time limit, we
can set a threshold on how much worse we allow the final solution to be
compared to the global optimum, such that we automatically stop the optimization
process once we find a solution that meets this criteria.
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Installation

To install Syne Tune from pip, you can simply do:

pip install 'syne-tune[basic]'





For development, you need to install Syne Tune from source:

git clone https://github.com/awslabs/syne-tune.git
cd syne-tune
python3 -m venv st_venv
. st_venv/bin/activate
pip install --upgrade pip
pip install -e '.[basic,dev]'





This installs Syne Tune in a virtual environment st_venv. Remember to activate
this environment before working with Syne Tune. We also recommend building the
virtual environment from scratch now and then, in particular when you pull a new
release, as dependencies may have changed.

See our change log [https://github.com/awslabs/syne-tune/blob/main/CHANGELOG.md] to
check what has changed in the latest version.

In the examples above, Syne Tune is installed with the tag basic, which
collects a reasonable number of dependencies. If you want to install all
dependencies, replace basic with extra. You can further refine this
selection by using
partial dependencies.



What Is Hyperparameter Optimization?

Here is an
introduction to hyperparameter optimization [https://d2l.ai/chapter_hyperparameter-optimization/index.html]
in the context of deep learning, which uses Syne Tune for some examples.



First Example

To enable tuning, you have to report metrics from a training script so that they
can be communicated later to Syne Tune, this can be accomplished by just
calling report(epoch=epoch, loss=loss), as shown in this example:


train_height_simple.py

import logging
import time

from syne_tune import Reporter
from argparse import ArgumentParser

if __name__ == "__main__":
    root = logging.getLogger()
    root.setLevel(logging.INFO)
    parser = ArgumentParser()
    parser.add_argument("--epochs", type=int)
    parser.add_argument("--width", type=float)
    parser.add_argument("--height", type=float)
    args, _ = parser.parse_known_args()
    report = Reporter()

    for step in range(args.epochs):
        time.sleep(0.1)
        dummy_score = 1.0 / (0.1 + args.width * step / 100) + args.height * 0.1
        # Feed the score back to Syne Tune
        report(epoch=step + 1, mean_loss=dummy_score)







Once you have annotated your training script in this way, you can launch a
tuning experiment as follows:


launch_height_simple.py

from pathlib import Path

from syne_tune import Tuner, StoppingCriterion
from syne_tune.backend import LocalBackend
from syne_tune.config_space import randint
from syne_tune.optimizer.baselines import ASHA

# Hyperparameter configuration space
config_space = {
    "width": randint(1, 20),
    "height": randint(1, 20),
    "epochs": 100,
}
# Scheduler (i.e., HPO algorithm)
scheduler = ASHA(
    config_space,
    metric="mean_loss",
    resource_attr="epoch",
    max_resource_attr="epochs",
    search_options={"debug_log": False},
)

entry_point = str(
    Path(__file__).parent
    / "training_scripts"
    / "height_example"
    / "train_height_simple.py"
)
tuner = Tuner(
    trial_backend=LocalBackend(entry_point=entry_point),
    scheduler=scheduler,
    stop_criterion=StoppingCriterion(max_wallclock_time=30),
    n_workers=4,  # how many trials are evaluated in parallel
)
tuner.run()







This example runs ASHA with
n_workers=4 asynchronously parallel workers for max_wallclock_time=30
seconds on the local machine it is called on
(trial_backend=LocalBackend(entry_point=entry_point)).



Experimentation with Syne Tune

If you plan to use advanced features of Syne Tune, such as different execution
backends or running experiments remotely, writing launcher scripts like
examples/launch_height_simple.py can become tedious. Syne Tune provides an
advanced experimentation framework, which you can learn about in
this tutorial, or also in
this one. Examples for the
experimentation framework are given in benchmarking.examples and
benchmarking.nursery.



Supported HPO Methods

The following hyperparameter optimization (HPO) methods are available in Syne Tune:



	Method

	Reference

	Searcher

	Asynchronous?

	Multi-fidelity?

	Transfer?





	Grid Search

	
	deterministic

	yes

	no

	no



	Random Search

	Bergstra, et al. (2011) [https://www.jmlr.org/papers/v13/bergstra12a.html]

	random

	yes

	no

	no



	Bayesian Optimization

	Snoek, et al. (2012) [https://arxiv.org/abs/1206.2944]

	model-based

	yes

	no

	no



	BORE

	Tiao, et al. (2021) [https://proceedings.mlr.press/v139/tiao21a.html]

	model-based

	yes

	no

	no



	MedianStoppingRule

	Golovin, et al. (2017) [https://dl.acm.org/doi/10.1145/3097983.3098043]

	any

	yes

	yes

	no



	SyncHyperband

	Li, et al. (2018) [https://jmlr.org/papers/v18/16-558.html]

	random

	no

	yes

	no



	SyncBOHB

	Falkner, et al. (2018) [https://arxiv.org/abs/1807.01774]

	model-based

	no

	yes

	no



	SyncMOBSTER

	Klein, et al. (2020) [https://openreview.net/forum?id=a2rFihIU7i]

	model-based

	no

	yes

	no



	ASHA

	Li, et al. (2019) [https://arxiv.org/abs/1810.05934]

	random

	yes

	yes

	no



	BOHB

	Falkner, et al. (2018) [https://arxiv.org/abs/1807.01774]

	model-based

	yes

	yes

	no



	MOBSTER

	Klein, et al. (2020) [https://openreview.net/forum?id=a2rFihIU7i]

	model-based

	yes

	yes

	no



	DEHB

	Awad, et al. (2021) [https://arxiv.org/abs/2105.09821]

	evolutionary

	no

	yes

	no



	HyperTune

	Li, et al. (2022) [https://arxiv.org/abs/2201.06834]

	model-based

	yes

	yes

	no



	DyHPO *

	Wistuba, et al. (2022) [https://arxiv.org/abs/2202.09774]

	model-based

	yes

	yes

	no



	ASHABORE

	Tiao, et al. (2021) [https://proceedings.mlr.press/v139/tiao21a.html]

	model-based

	yes

	yes

	no



	PASHA

	Bohdal, et al. (2022) [https://arxiv.org/abs/2207.06940]

	random

	yes

	yes

	no



	REA

	Real, et al. (2019) [https://arxiv.org/abs/1802.01548]

	evolutionary

	yes

	no

	no



	KDE

	Falkner, et al. (2018) [https://arxiv.org/abs/1807.01774]

	model-based

	yes

	no

	no



	PopulationBasedTraining

	Jaderberg, et al. (2017) [https://arxiv.org/abs/1711.09846]

	evolutionary

	no

	yes

	no



	ZeroShotTransfer

	Wistuba, et al. (2015) [https://ieeexplore.ieee.org/document/7373431]

	deterministic

	yes

	no

	yes



	ASHA-CTS (ASHACTS)

	Salinas, et al. (2021) [https://proceedings.mlr.press/v119/salinas20a.html]

	random

	yes

	yes

	yes



	RUSH (RUSHScheduler)

	Zappella, et al. (2021) [https://arxiv.org/abs/2103.16111]

	random

	yes

	yes

	yes



	BoundingBox

	Perrone, et al. (2019) [https://arxiv.org/abs/1909.12552]

	any

	yes

	yes

	yes






*: We implement the model-based scheduling logic of DyHPO, but use the
same Gaussian process surrogate models as MOBSTER and HyperTune. The original
source code for the paper is
here [https://github.com/releaunifreiburg/DyHPO/tree/main].

The searchers fall into four broad categories, deterministic, random, evolutionary and model-based. The random searchers sample candidate hyperparameter configurations uniformly at random, while the model-based searchers sample them non-uniformly at random, according to a model (e.g., Gaussian process, density ration estimator, etc.) and an acquisition function. The evolutionary searchers make use of an evolutionary algorithm.

Syne Tune also supports BoTorch [https://github.com/pytorch/botorch] searchers,
see BoTorch.


Supported Multi-objective Optimization Methods



	Method

	Reference

	Searcher

	Asynchronous?

	Multi-fidelity?

	Transfer?





	ConstrainedBayesianOptimization

	Gardner, et al. (2014) [http://proceedings.mlr.press/v32/gardner14.pdf]

	model-based

	yes

	no

	no



	MOASHA

	Schmucker, et al. (2021) [https://arxiv.org/abs/2106.12639]

	random

	yes

	yes

	no



	NSGA2

	Deb, et al. (2002) [https://ieeexplore.ieee.org/document/996017]

	evolutionary

	no

	no

	no



	MORandomScalarizationBayesOpt

	Peria, et al. (2018) [https://proceedings.mlr.press/v115/paria20a.html]

	model-based

	yes

	no

	no



	MOLinearScalarizationBayesOpt

	
	model-based

	yes

	no

	no






HPO methods listed can be used in a multi-objective setting by scalarization
(LinearScalarizationPriority)
or non-dominated sorting
(NonDominatedPriority).




Security

See CONTRIBUTING [https://github.com/awslabs/syne-tune/blob/main/CONTRIBUTING.md#security-issue-notifications]
for more information.



Citing Syne Tune

If you use Syne Tune in a scientific publication, please cite the following paper:

Syne Tune: A Library for Large Scale Hyperparameter Tuning and Reproducible Research [https://openreview.net/forum?id=BVeGJ-THIg9&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3Dautoml.cc%2FAutoML%2F2022%2FTrack%2FMain%2FAuthors%23your-submissions]

@inproceedings{
    salinas2022syne,
    title = {{Syne Tune}: A Library for Large Scale Hyperparameter Tuning and Reproducible Research},
    author = {David Salinas and Matthias Seeger and Aaron Klein and Valerio Perrone and Martin Wistuba and Cedric Archambeau},
    booktitle = {International Conference on Automated Machine Learning, AutoML 2022},
    year = {2022},
    url = {https://proceedings.mlr.press/v188/salinas22a.html}
}







License

This project is licensed under the Apache-2.0 License.




            

          

      

      

    

  

    
      
          
            
  
Frequently Asked Questions



	Why should I use Syne Tune?

	What are the different installation options supported?

	How can I run on AWS and SageMaker?

	What are the metrics reported by default when calling the Reporter?

	How can I utilize multiple GPUs?

	What is the default mode when performing optimization?

	How are trials evaluated on a local machine?

	Is the tuner checkpointed?

	Where can I find the output of the tuning?

	Can I resume a previous tuning job?

	How can I change the default output folder where tuning results are stored?

	What does the output of the tuning contain?

	How can I enable trial checkpointing?

	How can I retrieve the best checkpoint obtained after tuning?

	How can I retrain the best model found after tuning?

	Which schedulers make use of checkpointing?

	Checkpoints are filling up my disk. What can I do?

	Where can I find the output of my trials?

	Is the experimentation framework only useful to compare different HPO methods?

	How can I plot the results of a tuning?

	How can I plot comparative results across many experiments?

	How can I specify additional tuning metadata?

	How do I append additional information to the results which are stored?

	I don’t want to wait, how can I launch the tuning on a remote machine?

	How can I run many experiments in parallel?

	How can I access results after tuning remotely?

	How can I specify dependencies to remote launcher or when using the SageMaker backend?

	How can I benchmark different methods?

	What different schedulers do you support? What are the main differences between them?

	How do I define the configuration space?

	How do I set arguments of multi-fidelity schedulers?

	Is my training script ready for multi-fidelity tuning?

	How can I visualize the progress of my tuning experiment with Tensorboard?

	How can I add a new scheduler?

	How can I add a new tabular or surrogate benchmark?

	How can I reduce delays in starting trials with the SageMaker backend?

	How can I pass lists or dictionaries to the training script?

	How can I write extra results for an experiment?








            

          

      

      

    

  

    
      
          
            
  
Why should I use Syne Tune?

Hyperparameter Optimization (HPO) has been an important problem for many years,
and a variety of commercial and open-source tools are available to help
practitioners run HPO efficiently. Notable examples for open source
tools are Ray Tune [https://docs.ray.io/en/latest/tune/index.html] and
Optuna [https://optuna.readthedocs.io/en/stable/]. Here are some reasons
why you may prefer Syne Tune over these alternatives:


	Lightweight and platform-agnostic: Syne Tune is designed to work with
different execution backends, so you are not locked into a particular
distributed system architecture. Syne Tune runs with minimal dependencies.


	Wide range of modalities: Syne Tune supports multi-fidelity HPO,
constrained HPO, multi-objective HPO, transfer tuning, cost-aware HPO,
population based training.


	Simple, modular design: Rather than wrapping all sorts of other HPO
frameworks, Syne Tune provides simple APIs and scheduler templates, which can
easily be extended to your specific needs.
Studying the code will allow you to understand what the different algorithms
are doing, and how they differ from each other.


	Industry-strength Bayesian optimization: Syne Tune has special support
for Gaussian process based Bayesian optimization.
The same code powers modalities like multi-fidelity HPO, constrained HPO, or
cost-aware HPO, having been tried and tested for several years.


	Support for distributed parallelized experimentation: We built Syne Tune
to be able to move fast, using the parallel resources AWS SageMaker offers.
Syne Tune allows ML/AI practitioners to easily set up and run studies with many
experiments running in parallel.


	Special support for researchers: Syne Tune allows for rapid development
and comparison between different tuning algorithms. Its
blackbox repository and simulator backend
run realistic simulations of experiments many times faster than real time.
Benchmarking is simple, efficient, and
allows to compare different methods as apples to apples (same execution
backend, implementation from the same parts).




If you are an AWS customer, there are additional good reasons to use Syne Tune
over the alternatives:


	If you use AWS services or SageMaker frameworks day to day, Syne Tune works
out of the box and fits into your normal workflow. It unlocks the power of
distributed experimentation that SageMaker offers.


	Syne Tune is developed in collaboration with the team behind the
Automatic Model Tuning [https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html]
service.






What are the different installation options supported?

To install Syne Tune with minimal dependencies from pip, you can simply do:

pip install 'syne-tune'





If you want in addition to install our own Gaussian process based optimizers,
Ray Tune or Bore optimizer, you can run pip install 'syne-tune[X]' where
X can be:


	gpsearchers: For built-in Gaussian process based optimizers (such as
BayesianOptimization,
MOBSTER, or
HyperTune)


	aws: AWS SageMaker dependencies. These are required for
remote launching
or for the SageMakerBackend


	raytune: For Ray Tune optimizers (see
RayTuneScheduler), installs all Ray
Tune dependencies


	benchmarks: For installing dependencies required to run all benchmarks
locally (not needed for remote launching or
SageMakerBackend)


	blackbox-repository: Blackbox repository for simulated tuning


	yahpo: YAHPO Gym surrogate blackboxes


	kde: For BOHB (such as SyncBOHB,
or FIFOScheduler or
HyperbandScheduler with
searcher="kde")


	botorch: Bayesian optimization from BoTorch (see
BoTorchSearcher)


	dev: For developers who would like to extend Syne Tune


	bore: For Bore optimizer (see BORE)




There are also union tags you can use:


	basic: Union of dependencies of a reasonable size (gpsearchers,
kde, aws, moo, sklearn). Even if size does not matter for
your local installation, you should consider basic for
remote launching of experiments.


	extra: Union of all dependencies listed above.




Our general recommendation is to use pip install 'syne-tune[basic]', then add


	dev if you aim to extend Syne Tune


	benchmarks if you like to run Syne Tune real benchmarks locally


	blackbox-repository if you like to run surrogate benchmarks with the
simulator backend


	visual if you like to visualize results of experiments




In order to run schedulers which depend on BOTorch, you need to add botorch,
and if you like to run Ray Tune schedulers, you need to add raytune (both
of these come with many dependencies). If the size of the installation is of no
concern, just use pip install 'syne-tune[extra]'.

If you run code which needs dependencies you have not installed, a warning message
tells you which tag is missing, and you can always install it later.

To install the latest version from git, run the following:

pip install git+https://github.com/awslabs/syne-tune.git





For local development, we recommend using the following setup which will
enable you to easily test your changes:

git clone https://github.com/awslabs/syne-tune.git
cd syne-tune
python3 -m venv st_venv
. st_venv/bin/activate
pip install --upgrade pip
pip install -e '.[basic,dev]'





This installs everything in a virtual environment st_venv. Remember to
activate this environment before working with Syne Tune. We also recommend
building the virtual environment from scratch now and then, in particular when
you pull a new release, as dependencies may have changed.



How can I run on AWS and SageMaker?

If you want to launch experiments or training jobs on SageMaker rather than on
your local machine, you will need access to AWS and SageMaker on your machine.
Make sure that:


	awscli is installed (see
this link [https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html])


	AWS credentials have been set properly (see
this link [https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html]).


	The necessary SageMaker role has been created (see
this page [https://docs.aws.amazon.com/glue/latest/dg/create-an-iam-role-sagemaker-notebook.html]
for instructions. If you’ve created a SageMaker notebook in the past, this
role should already have been created for you).




The following command should run without error if your credentials are available:

python -c "import boto3; print(boto3.client('sagemaker').list_training_jobs(MaxResults=1))"





You can also run the following example that evaluates trials on SageMaker to
test your setup.

python examples/launch_height_sagemaker.py







What are the metrics reported by default when calling the Reporter?

Whenever you call the reporter to log a result, the worker time-stamp, the
worker time since the creation of the reporter and the number of times the
reporter was called are logged under the fields
ST_WORKER_TIMESTAMP,
ST_WORKER_TIME, and
ST_WORKER_ITER. In addition, when running on
SageMaker, a dollar-cost estimate is logged under the field
ST_WORKER_COST.

To see this behavior, you can simply call the reporter to see those
metrics:

from syne_tune.report import Reporter
reporter = Reporter()
for step in range(3):
   reporter(step=step, metric=float(step) / 3)

# [tune-metric]: {"step": 0, "metric": 0.0, "st_worker_timestamp": 1644311849.6071281, "st_worker_time": 0.0001048670000045604, "st_worker_iter": 0}
# [tune-metric]: {"step": 1, "metric": 0.3333333333333333, "st_worker_timestamp": 1644311849.6071832, "st_worker_time": 0.00015910100000837701, "st_worker_iter": 1}
# [tune-metric]: {"step": 2, "metric": 0.6666666666666666, "st_worker_timestamp": 1644311849.60733, "st_worker_time": 0.00030723599996917983, "st_worker_iter": 2}







How can I utilize multiple GPUs?

To utilize multiple GPUs you can use the local backend
LocalBackend, which will run on the GPUs available
in a local machine. You can also run on a remote AWS instance with multiple GPUs
using the local backend and the remote launcher, see
here,
or run with the SageMakerBackend which spins-up one
training job per trial.

When evaluating trials on a local machine with
LocalBackend, by default each trial is allocated to
the least occupied GPU by setting CUDA_VISIBLE_DEVICES environment
variable. When running on a machine with more than one GPU, you can adjust
the number of GPUs assigned to each trial by num_gpus_per_trial. However,
make sure that the product of n_workers and num_gpus_per_trial is not
larger than the total number of GPUs, since otherwise trials will be delayed.
You can also use gpus_to_use in order restrict Syne Tune to use a subset of
available GPUs only.



What is the default mode when performing optimization?

The default mode is "min" when performing optimization, so the target metric
is minimized. The mode can be configured when instantiating a scheduler.



How are trials evaluated on a local machine?

When trials are executed locally (e.g., when
LocalBackend is used), each trial is evaluated as a
different sub-process. As such the number of concurrent configurations evaluated
at the same time (set by n_workers when creating the
Tuner) should account for the capacity of the machine where
the trials are executed.



Is the tuner checkpointed?

Yes. When performing the tuning, the tuner state is regularly saved on the
experiment path under tuner.dill (every 10 seconds, which can be configured
with results_update_interval when creating the Tuner).
This allows to use spot-instances when running a tuning remotely with the remote
launcher. It also allows to resume a past experiment or analyse the state of
scheduler at any point.



Where can I find the output of the tuning?

When running locally, the output of the tuning is saved under
~/syne-tune/{tuner-name}/ by default. When running remotely on SageMaker,
the output of the tuning is saved under /opt/ml/checkpoints/ by default and
the tuning output is synced regularly to
s3://{sagemaker-default-bucket}/syne-tune/{tuner-name}/.



Can I resume a previous tuning job?

Yes, if you want to resume tuning you can deserialize the tuner that is regularly checkpointed to disk
possibly after having modified some part of the scheduler
or adapting the stopping condition to your need.
See examples/launch_resume_tuning.py.
for an example which resumes a previous tuning after having updated the
configuration space.



How can I change the default output folder where tuning results are stored?

To change the path where tuning results are written, you can set the
environment variable SYNETUNE_FOLDER to the folder that you want.

For instance, the following runs a tuning where results tuning files are
written under ~/new-syne-tune-folder:

export SYNETUNE_FOLDER="~/new-syne-tune-folder"
python examples/launch_height_baselines.py





You can also do the following for instance to permanently change the output
folder of Syne Tune:

echo 'export SYNETUNE_FOLDER="~/new-syne-tune-folder"' >> ~/.bashrc && source ~/.bashrc







What does the output of the tuning contain?

Syne Tune stores the following files metadata.json, results.csv.zip,
and tuner.dill, which are respectively metadata of the tuning job, results
obtained at each time-step, and state of the tuner. If you create the
Tuner with save_tuner=False, the tuner.dill file is
not written. The content of results.csv.zip
can be customized.



How can I enable trial checkpointing?

Since trials may be paused and resumed (either by schedulers or when using
spot-instances), the user may checkpoint intermediate results to avoid starting
computation from scratch. Model outputs and checkpoints must be written into a
specific local path given by the command line argument
ST_CHECKPOINT_DIR. Saving/loading model checkpoint
from this directory enables to save/load the state when the job is
stopped/resumed (setting the folder correctly and uniquely per trial is the
responsibility of the backend). Here is an example of a tuning script with
checkpointing enabled:


examples/training_scripts/checkpoint_example/checkpoint_example.py

import argparse
import json
import logging
import os
import time
from pathlib import Path

from syne_tune import Reporter
from syne_tune.constants import ST_CHECKPOINT_DIR


report = Reporter()


def load_checkpoint(checkpoint_path: Path):
    with open(checkpoint_path, "r") as f:
        return json.load(f)


def save_checkpoint(checkpoint_path: Path, epoch: int, value: float):
    os.makedirs(checkpoint_path.parent, exist_ok=True)
    with open(checkpoint_path, "w") as f:
        json.dump({"last_epoch": epoch, "last_value": value}, f)


if __name__ == "__main__":
    root = logging.getLogger()
    root.setLevel(logging.INFO)

    parser = argparse.ArgumentParser()
    parser.add_argument("--num-epochs", type=int, required=True)
    parser.add_argument("--multiplier", type=float, default=1)
    parser.add_argument("--sleep-time", type=float, default=0.1)

    # convention the path where to serialize and deserialize is given as st_checkpoint_dir
    parser.add_argument(f"--{ST_CHECKPOINT_DIR}", type=str)

    args, _ = parser.parse_known_args()

    num_epochs = args.num_epochs
    checkpoint_path = None
    start_epoch = 1
    current_value = 0
    checkpoint_dir = getattr(args, ST_CHECKPOINT_DIR)
    if checkpoint_dir is not None:
        checkpoint_path = Path(checkpoint_dir) / "checkpoint.json"
        if checkpoint_path.exists():
            state = load_checkpoint(checkpoint_path)
            logging.info(f"resuming from previous checkpoint {state}")
            start_epoch = state["last_epoch"] + 1
            current_value = state["last_value"]

    # write dumb values for loss to illustrate sagemaker ability to retrieve metrics
    # should be replaced by your algorithm
    for current_epoch in range(start_epoch, num_epochs + 1):
        time.sleep(args.sleep_time)
        current_value = (current_value + 1) * args.multiplier
        if checkpoint_path is not None:
            save_checkpoint(checkpoint_path, current_epoch, current_value)
        report(train_acc=current_value, epoch=current_epoch)







When using the SageMaker backend, we use the
SageMaker checkpoint mechanism [https://docs.aws.amazon.com/sagemaker/latest/dg/model-checkpoints.html]
under the hood to sync local checkpoints to S3. Checkpoints are synced to
s3://{sagemaker-default-bucket}/syne-tune/{tuner-name}/{trial-id}/,
where sagemaker-default-bucket is the default bucket for SageMaker. A complete
example is given by
examples/launch_height_sagemaker_checkpoints.py.

The same mechanism is used to regularly write the
tuning results to S3 during remote tuning.
However, during remote tuning with the local backend, we do not want
checkpoints to be synced to S3, since they are only required temporarily on the
same instance. Syncing them to S3 would be costly and error-prone, because the
SageMaker mechanism is not intended to work with different processes writing to
and reading from the sync directory concurrently. In this case, we can switch
off syncing checkpoints to S3 (but not tuning results!) by setting
trial_backend_path=backend_path_not_synced_to_s3() when creating the
Tuner object. An example is
fine_tuning_transformer_glue/hpo_main.py.
It is also supported by default in the
experimentation framework and in
RemoteLauncher.

There are some convenience functions which help you to implement checkpointing
for your training script. Have a look at
resnet_cifar10.py:


	Checkpoints have to be written at the end of certain epochs (namely
those after which the scheduler may pause the trial). This is dealt with
by checkpoint_model_at_rung_level(config, save_model_fn, epoch).
Here, epoch is the current epoch, allowing the function to decide
whether to checkpoint or not. save_model_fn stores the current
mutable state along with epoch to a local path (see below). Finally,
config contains arguments provided by the scheduler (see below).


	Before the training loop starts (and optionally), the mutable state to
start from has to be loaded from a checkpoint. This is done by
resume_from_checkpointed_model(config, load_model_fn). If the
checkpoint has been loaded successfully, the training loop may start with
epoch resume_from + 1 instead of 1. Here, load_model_fn loads
the mutable state from a checkpoint in a local path, returning its
epoch value if successful, which is returned as resume_from.




In general, load_model_fn and save_model_fn have to be provided as part
of the script. For most PyTorch models, you can use
pytorch_load_save_functions to this end. In general, you will want to
include the model, the optimizer, and the learning rate scheduler.

Finally, the scheduler provides additional information about checkpointing in
config (most importantly, the path in
ST_CHECKPOINT_DIR). You don’t have to worry about
this: add_checkpointing_to_argparse(parser) adds corresponding arguments to
the parser.



How can I retrieve the best checkpoint obtained after tuning?

You can take a look at this example
examples/launch_checkpoint_example.py
which shows how to retrieve the best checkpoint obtained after tuning an XGBoost model.



How can I retrain the best model found after tuning?

You can call tuner.trial_backend.start_trial(config=tuner.best_config()) after tuning to retrain the best config,
you can take a look at this example
examples/launch_plot_example.py
which shows how to retrain the best model found while tuning.



Which schedulers make use of checkpointing?

Checkpointing means storing the state of a trial (i.e., model parameters,
optimizer or learning rate scheduler parameters), so that it can be paused and
potentially resumed at a later point in time, without having to start training
from scratch. The following schedulers make use of checkpointing:


	Promotion-based asynchronous Hyperband:
HyperbandScheduler with
type="promotion" or type="dyhpo", as well as other asynchronous multi-fidelity schedulers.
The code runs without checkpointing, but in this case, any trial which is
resumed is started from scratch. For example, if a trial was paused after 9
epochs of training and is resumed later, training starts from scratch
and the first 9 epochs are wasted effort. Moreover, extra variance is
introduced by starting from scratch, since weights may be initialized
differently. It is not recommended running promotion-based Hyperband
without checkpointing.


	Population-based training (PBT):
PopulationBasedTraining does not
work without checkpointing.


	Synchronous Hyperband:
SynchronousGeometricHyperbandScheduler,
as well as other synchronous multi-fidelity schedulers. This code runs
without checkpointing, but wastes effort in the same sense as
promotion-based asynchronous Hyperband






Checkpoints are filling up my disk. What can I do?

When tuning large models, checkpoints can be large, and with the local backend,
these checkpoints are stored locally. With multi-fidelity methods, many trials
may be started, and keeping all checkpoints (which is the default) may exceed
the available disk space.

If the trial backend TrialBackend is
created with delete_checkpoints=True, Syne Tune removes the checkpoint of a
trial once it is stopped or completes. All remaining checkpoints are removed at
the end of the experiment. Moreover, a number of schedulers support early
checkpoint removal for paused trials when they cannot be resumed anymore.

For promotion-based asynchronous multi-fidelity schedulers (
ASHA,
MOBSTER,
HyperTune), any
paused trial can in principle be resumed in the future, and
delete_checkpoints=True` alone does not remove checkpoints. In this case,
you can activate speculative early checkpoint removal, by passing
early_checkpoint_removal_kwargs when creating
HyperbandScheduler (or
ASHA,
MOBSTER,
HyperTune). This is a kwargs
dictionary with the following arguments:


	max_num_checkpoints: This is mandatory. Maximum number of trials with
checkpoints being retained. Once more than this number of trials with
checkpoints are present, checkpoints are removed selectively. This number must
be larger than the number of workers, since running trials will always write
checkpoints.


	approx_steps: Positive integer. The computation of the ranking score is
a step-wise approximation, which gets more accurate for larger approx_steps.
However, this computation scales cubically in approx_steps. The default
is 25, which may be sufficient in most cases, but if you need to keep the
number of checkpoints quite small, you may want to tune this parameter.


	max_wallclock_time: Maximum time in seconds the experiment is run for. This
is the same as passed to StoppingCriterion, and if you use
an instance of this as stop_criterion passed to Tuner,
the value is taken from there. Speculative checkpoint removal can only be used
if the stopping criterion includes max_wallclock_time.


	prior_beta_mean: The method depends on the probability of the event
that a trial arriving at a rung ranks better than a random paused trial
with checkpoint at this rung. These probabilities are estimated for each
rung, but we need some initial guess. You are most likely fine with the
default. A value \(< 1/2\) is recommended.


	prior_beta_size: See also prior_beta_mean. The initial guess is
a Beta prior, defined in terms of mean and effective sample size (here).
The smaller this positive number, the weaker the effect of the initial
guess. You are most likely fine with the default.


	min_data_at_rung: Also related to the estimators mentioned with
prior_beta_mean. You are most likely fine with the default.




A complete example is
examples/launch_fashionmnist_checkpoint_removal.py.
For details on speculative checkpoint removal, look at
HyperbandRemoveCheckpointsCallback.



Where can I find the output of my trials?

When running LocalBackend locally, results of trials
are saved under ~/syne-tune/{tuner-name}/{trial-id}/ and contains the
following files:


	config.json: configuration that is being evaluated in the trial


	std.err: standard error


	std.out: standard output




In addition all checkpointing files used by a training script such as
intermediate model checkpoint will also be located there. This is exemplified
in the following example:

tree ~/syne-tune/train-height-2022-01-12-11-08-40-971/
~/syne-tune/train-height-2022-01-12-11-08-40-971/
├── 0
│   ├── config.json
│   ├── std.err
│   ├── std.out
│   └── stop
├── 1
│   ├── config.json
│   ├── std.err
│   ├── std.out
│   └── stop
├── 2
│   ├── config.json
│   ├── std.err
│   ├── std.out
│   └── stop
├── 3
│   ├── config.json
│   ├── std.err
│   ├── std.out
│   └── stop
├── metadata.json
├── results.csv.zip
└── tuner.dill





When running tuning remotely with the remote launcher, only config.json,
metadata.json, results.csv.zip and tuner.dill are synced with S3
unless store_logs_localbackend=True when creating Tuner,
in which case the trial logs and informations are also persisted.



Is the experimentation framework only useful to compare different HPO methods?

No, by all means no! Most of our users do not use it that way, but simply to speed
up experimentation, often with a single HPO methods, but many variants of their
problem. More details about Syne Tune for rapid experimentation are provided
here and
here. Just to clarify:


	We use the term benchmark to denote a tuning problem, consisting of some
code for training and evaluation, plus some default configuration space
(which can be changed to result in different variants of the benchmark).


	While the code for the experimentation framework resides in
syne_tune.experiments, we collect example benchmarks in
benchmarking (only available if Syne Tune is installed from source).
Many of the examples there are about comparison of different HPO methods,
but some are not (for example, benchmarking.examples.demo_experiment).


	In fact, while you do not have to use the experimentation framework to
run studies in Syne Tune, it is much easier than maintaining your own
launcher scripts and plotting code, so you are strongly encouraged to do
so, whether your goal is benchmarking HPO methods or simply just find a
good ML model for your current problem faster.






How can I plot the results of a tuning?

Some basic plots can be obtained via
ExperimentResult. An example is given in
examples/launch_plot_results.py.



How can I plot comparative results across many experiments?

Syne Tune contains powerful plotting tools as part of the experimentation framework
in mod:syne_tune.experiments, these are detailed
here. An example is provided as
part of
benchmarking/examples/benchmark_hypertune.



How can I specify additional tuning metadata?

By default, Syne Tune stores the time, the names and modes of the metric being
tuned, the name of the entrypoint, the name backend and the scheduler name. You
can also add custom metadata to your tuning job by setting metadata in
Tuner as follow:

from syne_tune import Tuner

tuner = Tuner(
    ...
    tuner_name="plot-results-demo",
    metadata={"tag": "special-tag", "user": "alice"},
)





All Syne Tune and user metadata are saved when the tuner starts under
metadata.json.



How do I append additional information to the results which are stored?

Results are processed and stored by callbacks passed to
Tuner, in particular see
StoreResultsCallback. In order to add more
information, you can inherit from this class. An example is given in
StoreResultsAndModelParamsCallback.

If you run experiments with tabulated benchmarks using the
BlackboxRepositoryBackend, as demonstrated in
launch_nasbench201_simulated.py,
results are stored by
SimulatorCallback
instead, and you need to inherit from this class. An example is given in
SimulatorAndModelParamsCallback.



I don’t want to wait, how can I launch the tuning on a remote machine?

Remote launching of experiments has a number of advantages:


	The machine you are working on is not blocked


	You can launch many experiments in parallel


	You can launch experiments with any instance type you like, without having to
provision them yourselves. For GPU instances, you do not have to worry about
setting up CUDA, etc.




You can use the remote launcher to launch an experiment on a remote machine.
The remote launcher supports both LocalBackend and
SageMakerBackend. In the former case, multiple
trials will be evaluated on the remote machine (one use-case being to use a
beefy machine), in the latter case trials will be evaluated as separate
SageMaker training jobs. An example for running the remote launcher is
given in
launch_height_sagemaker_remotely.py.

Remote launching for experimentation is detailed in
this tutorial or
this tutorial.



How can I run many experiments in parallel?

You can remotely launch any number of experiments, which will then run
in parallel, as detailed in
this tutorial, see also these examples:


	Local backend:
benchmarking/examples/launch_local/


	Simulator backend:
benchmarking/examples/benchmark_dehb/


	SageMaker backend:
benchmarking/examples/launch_sagemaker/





Note

In order to run these examples, you need to have
installed Syne Tune from source.





How can I access results after tuning remotely?

You can either call load_experiment(), which will
download files from S3 if the experiment is not found locally. You can also
sync directly files from S3 under ~/syne-tune/ folder in batch for instance
by running:

aws s3 sync s3://{sagemaker-default-bucket}/syne-tune/{tuner-name}/ ~/syne-tune/  --include "*"  --exclude "*tuner.dill"





To get all results without the tuner state (you can omit the include
and exclude if you also want to include the tuner state).



How can I specify dependencies to remote launcher or when using the SageMaker backend?

When you run remote code, you often need to install packages
(e.g., scipy) or have custom code available.


	To install packages, you can add a file requirements.txt in the
same folder as your endpoint script. All those packages will be
installed by SageMaker when docker container starts.


	To include custom code (for instance a library that you are working
on), you can set the parameter dependencies on the remote
launcher or on a SageMaker framework to a list of folders. The
folders indicated will be compressed, sent to S3 and added to the
python path when the container starts. More details are given in
this tutorial.






How can I benchmark different methods?

The most flexible way to do so is to write a custom launcher script, as detailed
in this tutorial, see also these examples:


	Local backend:
benchmarking/examples/launch_local/


	Simulator backend:
benchmarking/examples/benchmark_dehb/


	SageMaker backend:
benchmarking/examples/launch_sagemaker/


	Fine-tuning transformers:
benchmarking/examples/fine_tuning_transformer_glue/


	Hyper-Tune:
benchmarking/examples/benchmark_hypertune/





Note

In order to run these examples, you need to have
installed Syne Tune from source.





What different schedulers do you support? What are the main differences between them?

A succinct overview of supported schedulers is provided
here.

Most methods can be accessed with short names by from
syne_tune.optimizer.baselines, which is the best place to start.

We refer to HPO algorithms as schedulers. A scheduler decides which
configurations to assign to new trials, but also when to stop a running
or resume a paused trial. Some schedulers delegate the first decision to
a searcher. The most important differences between schedulers in the
single-objective case are:


	Does the scheduler stop trials early or pause and resume trials
(HyperbandScheduler) or not
(FIFOScheduler). The former
requires a resource dimension (e.g., number of epochs; size of
training set) and slightly more elaborate reporting (e.g., evaluation
after every epoch), but can outperform the latter by a large margin.


	Does the searcher suggest new configurations by uniform random
sampling (searcher="random") or by sequential model-based
decision-making (searcher="bayesopt", searcher="kde",
searcher="hypertune", searcher="botorch", searcher="dyhpo").
The latter can be more expensive if a lot of trials are run, but can also
be more sample-efficient.




An overview of this landscape is given here.

Here is a
tutorial for multi-fidelity schedulers.
Further schedulers provided by Syne Tune include:


	Population based training (PBT)


	Multi-objective asynchronous successive halving (MOASHA)


	Constrained Bayesian optimization


	Bayesian optimization by density-ratio estimation:
BORE


	Regularized evolution: REA


	Median stopping rule:
MedianStoppingRule


	Synchronous Hyperband


	Differential Evolution Hyperband (DEHB)


	Hyper-Tune


	DyHPO


	Transfer learning schedulers


	Wrappers for Ray Tune schedulers






How do I define the configuration space?

While the training script defines the function to be optimized, some
care needs to be taken to define the configuration space for the hyperparameter
optimization problem. This being a global optimization problem without
gradients easily available, it is most important to reduce the number of
parameters. A general recommendation is to use
streamline_config_space() on your configuration space,
which does some automatic rewriting to enforce best practices. Details on how
to choose a configuration space, and on automatic rewriting, is given
here.

A powerful approach is to run experiments in parallel. Namely, split
your hyperparameters into groups A, B, such that HPO over B is
tractable. Draw a set of N configurations from A at random, then start N
HPO experiments in parallel, where in each of them the search space is
over B only, while the parameters in A are fixed. Syne Tune supports
massively parallel experimentation, see
this tutorial.



How do I set arguments of multi-fidelity schedulers?

When running schedulers like ASHA,
MOBSTER,
HyperTune,
SyncHyperband,
or DEHB, there are mandatory parameters
resource_attr, max_resource_attr, max_t, max_resource_value.
What are they for?

Full details are given in this
tutorial. Multi-fidelity HPO needs
metric values to be reported at regular intervals during training, for example
after every epoch, or for successively larger training datasets. These
reports are indexed by a resource value, which is a positive integer (for
example, the number of epochs already trained).


	resource_attr is the name of the resource attribute in the dictionary
reported by the training script. For example, the script may report
report(epoch=5, mean_loss=0.125) at the end of the 5-th epoch, in
which case resource_attr = "epoch".


	The training script needs to know how many resources to spend overall. For
example, a neural network training script needs to know how many epochs
to maximally train for. It is best practice to pass this maximum resource value
as parameter into the script, which is done by making it part of the
configuration space. In this case, max_resource_attr is the name of
the attribute in the configuration space which contains the maximum
resource value. For example, if your script should train for a maximum of
100 epochs (the scheduler may stop or pause it before, though), you could
use config_space = dict(..., epochs=100), in which case
max_resource_attr = "epochs".


	Finally, you can also use max_t instead of max_resource_attr,
even though this is not recommended. If you don’t want to include the
maximum resource value in your configuration space, you can pass the
value directly as max_t. However, this can lead to avoidable errors,
and may be
inefficient for some schedulers.





Note

When creating a multi-fidelity scheduler, we recommend to use
max_resource_attr in favour of max_t or max_resource_value, as
the latter is error-prone and may be less efficient for some schedulers.





Is my training script ready for multi-fidelity tuning?

A more detailed answer to this question is given in the
multi-fidelity tutorial. In short:


	You need to define the notion of resource for your script. Resource is a
discrete variable (integer), so that time/costs scale linearly in it for
every configuration. A common example is epochs of training for a neural
network. You need to pass the name of this argument as max_resource_attr
to the multi-fidelity scheduler.


	One input argument to your script is the maximum number of resources. Your
script loops over resources until this is reached, then terminates.


	At the end of this resource loop (e.g., loop over training epochs), you
report metrics. Here, you need to report the current resource level as well
(e.g., number of epochs trained so far).


	It is recommended to support checkpointing, as is detailed
here.





Note

In pause-and-resume multi-fidelity schedulers, we know for how many
resources each training job runs, since it is paused at the next rung
level. Such schedulers will pass this resource level via
max_resource_attr to the training script. This means that the
script terminates on its own and does not have to be stopped by the
trial execution backend.





How can I visualize the progress of my tuning experiment with Tensorboard?

To visualize the progress of Syne Tune in
Tensorboard [https://www.tensorflow.org/tensorboard], you can pass
the TensorboardCallback to the
Tuner object:

from syne_tune.callbacks import TensorboardCallback

tuner = Tuner(
    ...
    callbacks=[TensorboardCallback()],
)





Note that, you need to install
TensorboardX [https://github.com/lanpa/tensorboardX] to use this callback:

pip install tensorboardX





The callback will log all metrics that are reported in your training script via
the report(...) function. Now, to open Tensorboard, run:

tensorboard --logdir ~/syne-tune/{tuner-name}/tensorboard_output





If you want to plot the cumulative optimum of the metric you want to
optimize, you can pass the target_metric argument to
class:syne_tune.callbacks.TensorboardCallback. This will also report the best
found hyperparameter configuration over time. A complete example is
examples/launch_tensorboard_example.py.



How can I add a new scheduler?

This is explained in detail in
this tutorial, and also in
examples/launch_height_standalone_scheduler.

Please do consider
contributing back [https://github.com/awslabs/syne-tune/blob/main/CONTRIBUTING.md]
your efforts to the Syne Tune community, thanks!



How can I add a new tabular or surrogate benchmark?

To add a new dataset of tabular evaluations, you need to:


	write a blackbox recipe able to regenerate it by extending
BlackboxRecipe.
You need in particular to provide the name of the blackbox, the reference so
that users are prompted to cite the appropriated paper, and a code that can
generate it from scratch. See
syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench.lcbench
for an example.


	add your new recipe class in
syne_tune.blackbox_repository.conversion_scripts.recipes to make
it available in Syne Tune.




Further details are given
here.



How can I reduce delays in starting trials with the SageMaker backend?

The SageMaker backend executes each trial as a SageMaker training job, which
encurs start-up delays up to several minutes. These delays can be reduced to
about 20 seconds with
SageMaker managed warm pools [https://docs.aws.amazon.com/sagemaker/latest/dg/train-warm-pools.html],
as is detailed in
this tutorial
or this example. We
strongly recommend to use managed warm pools with the SageMaker backend.



How can I pass lists or dictionaries to the training script?

By default, the hyperparameter configuration is passed to the training script
as command line arguments. This precludes parameters from having complex types,
such as lists or dictionaries. The configuration can also be passed as JSON
file, in which case its entries can have any type which is JSON-serializable.
This mode is activated with pass_args_as_json=True when creating the trial
backend:


examples/launch_height_config_json.py

        trial_backend = LocalBackend(
            entry_point=str(entry_point),
            pass_args_as_json=True,
        )







The trial backend stores the configuration as JSON file and passes its filename
as command line argument. In the training script, the configuration is loaded
as follows:


examples/training_scripts/height_example/train_height_config_json.py

    parser = ArgumentParser()
    # Append required argument(s):
    add_config_json_to_argparse(parser)
    args, _ = parser.parse_known_args()
    # Loads config JSON and merges with ``args``
    config = load_config_json(vars(args))







The complete example is
here.
Note that entries automatically appended to the configuration by Syne Tune, such
as ST_CHECKPOINT_DIR, are passed as command line
arguments in any case.



How can I write extra results for an experiment?

By default, Syne Tune is writing
these result files at the end of an experiment.
Here, results.csv.zip contains all data reported by training jobs, along
with time stamps. The contents of this dataframe can be customized, by adding
extra columns to it, as demonstrated in
examples/launch_height_extra_results.py.




            

          

      

      

    

  

    
      
          
            
  
Examples


Example Notebooks


	Tune XGBoost






Example Tuning Scripts


	Launch HPO Experiment Locally

	Fine-Tuning Hugging Face Model for Sentiment Classification

	Launch HPO Experiment with Python Backend

	Population-Based Training (PBT)

	Visualize Tuning Progress with Tensorboard

	Bayesian Optimization with Scikit-learn Based Surrogate Model

	Launch HPO Experiment with Simulator Backend
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	Launch HPO Experiment with SageMaker Backend
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	Launch HPO Experiment with Home-Made Scheduler
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	Resume a Tuning Job
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Tune XGBoost


Install dependencies


[ ]:





%pip install 'syne-tune[basic]'
%pip install xgboost








[ ]:





from syne_tune import Tuner, StoppingCriterion
from syne_tune.backend import PythonBackend
from syne_tune.config_space import randint, uniform, loguniform
from syne_tune.optimizer.baselines import BayesianOptimization
from syne_tune.experiments import load_experiment









Define the training function


[ ]:





def train(n_estimators: int, max_depth: int, gamma: float, reg_lambda: float):
    ''' Training function (the function to be tuned) with hyperparameters passed in as function arguments

    This example demonstrates training an XGBoost model on the UCI ML hand-written digits dataset.

    Note that the training function must be totally self-contained as it needs to be serialized.
    Everything (including variables and dependencies) must be defined or imported inside the function scope.

    For more information on XGBoost's hyperparameters, see https://xgboost.readthedocs.io/en/stable/parameter.html
    For more information about the dataset, see https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html
    '''

    from sklearn.datasets import load_digits
    from sklearn.model_selection import train_test_split
    from syne_tune import Reporter
    import xgboost
    import numpy as np

    X, y = load_digits(return_X_y=True)

    X_trainval, X_test, y_trainval, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    X_train, X_val, y_train, y_val = train_test_split(X_trainval, y_trainval, test_size=0.25, random_state=42)

    report = Reporter()

    clf = xgboost.XGBClassifier(
        n_estimators=n_estimators,
        reg_lambda=reg_lambda,
        gamma=gamma,
        max_depth=max_depth,
    )
    clf.fit(X_train, y_train)

    y_pred = clf.predict(X_val)
    accuracy = (np.equal(y_val, y_pred) * 1.0).mean()

    # report metrics back to syne tune
    report(accuracy = accuracy)









Define the tuning parameters


[ ]:





# Hyperparameter configuration space
config_space = {
    "max_depth": randint(1,10),
    "gamma": uniform(1,10),
    "reg_lambda": loguniform(.0000001, 1),
    "n_estimators": randint(5, 15)
}

# Scheduler (i.e., HPO algorithm)
scheduler = BayesianOptimization(
    config_space,
    metric="accuracy",
    mode="max"
)

tuner = Tuner(
    trial_backend=PythonBackend(tune_function=train, config_space=config_space),
    scheduler=scheduler,
    stop_criterion=StoppingCriterion(max_wallclock_time=30),
    n_workers=4,  # how many trials are evaluated in parallel
)









Run the tuning


[ ]:





tuner.run()

tuning_experiment = load_experiment(tuner.name)

print(f"best result found: {tuning_experiment.best_config()}")

tuning_experiment.plot()











            

          

      

      

    

  

    
      
          
            
  
Launch HPO Experiment Locally


examples/launch_height_baselines.py

import logging
from pathlib import Path

from syne_tune import Tuner, StoppingCriterion
from syne_tune.backend import LocalBackend
from syne_tune.config_space import randint
from syne_tune.optimizer.baselines import (
    RandomSearch,
    ASHA,
)
from examples.training_scripts.height_example.train_height import (
    RESOURCE_ATTR,
    METRIC_ATTR,
    METRIC_MODE,
    MAX_RESOURCE_ATTR,
)
from syne_tune.try_import import try_import_gpsearchers_message


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)

    random_seed = 31415927
    max_epochs = 100
    n_workers = 4

    config_space = {
        MAX_RESOURCE_ATTR: max_epochs,
        "width": randint(0, 20),
        "height": randint(-100, 100),
    }
    entry_point = (
        Path(__file__).parent
        / "training_scripts"
        / "height_example"
        / "train_height.py"
    )

    scheduler_kwargs = {
        "config_space": config_space,
        "metric": METRIC_ATTR,
        "mode": METRIC_MODE,
        "max_resource_attr": MAX_RESOURCE_ATTR,
    }
    schedulers = [
        RandomSearch(**scheduler_kwargs),
        ASHA(**scheduler_kwargs, resource_attr=RESOURCE_ATTR),
    ]
    try:
        from syne_tune.optimizer.baselines import BayesianOptimization

        # example of setting additional kwargs arguments
        schedulers.append(
            BayesianOptimization(
                **scheduler_kwargs,
                search_options={"num_init_random": n_workers + 2},
            )
        )
        from syne_tune.optimizer.baselines import MOBSTER

        schedulers.append(MOBSTER(*scheduler_kwargs, resource_attr=RESOURCE_ATTR))
    except Exception:
        logging.info(try_import_gpsearchers_message())

    for scheduler in schedulers:
        logging.info(f"\n*** running scheduler {scheduler} ***\n")

        trial_backend = LocalBackend(entry_point=str(entry_point))

        stop_criterion = StoppingCriterion(
            max_wallclock_time=20, min_metric_value={METRIC_ATTR: -6.0}
        )
        tuner = Tuner(
            trial_backend=trial_backend,
            scheduler=scheduler,
            stop_criterion=stop_criterion,
            n_workers=n_workers,
        )

        tuner.run()







Along with several of the examples below, this launcher script is using the
following train_height.py training script:


examples/training_scripts/height_example/train_height.py

"""
Example similar to Raytune, https://github.com/ray-project/ray/blob/master/python/ray/tune/examples/skopt_example.py
"""
import logging
import time
from typing import Optional, Dict, Any

from syne_tune import Reporter
from argparse import ArgumentParser

from syne_tune.config_space import randint


report = Reporter()


RESOURCE_ATTR = "epoch"

METRIC_ATTR = "mean_loss"

METRIC_MODE = "min"

MAX_RESOURCE_ATTR = "steps"


def train_height(step: int, width: float, height: float) -> float:
    return 100 / (10 + width * step) + 0.1 * height


def height_config_space(
    max_steps: int, sleep_time: Optional[float] = None
) -> Dict[str, Any]:
    kwargs = {"sleep_time": sleep_time} if sleep_time is not None else dict()
    return {
        MAX_RESOURCE_ATTR: max_steps,
        "width": randint(0, 20),
        "height": randint(-100, 100),
        **kwargs,
    }


if __name__ == "__main__":
    root = logging.getLogger()
    root.setLevel(logging.INFO)

    parser = ArgumentParser()
    parser.add_argument("--" + MAX_RESOURCE_ATTR, type=int)
    parser.add_argument("--width", type=float)
    parser.add_argument("--height", type=float)
    parser.add_argument("--sleep_time", type=float, default=0.1)

    args, _ = parser.parse_known_args()

    width = args.width
    height = args.height
    num_steps = getattr(args, MAX_RESOURCE_ATTR)
    for step in range(num_steps):
        # Sleep first, since results are returned at end of "epoch"
        time.sleep(args.sleep_time)
        # Feed the score back to Syne Tune.
        dummy_score = train_height(step, width, height)
        report(
            **{
                "step": step,
                METRIC_ATTR: dummy_score,
                RESOURCE_ATTR: step + 1,
            }
        )









Fine-Tuning Hugging Face Model for Sentiment Classification


examples/launch_huggingface_classification.py

"""
Example for how to fine-tune a DistilBERT model on the IMDB sentiment classification task using the Hugging Face SageMaker Framework.
"""
import logging
from pathlib import Path

from sagemaker.huggingface import HuggingFace

import syne_tune
from benchmarking.benchmark_definitions import distilbert_imdb_benchmark
from syne_tune import Tuner, StoppingCriterion
from syne_tune.backend import SageMakerBackend
from syne_tune.backend.sagemaker_backend.sagemaker_utils import (
    get_execution_role,
    default_sagemaker_session,
)
from syne_tune.optimizer.baselines import RandomSearch
from syne_tune.remote.constants import (
    HUGGINGFACE_LATEST_FRAMEWORK_VERSION,
    HUGGINGFACE_LATEST_PYTORCH_VERSION,
    HUGGINGFACE_LATEST_TRANSFORMERS_VERSION,
    HUGGINGFACE_LATEST_PY_VERSION,
)

if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)

    # We pick the DistilBERT on IMDB benchmark
    # The 'benchmark' dict contains arguments needed by scheduler and
    # searcher (e.g., 'mode', 'metric'), along with suggested default values
    # for other arguments (which you are free to override)
    random_seed = 31415927
    n_workers = 4
    benchmark = distilbert_imdb_benchmark()
    mode = benchmark.mode
    metric = benchmark.metric
    config_space = benchmark.config_space

    # Define Hugging Face SageMaker estimator
    root = Path(syne_tune.__path__[0]).parent
    estimator = HuggingFace(
        framework_version=HUGGINGFACE_LATEST_FRAMEWORK_VERSION,
        transformers_version=HUGGINGFACE_LATEST_TRANSFORMERS_VERSION,
        pytorch_version=HUGGINGFACE_LATEST_PYTORCH_VERSION,
        py_version=HUGGINGFACE_LATEST_PY_VERSION,
        entry_point=str(benchmark.script),
        base_job_name="hpo-transformer",
        instance_type=benchmark.instance_type,
        instance_count=1,
        role=get_execution_role(),
        dependencies=[root / "benchmarking"],
        sagemaker_session=default_sagemaker_session(),
    )

    # SageMaker backend
    trial_backend = SageMakerBackend(
        sm_estimator=estimator,
        metrics_names=[metric],
    )

    # Random search without stopping
    scheduler = RandomSearch(
        config_space, mode=mode, metric=metric, random_seed=random_seed
    )

    stop_criterion = StoppingCriterion(
        max_wallclock_time=3000
    )  # wall clock time can be increased to 1 hour for more performance
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=n_workers,
    )

    tuner.run()







Requirements:


	Running this script requires Syne Tune to be installed
from source.


	Access to AWS SageMaker


	Runs on four ml.g4dn.xlarge instances




In this example, we use the SageMaker backend together with the
SageMaker Hugging Face framework in order to fine-tune a DistilBERT
model on the IMDB sentiment classification task. This task is one of
our built-in benchmarks. For other ways to run this benchmark on
different backends or remotely, consult
this tutorial.

A more advanced example for fine-tuning Hugging Face transformers is given
here.



Launch HPO Experiment with Python Backend


examples/launch_height_python_backend.py

"""
An example showing to launch a tuning of a python function ``train_height``.
"""

from syne_tune import Tuner, StoppingCriterion
from syne_tune.backend import PythonBackend
from syne_tune.config_space import randint
from syne_tune.optimizer.baselines import ASHA


def train_height(steps: int, width: float, height: float):
    """
    The function to be tuned, note that import must be in PythonBackend and no global variable are allowed,
    more details on requirements of tuned functions can be found in
    :class:`~syne_tune.backend.PythonBackend`.
    """
    import logging
    from syne_tune import Reporter
    import time

    root = logging.getLogger()
    root.setLevel(logging.INFO)
    reporter = Reporter()
    for step in range(steps):
        dummy_score = (0.1 + width * step / 100) ** (-1) + height * 0.1
        # Feed the score back to Syne Tune.
        reporter(step=step, mean_loss=dummy_score, epoch=step + 1)
        time.sleep(0.1)


if __name__ == "__main__":
    import logging

    root = logging.getLogger()
    root.setLevel(logging.INFO)

    max_steps = 100
    n_workers = 4
    metric = "mean_loss"
    mode = "min"
    max_resource_attr = "steps"

    config_space = {
        max_resource_attr: max_steps,
        "width": randint(0, 20),
        "height": randint(-100, 100),
    }

    scheduler = ASHA(
        config_space,
        metric=metric,
        max_resource_attr=max_resource_attr,
        resource_attr="epoch",
        mode=mode,
    )

    trial_backend = PythonBackend(tune_function=train_height, config_space=config_space)

    stop_criterion = StoppingCriterion(
        max_wallclock_time=10, min_metric_value={metric: -6.0}
    )
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=n_workers,
    )
    tuner.run()







The Python backend does not need a separate training script.



Population-Based Training (PBT)


examples/launch_pbt.py

import logging
from pathlib import Path

from syne_tune.backend import LocalBackend
from syne_tune.optimizer.schedulers import PopulationBasedTraining
from syne_tune import Tuner
from syne_tune.config_space import loguniform
from syne_tune import StoppingCriterion


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.DEBUG)

    max_trials = 100

    config_space = {
        "lr": loguniform(0.0001, 0.02),
    }

    entry_point = (
        Path(__file__).parent / "training_scripts" / "pbt_example" / "pbt_example.py"
    )
    trial_backend = LocalBackend(entry_point=str(entry_point))

    mode = "max"
    metric = "mean_accuracy"
    time_attr = "training_iteration"
    population_size = 2

    pbt = PopulationBasedTraining(
        config_space=config_space,
        metric=metric,
        resource_attr=time_attr,
        population_size=population_size,
        mode=mode,
        max_t=200,
        perturbation_interval=1,
    )

    local_tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=pbt,
        stop_criterion=StoppingCriterion(max_wallclock_time=20),
        n_workers=population_size,
        results_update_interval=1,
    )

    local_tuner.run()







This launcher script is using the following pbt_example.py training
script:


examples/training_scripts/pbt_example/pbt_example.py

import numpy as np
import argparse
import logging
import json
import os
import random
import time

from syne_tune import Reporter
from syne_tune.constants import ST_CHECKPOINT_DIR

report = Reporter()


def pbt_function(config):
    """Toy PBT problem for benchmarking adaptive learning rate.

    The goal is to optimize this trainable's accuracy. The accuracy increases
    fastest at the optimal lr, which is a function of the current accuracy.

    The optimal lr schedule for this problem is the triangle wave as follows.
    Note that many lr schedules for real models also follow this shape:

     best lr
      ^
      |    /\
      |   /  \
      |  /    \
      | /      \
      ------------> accuracy

    In this problem, using PBT with a population of 2-4 is sufficient to
    roughly approximate this lr schedule. Higher population sizes will yield
    faster convergence. Training will not converge without PBT.
    """
    lr = config["lr"]
    checkpoint_dir = config.get(ST_CHECKPOINT_DIR)
    accuracy = 0.0  # end = 1000
    start = 1
    if checkpoint_dir and os.path.isdir(checkpoint_dir):
        with open(os.path.join(checkpoint_dir, "checkpoint.json"), "r") as f:
            state = json.loads(f.read())
            accuracy = state["acc"]
            start = state["step"]

    midpoint = 100  # lr starts decreasing after acc > midpoint
    q_tolerance = 3  # penalize exceeding lr by more than this multiple
    noise_level = 2  # add gaussian noise to the acc increase
    # triangle wave:
    #  - start at 0.001 @ t=0,
    #  - peak at 0.01 @ t=midpoint,
    #  - end at 0.001 @ t=midpoint * 2,
    for step in range(start, 200):
        if accuracy < midpoint:
            optimal_lr = 0.01 * accuracy / midpoint
        else:
            optimal_lr = 0.01 - 0.01 * (accuracy - midpoint) / midpoint
        optimal_lr = min(0.01, max(0.001, optimal_lr))
        # Compute accuracy increase
        q_err = max(lr, optimal_lr) / min(lr, optimal_lr)
        if q_err < q_tolerance:
            accuracy += (1.0 / q_err) * random.random()
        elif lr > optimal_lr:
            accuracy -= (q_err - q_tolerance) * random.random()
        accuracy += noise_level * np.random.normal()
        accuracy = max(0, accuracy)
        # Save checkpoint
        if checkpoint_dir is not None:
            os.makedirs(os.path.join(checkpoint_dir), exist_ok=True)
            path = os.path.join(checkpoint_dir, "checkpoint.json")
            with open(path, "w") as f:
                f.write(json.dumps({"acc": accuracy, "step": step}))

        report(
            mean_accuracy=accuracy,
            cur_lr=lr,
            training_iteration=step,
            optimal_lr=optimal_lr,  # for debugging
            q_err=q_err,  # for debugging
            # done=accuracy > midpoint * 2  # this stops the training process
        )
        time.sleep(2)


if __name__ == "__main__":
    root = logging.getLogger()
    root.setLevel(logging.INFO)

    parser = argparse.ArgumentParser()
    parser.add_argument("--lr", type=float)
    parser.add_argument(f"--{ST_CHECKPOINT_DIR}", type=str)

    args, _ = parser.parse_known_args()

    params = vars(args)
    pbt_function(params)







For this toy example, PBT is run with a population size of 2, so only
two parallel workers are needed. In order to use PBT competitively,
choose the SageMaker backend. Note that PBT requires your training
script to
support checkpointing.



Visualize Tuning Progress with Tensorboard


examples/launch_tensorboard_example.py

"""
Example showing how to visualize the HPO process of Syne Tune with Tensorboard.
Results will be stored in ~/syne-tune/{tuner_name}/tensoboard_output. To start
tensorboard, execute in a separate shell:

.. code:: bash

   tensorboard --logdir  /~/syne-tune/{tuner_name}/tensorboard_output

Open the displayed URL in the browser.

To use this functionality you need to install tensorboardX:

.. code:: bash

   pip install tensorboardX

"""

import logging
from pathlib import Path

from syne_tune.backend import LocalBackend
from syne_tune.optimizer.baselines import RandomSearch
from syne_tune import Tuner, StoppingCriterion
from syne_tune.config_space import randint
from syne_tune.callbacks.tensorboard_callback import TensorboardCallback
from syne_tune.results_callback import StoreResultsCallback
from examples.training_scripts.height_example.train_height import (
    METRIC_ATTR,
    METRIC_MODE,
    MAX_RESOURCE_ATTR,
)

if __name__ == "__main__":
    logging.getLogger().setLevel(logging.DEBUG)

    random_seed = 31415927
    max_steps = 100
    n_workers = 4

    config_space = {
        MAX_RESOURCE_ATTR: max_steps,
        "width": randint(0, 20),
        "height": randint(-100, 100),
    }
    entry_point = str(
        Path(__file__).parent
        / "training_scripts"
        / "height_example"
        / "train_height.py"
    )

    trial_backend = LocalBackend(entry_point=entry_point)

    # Random search without stopping
    scheduler = RandomSearch(
        config_space, mode=METRIC_MODE, metric=METRIC_ATTR, random_seed=random_seed
    )

    stop_criterion = StoppingCriterion(max_wallclock_time=20)
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        n_workers=n_workers,
        stop_criterion=stop_criterion,
        results_update_interval=5,
        # Adding the TensorboardCallback overwrites the default callback which consists of the StoreResultsCallback.
        # To write results on this disk as well, we put this in here as well.
        callbacks=[
            TensorboardCallback(target_metric=METRIC_ATTR, mode=METRIC_MODE),
            StoreResultsCallback(),
        ],
        tuner_name="tensorboardx-demo",
        metadata={"description": "just an example"},
    )

    tuner.run()







Requirements:


	Needs tensorboardX to be installed: pip install tensorboardX.




Makes use of train_height.py.

Tensorboard visualization works by using a callback, for example
TensorboardCallback,
which is passed to the Tuner. In order to visualize
other metrics, you may have to modify this callback.



Bayesian Optimization with Scikit-learn Based Surrogate Model


examples/launch_sklearn_surrogate_bo.py

import copy
from pathlib import Path
from typing import Tuple
import logging

import numpy as np
from sklearn.linear_model import BayesianRidge

from examples.training_scripts.height_example.train_height import (
    METRIC_ATTR,
    METRIC_MODE,
    MAX_RESOURCE_ATTR,
)
from syne_tune import Tuner, StoppingCriterion
from syne_tune.backend import LocalBackend
from syne_tune.config_space import randint
from syne_tune.optimizer.schedulers import FIFOScheduler
from syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl import (
    EIAcquisitionFunction,
)
from syne_tune.optimizer.schedulers.searchers.sklearn import (
    SKLearnSurrogateSearcher,
)
from syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn import (
    SKLearnEstimator,
    SKLearnPredictor,
)


class BayesianRidgePredictor(SKLearnPredictor):
    """
    Predictor for surrogate model given by ``sklearn.linear_model.BayesianRidge``.
    """

    def __init__(self, ridge: BayesianRidge):
        self.ridge = ridge

    def predict(self, X: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
        return self.ridge.predict(X, return_std=True)


class BayesianRidgeEstimator(SKLearnEstimator):
    """
    Estimator for surrogate model given by ``sklearn.linear_model.BayesianRidge``.

    None of the parameters of ``BayesianRidge`` are exposed here, so they are all
    fixed up front.
    """

    def __init__(self, *args, **kwargs):
        self.ridge = BayesianRidge(*args, **kwargs)

    def fit(
        self, X: np.ndarray, y: np.ndarray, update_params: bool
    ) -> SKLearnPredictor:
        self.ridge.fit(X, y.ravel())
        return BayesianRidgePredictor(ridge=copy.deepcopy(self.ridge))


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)

    random_seed = 31415927
    max_epochs = 100
    n_workers = 4

    config_space = {
        "width": randint(1, 20),
        "height": randint(1, 20),
        MAX_RESOURCE_ATTR: 100,
    }
    entry_point = str(
        Path(__file__).parent
        / "training_scripts"
        / "height_example"
        / "train_height.py"
    )

    # We use ``FIFOScheduler`` with a specific searcher based on our surrogate
    # model
    searcher = SKLearnSurrogateSearcher(
        config_space=config_space,
        metric=METRIC_ATTR,
        estimator=BayesianRidgeEstimator(),
        scoring_class=EIAcquisitionFunction,
    )
    scheduler = FIFOScheduler(
        config_space,
        metric=METRIC_ATTR,
        mode=METRIC_MODE,
        max_resource_attr=MAX_RESOURCE_ATTR,
        searcher=searcher,
    )

    tuner = Tuner(
        trial_backend=LocalBackend(entry_point=entry_point),
        scheduler=scheduler,
        stop_criterion=StoppingCriterion(max_wallclock_time=60),
        n_workers=n_workers,
    )

    tuner.run()







Requirements:


	Needs sckit-learn to be installed. If you installed Syne Tune
with sklearn or basic, this dependence is included.




In this example, a simple new surrogate model is implemented based on
sklearn.linear_model.BayesianRidge, and Bayesian optimization is run with
this surrogate model rather than a Gaussian process model.



Launch HPO Experiment with Simulator Backend


examples/launch_nasbench201_simulated.py

"""
Example for running the simulator backend on a tabulated benchmark
"""
import logging

from syne_tune.experiments.benchmark_definitions.nas201 import nas201_benchmark
from syne_tune.blackbox_repository import BlackboxRepositoryBackend
from syne_tune.backend.simulator_backend.simulator_callback import SimulatorCallback
from syne_tune.optimizer.baselines import ASHA
from syne_tune import Tuner, StoppingCriterion


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)

    random_seed = 31415927
    n_workers = 4
    dataset_name = "cifar100"
    benchmark = nas201_benchmark(dataset_name)

    # Simulator backend specialized to tabulated blackboxes
    max_resource_attr = benchmark.max_resource_attr
    trial_backend = BlackboxRepositoryBackend(
        elapsed_time_attr=benchmark.elapsed_time_attr,
        max_resource_attr=max_resource_attr,
        blackbox_name=benchmark.blackbox_name,
        dataset=dataset_name,
    )

    # Asynchronous successive halving (ASHA)
    blackbox = trial_backend.blackbox
    scheduler = ASHA(
        config_space=blackbox.configuration_space_with_max_resource_attr(
            max_resource_attr
        ),
        max_resource_attr=max_resource_attr,
        resource_attr=blackbox.fidelity_name(),
        mode=benchmark.mode,
        metric=benchmark.metric,
        search_options={"debug_log": False},
        random_seed=random_seed,
    )

    max_wallclock_time = 3600
    stop_criterion = StoppingCriterion(max_wallclock_time=max_wallclock_time)
    # Printing the status during tuning takes a lot of time, and so does
    # storing results.
    print_update_interval = 700
    results_update_interval = 300
    # It is important to set ``sleep_time`` to 0 here (mandatory for simulator
    # backend)
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=n_workers,
        sleep_time=0,
        results_update_interval=results_update_interval,
        print_update_interval=print_update_interval,
        # This callback is required in order to make things work with the
        # simulator callback. It makes sure that results are stored with
        # simulated time (rather than real time), and that the time_keeper
        # is advanced properly whenever the tuner loop sleeps
        callbacks=[SimulatorCallback()],
    )
    tuner.run()







Requirements:


	Syne Tune dependencies blackbox-repository need to be
installed.


	Needs nasbench201 blackbox to be downloaded and preprocessed. This can
take quite a while when done for the first time


	If AWS SageMaker is used
or an S3 bucket is accessible, the blackbox files are uploaded to your S3
bucket




In this example, we use the simulator backend with the NASBench-201
blackbox. Since time is simulated, we can use
max_wallclock_time=3600 (one hour), but the experiment finishes
in mere seconds. More details about the simulator backend is found in
this tutorial.



Joint Tuning of Instance Type and Hyperparameters using MOASHA


examples/launch_moasha_instance_tuning.py

"""
Example showing how to tune instance types and hyperparameters with a Sagemaker Framework.
"""
import logging
from pathlib import Path

from sagemaker.huggingface import HuggingFace

from syne_tune import StoppingCriterion, Tuner
from syne_tune.backend import SageMakerBackend
from syne_tune.backend.sagemaker_backend.instance_info import select_instance_type
from syne_tune.backend.sagemaker_backend.sagemaker_utils import (
    get_execution_role,
    default_sagemaker_session,
)
from syne_tune.config_space import loguniform, choice
from syne_tune.constants import (
    ST_WORKER_TIME,
    ST_WORKER_COST,
    ST_INSTANCE_TYPE,
)
from syne_tune.optimizer.schedulers.multiobjective import MOASHA
from syne_tune.remote.constants import (
    DEFAULT_CPU_INSTANCE_SMALL,
    HUGGINGFACE_LATEST_FRAMEWORK_VERSION,
    HUGGINGFACE_LATEST_PYTORCH_VERSION,
    HUGGINGFACE_LATEST_TRANSFORMERS_VERSION,
    HUGGINGFACE_LATEST_PY_VERSION,
)
from syne_tune.remote.remote_launcher import RemoteLauncher

if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)

    n_workers = 2
    epochs = 4

    # Select the instance types that are searched.
    # Alternatively, you can define the instance list explicitly:
    # :code:`instance_types = ["ml.c5.xlarge", "ml.m5.2xlarge"]`
    instance_types = select_instance_type(min_gpu=1, max_cost_per_hour=5.0)

    print(f"tuning over hyperparameters and instance types: {instance_types}")

    # define a search space that contains hyperparameters (learning-rate, weight-decay) and instance-type.
    config_space = {
        ST_INSTANCE_TYPE: choice(instance_types),
        "learning_rate": loguniform(1e-6, 1e-4),
        "weight_decay": loguniform(1e-5, 1e-2),
        "epochs": epochs,
        "dataset_path": "./",
    }
    entry_point = (
        Path(__file__).parent.parent
        / "benchmarking"
        / "training_scripts"
        / "distilbert_on_imdb"
        / "distilbert_on_imdb.py"
    )
    metric = "accuracy"

    # Define a MOASHA scheduler that searches over the config space to maximise accuracy and minimize cost and time.
    scheduler = MOASHA(
        max_t=epochs,
        time_attr="step",
        metrics=[metric, ST_WORKER_COST, ST_WORKER_TIME],
        mode=["max", "min", "min"],
        config_space=config_space,
    )

    # Define the training function to be tuned, use the Sagemaker backend to execute trials as separate training job
    # (since they are quite expensive).
    trial_backend = SageMakerBackend(
        sm_estimator=HuggingFace(
            framework_version=HUGGINGFACE_LATEST_FRAMEWORK_VERSION,
            transformers_version=HUGGINGFACE_LATEST_TRANSFORMERS_VERSION,
            pytorch_version=HUGGINGFACE_LATEST_PYTORCH_VERSION,
            py_version=HUGGINGFACE_LATEST_PY_VERSION,
            entry_point=str(entry_point),
            base_job_name="hpo-transformer",
            # instance-type given here are override by Syne Tune with values sampled from ST_INSTANCE_TYPE.
            instance_type=DEFAULT_CPU_INSTANCE_SMALL,
            instance_count=1,
            max_run=3600,
            role=get_execution_role(),
            dependencies=[str(Path(__file__).parent.parent / "benchmarking")],
            sagemaker_session=default_sagemaker_session(),
            disable_profiler=True,
            debugger_hook_config=False,
        ),
    )

    remote_launcher = RemoteLauncher(
        tuner=Tuner(
            trial_backend=trial_backend,
            scheduler=scheduler,
            stop_criterion=StoppingCriterion(max_wallclock_time=3600, max_cost=10.0),
            n_workers=n_workers,
            sleep_time=5.0,
        ),
        dependencies=[str(Path(__file__).parent.parent / "benchmarking")],
    )

    remote_launcher.run(wait=False)







Requirements:


	Needs code from benchmarking.training_scripts.distilbert_on_imdb,


	which requires Syne Tune to be installed
from source.


	Access to AWS SageMaker


	Runs training jobs on instances of type ml.g4dn.xlarge, ml.g5.xlarge,
ml.g4dn.2xlarge, ml.p2.xlarge, ml.g5.2xlarge, ml.g5.4xlarge,
ml.g4dn.4xlarge, ml.g5.8xlarge, ml.g4dn.8xlarge,
ml.p3.2xlarge, ml.g5.16xlarge. This list of instances types to be
searched over can be modified by the user




In this example, we use the SageMaker backend together with the
SageMaker Hugging Face framework in order to fine-tune a DistilBERT
model on the IMDB sentiment classification task:


	Instead of optimizing a single objective, we use
MOASHA in order
to sample the Pareto frontier w.r.t. three objectives


	We not only tune hyperparameters such as learning rate and weight
decay, but also the AWS instance type to be used for training. Here,
one of the objectives to minimize is the training cost (in dollars).






Multi-objective Asynchronous Successive Halving (MOASHA)


examples/launch_height_moasha.py

"""
Example showing how to tune multiple objectives at once of an artificial function.
"""
import logging
from pathlib import Path

import numpy as np

from syne_tune.backend import LocalBackend
from syne_tune.optimizer.schedulers.multiobjective import MOASHA
from syne_tune import Tuner, StoppingCriterion
from syne_tune.config_space import uniform


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)
    np.random.seed(0)

    max_steps = 27
    n_workers = 4

    config_space = {
        "steps": max_steps,
        "theta": uniform(0, np.pi / 2),
        "sleep_time": 0.01,
    }
    entry_point = (
        Path(__file__).parent
        / "training_scripts"
        / "mo_artificial"
        / "mo_artificial.py"
    )
    mode = "min"

    np.random.seed(0)
    scheduler = MOASHA(
        max_t=max_steps,
        time_attr="step",
        mode=mode,
        metrics=["y1", "y2"],
        config_space=config_space,
    )
    trial_backend = LocalBackend(entry_point=str(entry_point))

    stop_criterion = StoppingCriterion(max_wallclock_time=20)
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=n_workers,
        sleep_time=0.5,
    )
    tuner.run()







This launcher script is using the following mo_artificial.py training
script:


examples/training_scripts/mo_artificial/mo_artificial.py

import time
from argparse import ArgumentParser

import numpy as np

from syne_tune import Reporter


def f(t, theta):
    # Function drawing upper-right circles with radius set to ``t`` and with center set at
    # (-t, -t). ``t`` is interpreted as a fidelity and larger ``t`` corresponds to larger radius and better candidates.
    # The optimal multiobjective solution should select theta uniformly from [0, pi/2].
    return {
        "y1": -t + t * np.cos(theta),
        "y2": -t + t * np.sin(theta),
    }


def plot_function():
    import matplotlib.pyplot as plt

    ts = np.linspace(0, 27, num=5)
    thetas = np.linspace(0, 1) * np.pi / 2
    y1s = []
    y2s = []
    for t in ts:
        for theta in thetas:
            res = f(t, theta)
            y1s.append(res["y1"])
            y2s.append(res["y2"])
    plt.scatter(y1s, y2s)
    plt.show()


if __name__ == "__main__":
    # plot_function()
    parser = ArgumentParser()
    parser.add_argument("--steps", type=int, required=True)
    parser.add_argument("--theta", type=float, required=True)
    parser.add_argument("--sleep_time", type=float, required=False, default=0.1)
    args, _ = parser.parse_known_args()

    assert 0 <= args.theta < np.pi / 2
    reporter = Reporter()
    for step in range(args.steps):
        y = f(t=step, theta=args.theta)
        reporter(step=step, **y)
        time.sleep(args.sleep_time)









PASHA: Efficient HPO and NAS with Progressive Resource Allocation


examples/launch_pasha_nasbench201.py

"""
Example for running PASHA on NASBench201
"""
import logging

from syne_tune.experiments.benchmark_definitions.nas201 import nas201_benchmark
from syne_tune.blackbox_repository import BlackboxRepositoryBackend
from syne_tune.backend.simulator_backend.simulator_callback import SimulatorCallback
from syne_tune.optimizer.baselines import PASHA
from syne_tune import Tuner, StoppingCriterion


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.WARNING)

    random_seed = 1
    nb201_random_seed = 0
    n_workers = 4
    dataset_name = "cifar100"
    benchmark = nas201_benchmark(dataset_name)

    # simulator backend specialized to tabulated blackboxes
    max_resource_attr = benchmark.max_resource_attr
    trial_backend = BlackboxRepositoryBackend(
        blackbox_name=benchmark.blackbox_name,
        elapsed_time_attr=benchmark.elapsed_time_attr,
        max_resource_attr=max_resource_attr,
        dataset=dataset_name,
        seed=nb201_random_seed,
    )

    blackbox = trial_backend.blackbox
    scheduler = PASHA(
        config_space=blackbox.configuration_space_with_max_resource_attr(
            max_resource_attr
        ),
        max_resource_attr=max_resource_attr,
        resource_attr=blackbox.fidelity_name(),
        mode=benchmark.mode,
        metric=benchmark.metric,
        random_seed=random_seed,
    )

    max_num_trials_started = 256
    stop_criterion = StoppingCriterion(max_num_trials_started=max_num_trials_started)
    # printing the status during tuning takes a lot of time, and so does
    # storing results
    print_update_interval = 700
    results_update_interval = 300
    # it is important to set ``sleep_time`` to 0 here (mandatory for simulator
    # backend)
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=n_workers,
        sleep_time=0,
        results_update_interval=results_update_interval,
        print_update_interval=print_update_interval,
        # this callback is required in order to make things work with the
        # simulator callback. It makes sure that results are stored with
        # simulated time (rather than real time), and that the time_keeper
        # is advanced properly whenever the tuner loop sleeps
        callbacks=[SimulatorCallback()],
    )

    tuner.run()







Requirements:


	Syne Tune dependencies blackbox-repository need to be
installed.


	Needs nasbench201 blackbox to be downloaded and preprocessed. This can
take quite a while when done for the first time




PASHA typically uses max_num_trials_completed as the stopping criterion.
After finding a strong configuration using PASHA,
the next step is to fully train a model with the configuration.



Constrained Bayesian Optimization


examples/launch_bayesopt_constrained.py

"""
Example for running constrained Bayesian optimization on a toy example
"""
import logging
from pathlib import Path

from syne_tune.backend import LocalBackend
from syne_tune.optimizer.schedulers import FIFOScheduler
from syne_tune.config_space import uniform
from syne_tune import StoppingCriterion, Tuner


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)

    random_seed = 31415927
    n_workers = 2

    config_space = {
        "x1": uniform(-5, 10),
        "x2": uniform(0, 15),
        "constraint_offset": 1.0,  # the lower, the stricter
    }

    entry_point = str(
        Path(__file__).parent
        / "training_scripts"
        / "constrained_hpo"
        / "train_constrained_example.py"
    )
    mode = "max"
    metric = "objective"
    constraint_attr = "my_constraint_metric"

    # Local backend
    trial_backend = LocalBackend(entry_point=entry_point)

    # Bayesian constrained optimization:
    #   :math:`max_x f(x),   \mathrm{s.t.} c(x) <= 0`
    # Here, ``metric`` represents :math:`f(x)`, ``constraint_attr`` represents
    # :math:`c(x)`.
    search_options = {
        "num_init_random": n_workers,
        "constraint_attr": constraint_attr,
    }
    scheduler = FIFOScheduler(
        config_space,
        searcher="bayesopt_constrained",
        search_options=search_options,
        mode=mode,
        metric=metric,
        random_seed=random_seed,
    )

    stop_criterion = StoppingCriterion(max_wallclock_time=20)
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=n_workers,
    )

    tuner.run()







This launcher script is using the following train_constrained_example.py training
script:


examples/training_scripts/constrained_hpo/train_constrained_example.py

import logging
import numpy as np

from syne_tune import Reporter
from argparse import ArgumentParser


report = Reporter()


if __name__ == "__main__":
    root = logging.getLogger()
    root.setLevel(logging.DEBUG)

    parser = ArgumentParser()
    parser.add_argument("--x1", type=float)
    parser.add_argument("--x2", type=float)
    parser.add_argument("--constraint_offset", type=float)

    args, _ = parser.parse_known_args()

    x1 = args.x1
    x2 = args.x2
    constraint_offset = args.constraint_offset
    r = 6
    objective_value = (
        (x2 - (5.1 / (4 * np.pi**2)) * x1**2 + (5 / np.pi) * x1 - r) ** 2
        + 10 * (1 - 1 / (8 * np.pi)) * np.cos(x1)
        + 10
    )
    constraint_value = (
        x1 * 2.0 - constraint_offset
    )  # feasible iff x1 <= 0.5 * constraint_offset
    report(objective=-objective_value, my_constraint_metric=constraint_value)









Restrict Scheduler to Tabulated Configurations with Simulator Backend


examples/launch_lcbench_simulated.py

"""
Example for running the simulator backend on the "lcbench" tabulated
benchmark. The scheduler is restricted to work with the configurations
which have been evaluated under the benchmark.
"""
import logging

from syne_tune.experiments.benchmark_definitions.lcbench import lcbench_benchmark
from syne_tune.blackbox_repository import BlackboxRepositoryBackend
from syne_tune.backend.simulator_backend.simulator_callback import SimulatorCallback
from syne_tune.optimizer.baselines import BayesianOptimization
from syne_tune import Tuner, StoppingCriterion


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)

    random_seed = 31415927
    n_workers = 4
    dataset_name = "airlines"
    benchmark = lcbench_benchmark(dataset_name)

    # Simulator backend specialized to tabulated blackboxes
    # Note: Even though ``lcbench_benchmark`` defines a surrogate, we
    # do not use this here
    max_resource_attr = benchmark.max_resource_attr
    trial_backend = BlackboxRepositoryBackend(
        elapsed_time_attr=benchmark.elapsed_time_attr,
        max_resource_attr=max_resource_attr,
        blackbox_name=benchmark.blackbox_name,
        dataset=dataset_name,
    )

    # GP-based Bayesian optimization
    # Using ``restrict_configurations``, we restrict the scheduler to only
    # suggest configurations which have observations in the tabulated
    # blackbox
    blackbox = trial_backend.blackbox
    restrict_configurations = blackbox.all_configurations()
    scheduler = BayesianOptimization(
        config_space=blackbox.configuration_space_with_max_resource_attr(
            max_resource_attr
        ),
        max_resource_attr=max_resource_attr,
        mode=benchmark.mode,
        metric=benchmark.metric,
        random_seed=random_seed,
        search_options=dict(restrict_configurations=restrict_configurations),
    )

    max_wallclock_time = 3600
    stop_criterion = StoppingCriterion(max_wallclock_time=max_wallclock_time)
    # Printing the status during tuning takes a lot of time, and so does
    # storing results.
    print_update_interval = 700
    results_update_interval = 300
    # It is important to set ``sleep_time`` to 0 here (mandatory for simulator
    # backend)
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=n_workers,
        sleep_time=0,
        results_update_interval=results_update_interval,
        print_update_interval=print_update_interval,
        # This callback is required in order to make things work with the
        # simulator callback. It makes sure that results are stored with
        # simulated time (rather than real time), and that the time_keeper
        # is advanced properly whenever the tuner loop sleeps
        callbacks=[SimulatorCallback()],
    )
    tuner.run()







Requirements:


	Syne Tune dependencies blackbox-repository need to be
installed.


	Needs lcbench blackbox to be downloaded and preprocessed. This can
take quite a while when done for the first time


	If AWS SageMaker is used
or an S3 bucket is accessible, the blackbox files are uploaded to your S3
bucket




This example is similar to the one
above, but here we use
the tabulated LCBench benchmark, whose configuration space is infinite, and
whose objective values have not been evaluated on a grid. With such a
benchmark, we can either use a surrogate to interpolate objective values, or
we can restrict the scheduler to only suggest configurations which have
been observed in the benchmark. This example demonstrates the latter.

Since time is simulated, we can use max_wallclock_time=3600 (one hour),
but the experiment finishes in mere seconds. More details about the simulator
backend is found in
this tutorial.



Tuning Reinforcement Learning


examples/launch_rl_tuning.py

"""
This launches a local HPO tuning the discount factor of PPO on cartpole.
To run this example, you should have installed dependencies in ``requirements.txt``.
"""
import logging
from pathlib import Path

import numpy as np

from syne_tune.backend import LocalBackend
from syne_tune.experiments import load_experiment
from syne_tune.optimizer.baselines import ASHA
import syne_tune.config_space as sp
from syne_tune import Tuner, StoppingCriterion

if __name__ == "__main__":

    logging.getLogger().setLevel(logging.DEBUG)
    np.random.seed(0)
    max_steps = 100
    metric = "episode_reward_mean"
    mode = "max"
    max_resource_attr = "max_iterations"

    trial_backend = LocalBackend(
        entry_point=Path(__file__).parent
        / "training_scripts"
        / "rl_cartpole"
        / "train_cartpole.py"
    )

    scheduler = ASHA(
        config_space={
            max_resource_attr: max_steps,
            "gamma": sp.uniform(0.5, 0.99),
            "lr": sp.loguniform(1e-6, 1e-3),
        },
        metric=metric,
        mode=mode,
        max_resource_attr=max_resource_attr,
        resource_attr="training_iter",
        search_options={"debug_log": False},
    )

    stop_criterion = StoppingCriterion(max_wallclock_time=60)
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=2,
    )

    tuner.run()

    tuning_experiment = load_experiment(tuner.name)

    print(f"best result found: {tuning_experiment.best_config()}")

    tuning_experiment.plot()







This launcher script is using the following train_cartpole.py training
script:


examples/training_scripts/rl_cartpole/train_cartpole.py

"""
Adapts the introductionary example of rllib that trains a Cartpole with PPO.
https://docs.ray.io/en/master/rllib/index.html
The input arguments learning-rate and gamma discount factor can be tuned for maximizing the episode mean reward.
"""
from argparse import ArgumentParser
from syne_tune import Reporter
from ray.rllib.algorithms.ppo import PPO

if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("--max_training_steps", type=int, default=100)
    parser.add_argument("--lr", type=float, default=5e-5)
    parser.add_argument("--gamma", type=float, default=0.99)
    args, _ = parser.parse_known_args()

    # Configure the algorithm.
    config = {
        # Environment (RLlib understands openAI gym registered strings).
        "env": "CartPole-v0",
        "num_workers": 2,
        # Use "tf" for TensorFlow, "torch" for PyTorch, "tf2" for
        # tf2.x eager execution
        "framework": "torch",
        "gamma": args.gamma,
        "lr": args.lr,
    }

    trainer = PPO(config=config)

    reporter = Reporter()
    # Run it for n max_training_steps iterations. A training iteration includes
    # parallel sample collection by the environment workers as well as
    # loss calculation on the collected batch and a model update.
    # Episode reward mean is reported each time.
    for i in range(args.max_training_steps):
        results = trainer.train()
        reporter(
            training_iter=i + 1,
            episode_reward_mean=results["episode_reward_mean"],
        )







This training script requires the following dependencies to be
installed:


examples/training_scripts/rl_cartpole/requirements.txt

tensorboardX==2.5.1
opencv-python
ray[rllib]==2.9.1
dm-tree==0.1.8
gymnasium==0.28.1
tensorflow==2.11.1
pygame==2.1.2









Launch HPO Experiment with SageMaker Backend


examples/launch_height_sagemaker.py

"""
Example showing how to run on Sagemaker with a Sagemaker Framework.
"""
import logging
import os
from pathlib import Path

from sagemaker.pytorch import PyTorch

from syne_tune import Tuner, StoppingCriterion
from syne_tune.backend import SageMakerBackend
from syne_tune.backend.sagemaker_backend.sagemaker_utils import (
    get_execution_role,
    default_sagemaker_session,
)
from syne_tune.config_space import randint
from examples.training_scripts.height_example.train_height import (
    METRIC_ATTR,
    METRIC_MODE,
    MAX_RESOURCE_ATTR,
)
from syne_tune.optimizer.baselines import RandomSearch
from syne_tune.remote.constants import (
    DEFAULT_CPU_INSTANCE_SMALL,
    PYTORCH_LATEST_FRAMEWORK,
    PYTORCH_LATEST_PY_VERSION,
)

if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)

    random_seed = 31415927
    max_steps = 100
    n_workers = 4
    max_wallclock_time = 5 * 60

    config_space = {
        MAX_RESOURCE_ATTR: max_steps,
        "width": randint(0, 20),
        "height": randint(-100, 100),
    }
    entry_point = (
        Path(__file__).parent
        / "training_scripts"
        / "height_example"
        / "train_height.py"
    )

    # Random search without stopping
    scheduler = RandomSearch(
        config_space, mode=METRIC_MODE, metric=METRIC_ATTR, random_seed=random_seed
    )
    if "AWS_DEFAULT_REGION" not in os.environ:
        os.environ["AWS_DEFAULT_REGION"] = "us-west-2"

    trial_backend = SageMakerBackend(
        # we tune a PyTorch Framework from Sagemaker
        sm_estimator=PyTorch(
            instance_type=DEFAULT_CPU_INSTANCE_SMALL,
            instance_count=1,
            framework_version=PYTORCH_LATEST_FRAMEWORK,
            py_version=PYTORCH_LATEST_PY_VERSION,
            entry_point=str(entry_point),
            role=get_execution_role(),
            max_run=10 * 60,
            sagemaker_session=default_sagemaker_session(),
            disable_profiler=True,
            debugger_hook_config=False,
        ),
        # names of metrics to track. Each metric will be detected by Sagemaker if it is written in the
        # following form: "[RMSE]: 1.2", see in train_main_example how metrics are logged for an example
        metrics_names=[METRIC_ATTR],
    )

    stop_criterion = StoppingCriterion(max_wallclock_time=max_wallclock_time)
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=n_workers,
        sleep_time=5.0,
        tuner_name="hpo-hyperband",
    )

    tuner.run()







Requirements:


	Access to AWS SageMaker.
More details are provided in
this tutorial.


	This example can be sped up by using SageMaker managed warm pools, as in
this example.




Makes use of train_height.py.



SageMaker Backend and Checkpointing


examples/launch_height_sagemaker_checkpoints.py

import logging
from pathlib import Path

from sagemaker.pytorch import PyTorch

from syne_tune import Tuner, StoppingCriterion
from syne_tune.backend import SageMakerBackend
from syne_tune.backend.sagemaker_backend.sagemaker_utils import (
    get_execution_role,
    default_sagemaker_session,
)
from syne_tune.config_space import randint
from examples.training_scripts.height_example.train_height import (
    METRIC_ATTR,
    METRIC_MODE,
    MAX_RESOURCE_ATTR,
    RESOURCE_ATTR,
)
from syne_tune.optimizer.baselines import ASHA
from syne_tune.remote.constants import (
    DEFAULT_CPU_INSTANCE_SMALL,
    PYTORCH_LATEST_FRAMEWORK,
    PYTORCH_LATEST_PY_VERSION,
)

if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)

    random_seed = 31415927
    max_steps = 100
    n_workers = 4
    delete_checkpoints = True
    max_wallclock_time = 5 * 60

    config_space = {
        MAX_RESOURCE_ATTR: max_steps,
        "width": randint(0, 20),
        "height": randint(-100, 100),
    }
    entry_point = (
        Path(__file__).parent
        / "training_scripts"
        / "checkpoint_example"
        / "train_height_checkpoint.py"
    )

    # ASHA promotion
    scheduler = ASHA(
        config_space,
        metric=METRIC_ATTR,
        mode=METRIC_MODE,
        max_resource_attr=MAX_RESOURCE_ATTR,
        resource_attr=RESOURCE_ATTR,
        type="promotion",
        search_options={"debug_log": True},
    )
    # SageMaker backend: We use the warm pool feature here
    trial_backend = SageMakerBackend(
        sm_estimator=PyTorch(
            instance_type=DEFAULT_CPU_INSTANCE_SMALL,
            instance_count=1,
            framework_version=PYTORCH_LATEST_FRAMEWORK,
            py_version=PYTORCH_LATEST_PY_VERSION,
            entry_point=str(entry_point),
            role=get_execution_role(),
            max_run=10 * 60,
            sagemaker_session=default_sagemaker_session(),
            disable_profiler=True,
            debugger_hook_config=False,
            keep_alive_period_in_seconds=60,  # warm pool feature
        ),
        metrics_names=[METRIC_ATTR],
        delete_checkpoints=delete_checkpoints,
    )

    stop_criterion = StoppingCriterion(max_wallclock_time=max_wallclock_time)
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=n_workers,
        sleep_time=5.0,
        tuner_name="height-sagemaker-checkpoints",
        start_jobs_without_delay=False,
    )

    tuner.run()







Requirements:


	Access to AWS SageMaker.




This launcher script is using the following
train_height_checkpoint.py training script:


examples/training_scripts/checkpoint_example/train_height_checkpoint.py

import logging
import time
from typing import Optional, Dict, Any
import json
from pathlib import Path
import os
import numpy as np

from syne_tune import Reporter
from argparse import ArgumentParser

from syne_tune.config_space import randint
from syne_tune.constants import ST_CHECKPOINT_DIR


report = Reporter()


RESOURCE_ATTR = "epoch"

METRIC_ATTR = "mean_loss"

METRIC_MODE = "min"

MAX_RESOURCE_ATTR = "steps"


def load_checkpoint(checkpoint_path: Path) -> Dict[str, Any]:
    with open(checkpoint_path, "r") as f:
        return json.load(f)


def save_checkpoint(checkpoint_path: Path, epoch: int, value: float):
    os.makedirs(checkpoint_path.parent, exist_ok=True)
    with open(checkpoint_path, "w") as f:
        json.dump({"epoch": epoch, "value": value}, f)


def train_height_delta(step: int, width: float, height: float, value: float) -> float:
    """
    For the original example, we have that

    .. math::
       f(t + 1) - f(t) = f(t) \cdot \frac{w}{10 + w \cdot t},

       f(0) = 10 + h / 10

    We implement an incremental version with a stochastic term.

    :param step: Step t, nonnegative int
    :param width: Width w, nonnegative
    :param height: Height h
    :param value: Value :math:`f(t - 1)` if :math:`t > 0`
    :return: New value :math:`f(t)`
    """
    u = 1.0 - 0.1 * np.random.rand()  # uniform(0.9, 1) multiplier
    if step == 0:
        return u * 10 + 0.1 * height
    else:
        return value * (1.0 + u * width / (width * (step - 1) + 10))


def height_config_space(
    max_steps: int, sleep_time: Optional[float] = None
) -> Dict[str, Any]:
    kwargs = {"sleep_time": sleep_time} if sleep_time is not None else dict()
    return {
        MAX_RESOURCE_ATTR: max_steps,
        "width": randint(0, 20),
        "height": randint(-100, 100),
        **kwargs,
    }


if __name__ == "__main__":
    root = logging.getLogger()
    root.setLevel(logging.INFO)

    parser = ArgumentParser()
    parser.add_argument("--" + MAX_RESOURCE_ATTR, type=int)
    parser.add_argument("--width", type=float)
    parser.add_argument("--height", type=float)
    parser.add_argument("--sleep_time", type=float, default=0.1)
    parser.add_argument(f"--{ST_CHECKPOINT_DIR}", type=str)

    args, _ = parser.parse_known_args()

    width = args.width
    height = args.height
    checkpoint_dir = getattr(args, ST_CHECKPOINT_DIR)
    num_steps = getattr(args, MAX_RESOURCE_ATTR)
    start_step = 0
    value = 0.0
    if checkpoint_dir is not None:
        checkpoint_path = Path(checkpoint_dir) / "checkpoint.json"
        if checkpoint_path.exists():
            state = load_checkpoint(checkpoint_path)
            start_step = state["epoch"]
            value = state["value"]
    else:
        checkpoint_path = None

    for step in range(start_step, num_steps):
        # Sleep first, since results are returned at end of "epoch"
        time.sleep(args.sleep_time)
        # Feed the score back to Syne Tune.
        value = train_height_delta(step, width, height, value)
        epoch = step + 1
        if checkpoint_path is not None:
            save_checkpoint(checkpoint_path, epoch, value)
        report(
            **{
                "step": step,
                METRIC_ATTR: value,
                RESOURCE_ATTR: epoch,
            }
        )







Note that SageMakerBackend is configured to use
SageMaker managed warm pools:


	keep_alive_period_in_seconds=300 in the definition of the SageMaker
estimator


	start_jobs_without_delay=False when creating Tuner




Managed warm pools reduce both start-up and stop delays substantially, they
are strongly recommended for multi-fidelity HPO with the SageMaker backend.
More details are found in
this tutorial.



Retrieving the Best Checkpoint


examples/launch_checkpoint_example.py

"""
An example showing how to retrieve the best checkpoint of an XGBoost model.
The script being tuned ``xgboost_checkpoint.py`` stores the checkpoint obtained after each trial evaluation.
After the tuning is done, this example loads the best checkpoint and evaluate the model.
"""

import logging
from pathlib import Path

from examples.training_scripts.xgboost.xgboost_checkpoint import evaluate_accuracy
from syne_tune.backend import LocalBackend
from syne_tune.experiments import load_experiment
from syne_tune.optimizer.baselines import BayesianOptimization
from syne_tune import Tuner, StoppingCriterion
import syne_tune.config_space as cs


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)

    n_workers = 4

    config_space = {
        "max_depth": cs.randint(2, 5),
        "gamma": cs.uniform(1, 9),
        "reg_lambda": cs.loguniform(1e-6, 1),
        "n_estimators": cs.randint(1, 10),
    }

    entry_point = (
        Path(__file__).parent / "training_scripts" / "xgboost" / "xgboost_checkpoint.py"
    )

    trial_backend = LocalBackend(entry_point=str(entry_point))

    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=BayesianOptimization(config_space, metric="merror", mode="min"),
        stop_criterion=StoppingCriterion(max_wallclock_time=10),
        n_workers=n_workers,
    )

    tuner.run()

    exp = load_experiment(tuner.name)
    best_config = exp.best_config()
    checkpoint = trial_backend.checkpoint_trial_path(best_config["trial_id"])
    assert checkpoint.exists()

    print(f"Best config found {best_config} checkpointed at {checkpoint}")

    print(
        f"Retrieve best checkpoint and evaluate accuracy of best model: "
        f"found {evaluate_accuracy(checkpoint_dir=checkpoint)}"
    )







This launcher script is using the following
xgboost_checkpoint.py training script:


examples/training_scripts/xgboost/xgboost_checkpoint.py

import os
from argparse import ArgumentParser
from pathlib import Path

import numpy as np
import xgboost
from sklearn.datasets import load_digits

from syne_tune import Reporter
from syne_tune.constants import ST_CHECKPOINT_DIR


class SyneTuneCallback(xgboost.callback.TrainingCallback):
    def __init__(self, error_metric: str) -> None:
        self.reporter = Reporter()
        self.error_metric = error_metric

    def after_iteration(self, model, epoch, evals_log):
        metrics = list(evals_log.values())[-1][self.error_metric]
        self.reporter(**{self.error_metric: metrics[-1]})
        pass


def train(
    checkpoint_dir: str,
    n_estimators: int,
    max_depth: int,
    gamma: float,
    reg_lambda: float,
    early_stopping_rounds: int = 5,
) -> None:
    eval_metric = "merror"
    early_stop = xgboost.callback.EarlyStopping(
        rounds=early_stopping_rounds, save_best=True
    )
    X, y = load_digits(return_X_y=True)

    clf = xgboost.XGBClassifier(
        n_estimators=n_estimators,
        reg_lambda=reg_lambda,
        gamma=gamma,
        max_depth=max_depth,
        eval_metric=eval_metric,
        callbacks=[early_stop, SyneTuneCallback(error_metric=eval_metric)],
    )
    clf.fit(
        X,
        y,
        eval_set=[(X, y)],
    )
    print("Total boosted rounds:", clf.get_booster().num_boosted_rounds())

    save_model(clf, checkpoint_dir=checkpoint_dir)


def save_model(clf, checkpoint_dir):
    checkpoint_dir.mkdir(parents=True, exist_ok=True)
    path = os.path.join(checkpoint_dir, "model.json")
    clf.save_model(path)


def load_model(checkpoint_dir):
    path = os.path.join(checkpoint_dir, "model.json")
    loaded = xgboost.XGBClassifier()
    loaded.load_model(path)
    return loaded


def evaluate_accuracy(checkpoint_dir):
    X, y = load_digits(return_X_y=True)

    clf = load_model(checkpoint_dir=checkpoint_dir)
    y_pred = clf.predict(X)
    return (np.equal(y, y_pred) * 1.0).mean()


if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("--max_depth", type=int, required=False, default=1)
    parser.add_argument("--gamma", type=float, required=False, default=2)
    parser.add_argument("--reg_lambda", type=float, required=False, default=0.001)
    parser.add_argument("--n_estimators", type=int, required=False, default=10)
    parser.add_argument(f"--{ST_CHECKPOINT_DIR}", type=str, default="./")

    args, _ = parser.parse_known_args()

    checkpoint_dir = Path(vars(args)[ST_CHECKPOINT_DIR])

    train(
        checkpoint_dir=checkpoint_dir,
        max_depth=args.max_depth,
        gamma=args.gamma,
        reg_lambda=args.reg_lambda,
        n_estimators=args.n_estimators,
    )









Launch with SageMaker Backend and Custom Docker Image


examples/launch_height_sagemaker_custom_image.py

"""
Example showing how to run on Sagemaker with a custom docker image.
"""
import logging
from pathlib import Path

from syne_tune import Tuner, StoppingCriterion
from syne_tune.backend import SageMakerBackend
from syne_tune.backend.sagemaker_backend.custom_framework import CustomFramework
from syne_tune.backend.sagemaker_backend.sagemaker_utils import (
    get_execution_role,
    default_sagemaker_session,
)
from syne_tune.config_space import randint
from examples.training_scripts.height_example.train_height import (
    METRIC_ATTR,
    METRIC_MODE,
    MAX_RESOURCE_ATTR,
)
from syne_tune.optimizer.baselines import RandomSearch
from syne_tune.remote.constants import DEFAULT_CPU_INSTANCE_SMALL

if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)

    random_seed = 31415927
    max_steps = 100
    n_workers = 4

    config_space = {
        MAX_RESOURCE_ATTR: max_steps,
        "width": randint(0, 20),
        "height": randint(-100, 100),
    }
    entry_point = str(
        Path(__file__).parent
        / "training_scripts"
        / "height_example"
        / "train_height.py"
    )

    # Random search without stopping
    scheduler = RandomSearch(
        config_space, mode=METRIC_MODE, metric=METRIC_ATTR, random_seed=random_seed
    )

    # indicate here an image_uri that is available in ecr, something like that "XXXXXXXXXXXX.dkr.ecr.us-west-2.amazonaws.com/my_image:latest"
    image_uri = ...

    trial_backend = SageMakerBackend(
        sm_estimator=CustomFramework(
            entry_point=entry_point,
            instance_type=DEFAULT_CPU_INSTANCE_SMALL,
            instance_count=1,
            role=get_execution_role(),
            image_uri=image_uri,
            max_run=10 * 60,
            job_name_prefix="hpo-hyperband",
            sagemaker_session=default_sagemaker_session(),
            disable_profiler=True,
            debugger_hook_config=False,
        ),
        # names of metrics to track. Each metric will be detected by Sagemaker if it is written in the
        # following form: "[RMSE]: 1.2", see in train_main_example how metrics are logged for an example
        metrics_names=[METRIC_ATTR],
    )

    stop_criterion = StoppingCriterion(max_wallclock_time=600)
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=n_workers,
        sleep_time=5.0,
    )

    tuner.run()







Requirements:


	Access to AWS SageMaker.


	This example is incomplete. If your training script has dependencies which
you would to provide as a Docker image, you need to upload it to ECR,
after which you can refer to it with image_uri.




Makes use of train_height.py.



Launch Experiments Remotely on SageMaker


examples/launch_height_sagemaker_remotely.py

"""
This example show how to launch a tuning job that will be executed on Sagemaker rather than on your local machine.
"""
import logging
from pathlib import Path
from argparse import ArgumentParser

from sagemaker.pytorch import PyTorch

from syne_tune import StoppingCriterion, Tuner
from syne_tune.backend import LocalBackend
from syne_tune.backend import SageMakerBackend
from syne_tune.backend.sagemaker_backend.sagemaker_utils import (
    get_execution_role,
    default_sagemaker_session,
)
from syne_tune.config_space import randint
from examples.training_scripts.height_example.train_height import (
    METRIC_ATTR,
    METRIC_MODE,
    MAX_RESOURCE_ATTR,
)
from syne_tune.optimizer.baselines import RandomSearch
from syne_tune.remote.constants import (
    DEFAULT_CPU_INSTANCE_SMALL,
    PYTORCH_LATEST_FRAMEWORK,
    PYTORCH_LATEST_PY_VERSION,
)
from syne_tune.remote.remote_launcher import RemoteLauncher

if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)

    parser = ArgumentParser()
    parser.add_argument("--use_sagemaker_backend", type=int, default=0)
    args = parser.parse_args()
    use_sagemaker_backend = bool(args.use_sagemaker_backend)

    max_steps = 100
    n_workers = 4

    config_space = {
        MAX_RESOURCE_ATTR: max_steps,
        "width": randint(0, 20),
        "height": randint(-100, 100),
    }
    entry_point = str(
        Path(__file__).parent
        / "training_scripts"
        / "height_example"
        / "train_height.py"
    )

    # We can use the local or sagemaker backend when tuning remotely.
    # Using the local backend means that the remote instance will evaluate the trials locally.
    # Using the sagemaker backend means the remote instance will launch one sagemaker job per trial.
    if use_sagemaker_backend:
        trial_backend = SageMakerBackend(
            sm_estimator=PyTorch(
                instance_type=DEFAULT_CPU_INSTANCE_SMALL,
                instance_count=1,
                framework_version=PYTORCH_LATEST_FRAMEWORK,
                py_version=PYTORCH_LATEST_PY_VERSION,
                entry_point=entry_point,
                role=get_execution_role(),
                max_run=10 * 60,
                base_job_name="hpo-height",
                sagemaker_session=default_sagemaker_session(),
                disable_profiler=True,
                debugger_hook_config=False,
            ),
        )
    else:
        trial_backend = LocalBackend(entry_point=entry_point)

    num_seeds = 1 if use_sagemaker_backend else 2
    for seed in range(num_seeds):
        # Random search without stopping
        scheduler = RandomSearch(
            config_space, mode=METRIC_MODE, metric=METRIC_ATTR, random_seed=seed
        )

        tuner = RemoteLauncher(
            tuner=Tuner(
                trial_backend=trial_backend,
                scheduler=scheduler,
                n_workers=n_workers,
                tuner_name="height-tuning",
                stop_criterion=StoppingCriterion(max_wallclock_time=600),
            ),
            # Extra arguments describing the resource of the remote tuning instance and whether we want to wait
            # the tuning to finish. The instance-type where the tuning job runs can be different than the
            # instance-type used for evaluating the training jobs.
            instance_type=DEFAULT_CPU_INSTANCE_SMALL,
            # We can specify a custom container to use with this launcher with <image_uri=TK>
            # otherwise a sagemaker pre-build will be used
        )

        tuner.run(wait=False)







Requirements:


	Access to AWS SageMaker.




Makes use of train_height.py.

This launcher script starts the HPO experiment as SageMaker training job,
which allows you to select any instance type you like, while not having
your local machine being blocked.
This tutorial explains how to
run many such remote experiments in parallel, so to speed up comparisons
between alternatives.



Launch HPO Experiment with Home-Made Scheduler


examples/launch_height_standalone_scheduler.py

"""
Example showing how to implement a new Scheduler.
"""
import logging
from pathlib import Path
from typing import Optional, List, Dict, Any

import numpy as np

from syne_tune.backend import LocalBackend
from syne_tune.backend.trial_status import Trial
from syne_tune.optimizer.scheduler import (
    TrialScheduler,
    SchedulerDecision,
    TrialSuggestion,
)
from syne_tune.tuner import Tuner
from syne_tune.stopping_criterion import StoppingCriterion
from syne_tune.config_space import randint
from examples.training_scripts.height_example.train_height import (
    METRIC_ATTR,
    METRIC_MODE,
    MAX_RESOURCE_ATTR,
)


class SimpleScheduler(TrialScheduler):
    def __init__(
        self, config_space: Dict[str, Any], metric: str, mode: Optional[str] = None
    ):
        super(SimpleScheduler, self).__init__(config_space=config_space)
        self.metric = metric
        self.mode = mode if mode is not None else "min"
        self.sorted_results = []

    def _suggest(self, trial_id: int) -> Optional[TrialSuggestion]:
        # Called when a slot exists to run a trial, here we simply draw a
        # random candidate.
        config = {
            k: v.sample() if hasattr(v, "sample") else v
            for k, v in self.config_space.items()
        }
        return TrialSuggestion.start_suggestion(config)

    def on_trial_result(self, trial: Trial, result: Dict[str, Any]) -> str:
        # Given a new result, we decide whether the trial should stop or continue.
        # In this case, we implement a naive strategy that stops if the result is worse than 80% of previous results.
        # This is a naive strategy as we do not account for the fact that trial improves with more steps.

        new_metric = result[self.metric]

        # insert new metric in sorted results
        index = np.searchsorted(self.sorted_results, new_metric)
        self.sorted_results = np.insert(self.sorted_results, index, new_metric)
        normalized_rank = index / float(len(self.sorted_results))

        if self.mode == "max":
            normalized_rank = 1 - normalized_rank

        if normalized_rank < 0.8:
            return SchedulerDecision.CONTINUE
        else:
            logging.info(
                f"see new results {new_metric} which rank {normalized_rank * 100}%, "
                f"stopping it as it does not rank on the top 80%"
            )
            return SchedulerDecision.STOP

    def metric_names(self) -> List[str]:
        return [self.metric]


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.DEBUG)

    random_seed = 31415927
    max_steps = 100
    n_workers = 4

    config_space = {
        MAX_RESOURCE_ATTR: max_steps,
        "width": randint(0, 20),
        "height": randint(-100, 100),
    }
    entry_point = str(
        Path(__file__).parent
        / "training_scripts"
        / "height_example"
        / "train_height.py"
    )

    # Local backend
    trial_backend = LocalBackend(entry_point=entry_point)

    np.random.seed(random_seed)
    scheduler = SimpleScheduler(
        config_space=config_space, metric=METRIC_ATTR, mode=METRIC_MODE
    )

    stop_criterion = StoppingCriterion(max_wallclock_time=20)
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=n_workers,
    )

    tuner.run()







Makes use of train_height.py.

For a more thorough introduction on how to develop new schedulers and
searchers in Syne Tune, consider
this tutorial.



Launch HPO Experiment on mlp_fashionmnist Benchmark


examples/launch_fashionmnist.py

"""
Example for how to tune one of the benchmarks.
"""
import logging

from syne_tune.backend import LocalBackend
from syne_tune.optimizer.schedulers import HyperbandScheduler
from syne_tune import Tuner, StoppingCriterion

from benchmarking.benchmark_definitions.mlp_on_fashionmnist import (
    mlp_fashionmnist_benchmark,
)


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.DEBUG)

    # We pick the MLP on FashionMNIST benchmark
    # The 'benchmark' dict contains arguments needed by scheduler and
    # searcher (e.g., 'mode', 'metric'), along with suggested default values
    # for other arguments (which you are free to override)
    random_seed = 31415927
    n_workers = 4
    benchmark = mlp_fashionmnist_benchmark()

    # If you don't like the default config_space, change it here. But let
    # us use the default
    config_space = benchmark.config_space

    # Local backend
    trial_backend = LocalBackend(entry_point=str(benchmark.script))

    # GP-based Bayesian optimization searcher. Many options can be specified
    # via ``search_options``, but let's use the defaults
    searcher = "bayesopt"
    search_options = {"num_init_random": n_workers + 2}
    # Hyperband (or successive halving) scheduler of the stopping type.
    # Together with 'bayesopt', this selects the MOBSTER algorithm.
    # If you don't like the defaults suggested, just change them:
    scheduler = HyperbandScheduler(
        config_space,
        searcher=searcher,
        search_options=search_options,
        max_resource_attr=benchmark.max_resource_attr,
        resource_attr=benchmark.resource_attr,
        mode=benchmark.mode,
        metric=benchmark.metric,
        random_seed=random_seed,
    )

    stop_criterion = StoppingCriterion(max_wallclock_time=120)
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=n_workers,
    )

    tuner.run()







Requirements:


	Needs “mlp_fashionmnist” benchmark, which requires Syne Tune to have been
installed from source.




In this example, we tune one of the built-in benchmark problems, which
is useful in order to compare different HPO methods. More details on
benchmarking is provided in
this tutorial.



Transfer Tuning on NASBench-201


examples/launch_nas201_transfer_learning.py

from typing import Dict

from syne_tune.blackbox_repository import load_blackbox, BlackboxRepositoryBackend
from syne_tune.backend.simulator_backend.simulator_callback import SimulatorCallback
from syne_tune.experiments import load_experiment
from syne_tune.optimizer.schedulers import FIFOScheduler
from syne_tune.optimizer.schedulers.transfer_learning import (
    TransferLearningTaskEvaluations,
    BoundingBox,
)
from syne_tune import StoppingCriterion, Tuner


def load_transfer_learning_evaluations(
    blackbox_name: str, test_task: str, metric: str
) -> Dict[str, TransferLearningTaskEvaluations]:
    bb_dict = load_blackbox(blackbox_name)
    metric_index = [
        i
        for i, name in enumerate(bb_dict[test_task].objectives_names)
        if name == metric
    ][0]
    transfer_learning_evaluations = {
        task: TransferLearningTaskEvaluations(
            hyperparameters=bb.hyperparameters,
            configuration_space=bb.configuration_space,
            objectives_evaluations=bb.objectives_evaluations[
                ..., metric_index : metric_index + 1
            ],
            objectives_names=[metric],
        )
        for task, bb in bb_dict.items()
        if task != test_task
    }
    return transfer_learning_evaluations


if __name__ == "__main__":
    blackbox_name = "nasbench201"
    test_task = "cifar100"
    elapsed_time_attr = "metric_elapsed_time"
    metric = "metric_valid_error"

    bb_dict = load_blackbox(blackbox_name)
    transfer_learning_evaluations = load_transfer_learning_evaluations(
        blackbox_name, test_task, metric
    )

    scheduler = BoundingBox(
        scheduler_fun=lambda new_config_space, mode, metric: FIFOScheduler(
            new_config_space,
            points_to_evaluate=[],
            searcher="random",
            metric=metric,
            mode=mode,
        ),
        mode="min",
        config_space=bb_dict[test_task].configuration_space,
        metric=metric,
        num_hyperparameters_per_task=10,
        transfer_learning_evaluations=transfer_learning_evaluations,
    )

    stop_criterion = StoppingCriterion(max_wallclock_time=7200)

    trial_backend = BlackboxRepositoryBackend(
        blackbox_name=blackbox_name,
        elapsed_time_attr=elapsed_time_attr,
        dataset=test_task,
    )

    # It is important to set ``sleep_time`` to 0 here (mandatory for simulator backend)
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=4,
        sleep_time=0,
        # This callback is required in order to make things work with the
        # simulator callback. It makes sure that results are stored with
        # simulated time (rather than real time), and that the time_keeper
        # is advanced properly whenever the tuner loop sleeps
        callbacks=[SimulatorCallback()],
    )
    tuner.run()

    tuning_experiment = load_experiment(tuner.name)
    print(tuning_experiment)

    print(f"best result found: {tuning_experiment.best_config()}")

    tuning_experiment.plot()







Requirements:


	Syne Tune dependencies blackbox-repository need to be
installed.


	Needs nasbench201 blackbox to be downloaded and preprocessed. This can
take quite a while when done for the first time


	If AWS SageMaker is used
or an S3 bucket is accessible, the blackbox files are uploaded to your S3
bucket




In this example, we use the simulator backend with the NASBench-201
blackbox. It serves as a simple demonstration how evaluations from
related tasks can be used to speed up HPO.



Transfer Learning Example


examples/launch_transfer_learning_example.py

"""
Example collecting evaluations and using them for transfer learning on a
related task.
"""
from examples.training_scripts.height_example.train_height import (
    height_config_space,
    METRIC_ATTR,
    METRIC_MODE,
)

from syne_tune import Tuner, StoppingCriterion
from syne_tune.backend import LocalBackend
from syne_tune.optimizer.baselines import BayesianOptimization, ZeroShotTransfer
from syne_tune.optimizer.schedulers import FIFOScheduler

from syne_tune.optimizer.schedulers.transfer_learning import (
    TransferLearningTaskEvaluations,
    BoundingBox,
)

from syne_tune.optimizer.schedulers.transfer_learning.quantile_based.quantile_based_searcher import (
    QuantileBasedSurrogateSearcher,
)

import argparse
import copy
import numpy as np
from pathlib import Path


def add_labels(ax, conf_space, title):
    ax.legend()
    ax.set_xlabel("width")
    ax.set_ylabel("height")
    ax.set_xlim([conf_space["width"].lower - 1, conf_space["width"].upper + 1])
    ax.set_ylim([conf_space["height"].lower - 10, conf_space["height"].upper + 10])
    ax.set_title(title)


def scatter_space_exploration(ax, task_hyps, max_trials, label, color=None):
    ax.scatter(
        task_hyps["width"][:max_trials],
        task_hyps["height"][:max_trials],
        alpha=0.4,
        label=label,
        color=color,
    )


colours = {
    "BayesianOptimization": "C0",
    "BoundingBox": "C1",
    "ZeroShotTransfer": "C2",
    "Quantiles": "C3",
}


def plot_last_task(max_trials, df, label, metric, color):
    max_tr = min(max_trials, len(df))
    plt.scatter(range(max_tr), df[metric][:max_tr], label=label, color=color)
    plt.plot([np.min(df[metric][:ii]) for ii in range(1, max_trials + 1)], color=color)


def filter_completed(df):
    # Filter out runs that didn't finish
    return df[df["status"] == "Completed"].reset_index()


def extract_transferable_evaluations(df, metric, config_space):
    """
    Take a dataframe from a tuner run, filter it and generate
    TransferLearningTaskEvaluations from it
    """
    filter_df = filter_completed(df)

    return TransferLearningTaskEvaluations(
        configuration_space=config_space,
        hyperparameters=filter_df[config_space.keys()],
        objectives_names=[metric],
        # objectives_evaluations need to be of shape
        # (num_evals, num_seeds, num_fidelities, num_objectives)
        # We only have one seed, fidelity and objective
        objectives_evaluations=np.array(filter_df[metric], ndmin=4).T,
    )


def run_scheduler_on_task(entry_point, scheduler, max_trials):
    """
    Take a scheduler and run it for max_trials on the backend specified by entry_point
    Return a dataframe of the optimisation results
    """
    tuner = Tuner(
        trial_backend=LocalBackend(entry_point=str(entry_point)),
        scheduler=scheduler,
        stop_criterion=StoppingCriterion(max_num_trials_finished=max_trials),
        n_workers=4,
        sleep_time=0.001,
    )
    tuner.run()

    return tuner.tuning_status.get_dataframe()


def init_scheduler(
    scheduler_str, max_steps, seed, mode, metric, transfer_learning_evaluations
):
    """
    Initialise the scheduler
    """
    kwargs = {
        "metric": metric,
        "config_space": height_config_space(max_steps=max_steps),
        "mode": mode,
        "random_seed": seed,
    }
    kwargs_w_trans = copy.deepcopy(kwargs)
    kwargs_w_trans["transfer_learning_evaluations"] = transfer_learning_evaluations

    if scheduler_str == "BayesianOptimization":
        return BayesianOptimization(**kwargs)

    if scheduler_str == "ZeroShotTransfer":
        return ZeroShotTransfer(use_surrogates=True, **kwargs_w_trans)

    if scheduler_str == "Quantiles":
        return FIFOScheduler(
            searcher=QuantileBasedSurrogateSearcher(**kwargs_w_trans),
            **kwargs,
        )

    if scheduler_str == "BoundingBox":
        kwargs_sched_fun = {key: kwargs[key] for key in kwargs if key != "config_space"}
        kwargs_w_trans[
            "scheduler_fun"
        ] = lambda new_config_space, mode, metric: BayesianOptimization(
            new_config_space,
            **kwargs_sched_fun,
        )
        del kwargs_w_trans["random_seed"]
        return BoundingBox(**kwargs_w_trans)
    raise ValueError("scheduler_str not recognised")


if __name__ == "__main__":

    max_trials = 10
    np.random.seed(1)
    # Use train_height backend for our tests
    entry_point = str(
        Path(__file__).parent
        / "training_scripts"
        / "height_example"
        / "train_height.py"
    )

    # Collect evaluations on preliminary tasks
    transfer_learning_evaluations = {}
    for max_steps in range(1, 6):
        scheduler = init_scheduler(
            "BayesianOptimization",
            max_steps=max_steps,
            seed=np.random.randint(100),
            mode=METRIC_MODE,
            metric=METRIC_ATTR,
            transfer_learning_evaluations=None,
        )

        print("Optimising preliminary task %s" % max_steps)
        prev_task = run_scheduler_on_task(entry_point, scheduler, max_trials)

        # Generate TransferLearningTaskEvaluations from previous task
        transfer_learning_evaluations[max_steps] = extract_transferable_evaluations(
            prev_task, METRIC_ATTR, scheduler.config_space
        )

    # Collect evaluations on transfer task
    max_steps = 6
    transfer_task_results = {}
    labels = ["BayesianOptimization", "BoundingBox", "ZeroShotTransfer", "Quantiles"]
    for scheduler_str in labels:
        scheduler = init_scheduler(
            scheduler_str,
            max_steps=max_steps,
            seed=max_steps,
            mode=METRIC_MODE,
            metric=METRIC_ATTR,
            transfer_learning_evaluations=transfer_learning_evaluations,
        )
        print("Optimising transfer task using %s" % scheduler_str)
        transfer_task_results[scheduler_str] = run_scheduler_on_task(
            entry_point, scheduler, max_trials
        )

    # Optionally generate plots. Defaults to False
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--generate_plots", action="store_true", help="generate optimisation plots."
    )
    args = parser.parse_args()

    if args.generate_plots:
        from syne_tune.try_import import try_import_visual_message

        try:
            import matplotlib.pyplot as plt
        except ImportError:
            print(try_import_visual_message())

        print("Generating optimisation plots.")
        """ Plot the results on the transfer task """
        for label in labels:
            plot_last_task(
                max_trials,
                transfer_task_results[label],
                label=label,
                metric=METRIC_ATTR,
                color=colours[label],
            )
        plt.legend()
        plt.ylabel(METRIC_ATTR)
        plt.xlabel("Iteration")
        plt.title("Transfer task (max_steps=6)")
        plt.savefig("Transfer_task.png", bbox_inches="tight")

        """ Plot the configs tried for the preliminary tasks """
        fig, ax = plt.subplots()
        for key in transfer_learning_evaluations:
            scatter_space_exploration(
                ax,
                transfer_learning_evaluations[key].hyperparameters,
                max_trials,
                "Task %s" % key,
            )
        add_labels(
            ax,
            scheduler.config_space,
            "Explored locations of BO for preliminary tasks",
        )
        plt.savefig("Configs_explored_preliminary.png", bbox_inches="tight")

        """ Plot the configs tried for the transfer task """
        fig, ax = plt.subplots()

        # Plot the configs tried by the different schedulers on the transfer task
        for label in labels:
            finished_trials = filter_completed(transfer_task_results[label])
            scatter_space_exploration(
                ax, finished_trials, max_trials, label, color=colours[label]
            )

            # Plot the first config tested as a big square
            ax.scatter(
                finished_trials["width"][0],
                finished_trials["height"][0],
                marker="s",
                color=colours[label],
                s=100,
            )

        # Plot the optima from the preliminary tasks as black crosses
        past_label = "Preliminary optima"
        for key in transfer_learning_evaluations:
            argmin = np.argmin(
                transfer_learning_evaluations[key].objective_values(METRIC_ATTR)[
                    :max_trials, 0, 0
                ]
            )
            ax.scatter(
                transfer_learning_evaluations[key].hyperparameters["width"][argmin],
                transfer_learning_evaluations[key].hyperparameters["height"][argmin],
                color="k",
                marker="x",
                label=past_label,
            )
            past_label = None
        add_labels(ax, scheduler.config_space, "Explored locations for transfer task")
        plt.savefig("Configs_explored_transfer.png", bbox_inches="tight")







Requirements:


	Needs matplotlib to be installed if the plotting flag is given:
pip install matplotlib. If you installed Syne Tune with visual or
extra, this dependence is included.




An example of how to use evaluations collected in Syne Tune to run a transfer
learning scheduler. Makes use of train_height.py.
Used in the
transfer learning tutorial.
To plot the figures, run as
python launch_transfer_learning_example.py --generate_plots.



Plot Results of Tuning Experiment


examples/launch_plot_results.py

import logging
from pathlib import Path

from syne_tune.backend import LocalBackend
from syne_tune.experiments import load_experiment
from syne_tune.optimizer.baselines import RandomSearch
from syne_tune import Tuner, StoppingCriterion
from syne_tune.config_space import randint
from examples.training_scripts.height_example.train_height import (
    METRIC_ATTR,
    METRIC_MODE,
    MAX_RESOURCE_ATTR,
)

if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)

    random_seed = 31415927
    max_steps = 100
    n_workers = 4

    config_space = {
        MAX_RESOURCE_ATTR: max_steps,
        "width": randint(0, 20),
        "height": randint(-100, 100),
    }
    entry_point = str(
        Path(__file__).parent
        / "training_scripts"
        / "height_example"
        / "train_height.py"
    )

    trial_backend = LocalBackend(entry_point=entry_point)

    # Random search without stopping
    scheduler = RandomSearch(
        config_space, mode=METRIC_MODE, metric=METRIC_ATTR, random_seed=random_seed
    )

    stop_criterion = StoppingCriterion(max_wallclock_time=20)
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        n_workers=n_workers,
        stop_criterion=stop_criterion,
        results_update_interval=5,
        tuner_name="plot-results-demo",
        metadata={"description": "just an example"},
    )

    tuner.run()

    # shows how to print the best configuration found from the tuner and retrains it
    trial_id, best_config = tuner.best_config()

    tuning_experiment = load_experiment(tuner.name)

    # prints the best configuration found from experiment-results
    print(f"best result found: {tuning_experiment.best_config()}")

    # plots the best metric over time
    tuning_experiment.plot()

    # plots values found by all trials over time
    tuning_experiment.plot_trials_over_time()







Requirements:


	Needs matplotlib to be installed:
pip install matplotlib. If you installed Syne Tune with visual or
extra, this dependence is included.




Makes use of train_height.py.



Resume a Tuning Job


examples/launch_resume_tuning.py

from syne_tune.config_space import randint

import shutil
from pathlib import Path

from syne_tune import StoppingCriterion
from syne_tune import Tuner
from syne_tune.backend import LocalBackend
from syne_tune.experiments import load_experiment
from syne_tune.optimizer.baselines import ASHA
from syne_tune.optimizer.schedulers.searchers.utils import make_hyperparameter_ranges
from syne_tune.util import random_string


def launch_first_tuning(experiment_name: str):
    max_epochs = 100
    metric = "mean_loss"
    mode = "min"
    config_space = {
        "steps": max_epochs,
        "width": randint(0, 10),
        "height": randint(0, 10),
    }

    entry_point = (
        Path(__file__).parent
        / "training_scripts"
        / "height_example"
        / "train_height.py"
    )

    scheduler = ASHA(
        config_space=config_space,
        metric=metric,
        mode=mode,
        max_t=max_epochs,
        search_options={"allow_duplicates": True},
        resource_attr="epoch",
    )

    trial_backend = LocalBackend(entry_point=str(entry_point))

    stop_criterion = StoppingCriterion(
        max_num_trials_started=10,
    )
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=4,
        tuner_name=experiment_name,
        suffix_tuner_name=False,
    )

    tuner.run()


if __name__ == "__main__":
    experiment_name = f"resume-tuning-example-{random_string(5)}"

    # Launch a tuning, tuning results and checkpoints are written to disk
    launch_first_tuning(experiment_name)

    # Later loads an experiment from disk given the experiment name,
    # in particular sets `load_tuner` to True to deserialize the Tuner
    tuning_experiment = load_experiment(experiment_name, load_tuner=True)

    # Copy the tuner as it will be modified when retuning
    shutil.copy(
        tuning_experiment.path / "tuner.dill",
        tuning_experiment.path / "tuner-backup.dill",
    )

    # Update stop criterion to run the tuning a couple more trials than before
    tuning_experiment.tuner.stop_criterion = StoppingCriterion(
        max_num_trials_started=20
    )

    # Define a new config space for instance favoring a new part of the space based on data analysis
    new_config_space = {
        "steps": 100,
        "width": randint(10, 20),
        "height": randint(1, 10),
    }

    # Update scheduler with random searcher to use new configuration space,
    # For now we modify internals, adding a method `update_config_space` to RandomSearcher would be a cleaner option.
    tuning_experiment.tuner.scheduler.config_space = new_config_space
    tuning_experiment.tuner.scheduler.searcher._hp_ranges = make_hyperparameter_ranges(
        new_config_space
    )
    tuning_experiment.tuner.scheduler.searcher.configure_scheduler(
        tuning_experiment.tuner.scheduler
    )

    # Resume the tuning with the modified search space and stopping criterion
    # The scheduler will now explore the updated search space
    tuning_experiment.tuner.run()









Customize Results Written during an Experiment


examples/launch_height_extra_results.py

from typing import Dict, Any, Optional, List
from pathlib import Path
import logging

from syne_tune.backend import LocalBackend
from syne_tune.config_space import randint
from syne_tune.constants import ST_TUNER_TIME
from syne_tune.experiments import load_experiment
from syne_tune.optimizer.baselines import DyHPO
from syne_tune.optimizer.schedulers.searchers.dyhpo.hyperband_dyhpo import (
    DyHPORungSystem,
)
from syne_tune.results_callback import ExtraResultsComposer, StoreResultsCallback
from syne_tune import Tuner, StoppingCriterion


# We would like to extract some extra information from the scheduler during the
# experiment. To this end, we implement a class for extracting this information
class DyHPOExtraResults(ExtraResultsComposer):
    def __call__(self, tuner: Tuner) -> Optional[Dict[str, Any]]:
        scheduler = tuner.scheduler
        assert isinstance(scheduler, DyHPO)  # sanity check
        # :class:`~syne_tune.optimizer.schedulers.searchers.dyhpo.hyperband_dyhpo.DyHPORungSystem`
        # collects statistics about how often several types of decisions were made in
        # ``on_task_schedule``
        return scheduler.terminator._rung_systems[0].summary_schedule_records()

    def keys(self) -> List[str]:
        return DyHPORungSystem.summary_schedule_keys()


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)

    random_seed = 31415927
    max_epochs = 100
    n_workers = 4
    # Hyperparameter configuration space
    config_space = {
        "width": randint(1, 20),
        "height": randint(1, 20),
        "epochs": 100,
    }

    # We use the DyHPO scheduler, since it records some interesting extra
    # informations
    scheduler = DyHPO(
        config_space,
        metric="mean_loss",
        resource_attr="epoch",
        max_resource_attr="epochs",
        search_options={"debug_log": False},
        grace_period=2,
    )
    entry_point = str(
        Path(__file__).parent
        / "training_scripts"
        / "height_example"
        / "train_height_simple.py"
    )

    # Extra results are stored by the
    # :class:`~syne_tune.results_callback.StoreResultsCallback`. In fact, they
    # are appended to the default time-stamped results whenever a report is
    # received.
    extra_results_composer = DyHPOExtraResults()
    callbacks = [StoreResultsCallback(extra_results_composer=extra_results_composer)]
    tuner = Tuner(
        trial_backend=LocalBackend(entry_point=entry_point),
        scheduler=scheduler,
        stop_criterion=StoppingCriterion(max_wallclock_time=30),
        n_workers=4,  # how many trials are evaluated in parallel
        callbacks=callbacks,
    )
    tuner.run()

    # Let us have a look what was written. Here, we just look at the information
    # at the end of the experiment
    results_df = load_experiment(tuner.name).results
    final_pos = results_df.loc[:, ST_TUNER_TIME].argmax()
    final_row = dict(results_df.loc[final_pos])
    extra_results_at_end = {
        name: final_row[name] for name in extra_results_composer.keys()
    }
    print(f"\nExtra results at end of experiment:\n{extra_results_at_end}")







Makes use of train_height.py.

An example for how to append extra results to those written by default to
results.csv.zip. This is done by customizing the
StoreResultsCallback.



Pass Configuration as JSON File to Training Script


examples/launch_height_config_json.py

import os
import logging
from pathlib import Path
from argparse import ArgumentParser

from syne_tune.backend import LocalBackend, SageMakerBackend
from syne_tune.backend.sagemaker_backend.sagemaker_utils import (
    get_execution_role,
    default_sagemaker_session,
)
from syne_tune.optimizer.baselines import (
    ASHA,
)

from syne_tune import Tuner, StoppingCriterion
from syne_tune.remote.constants import (
    DEFAULT_CPU_INSTANCE_SMALL,
    PYTORCH_LATEST_FRAMEWORK,
    PYTORCH_LATEST_PY_VERSION,
)
from examples.training_scripts.height_example.train_height_config_json import (
    height_config_space,
    RESOURCE_ATTR,
    METRIC_ATTR,
    METRIC_MODE,
    MAX_RESOURCE_ATTR,
)


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)

    parser = ArgumentParser()
    parser.add_argument("--use_sagemaker_backend", type=int, default=0)
    args = parser.parse_args()
    use_sagemaker_backend = bool(args.use_sagemaker_backend)

    random_seed = 31415927
    max_epochs = 100
    n_workers = 4
    max_wallclock_time = 5 * 60 if use_sagemaker_backend else 10

    config_space = height_config_space(max_epochs)
    entry_point = (
        Path(__file__).parent
        / "training_scripts"
        / "height_example"
        / "train_height_config_json.py"
    )

    scheduler = ASHA(
        config_space,
        metric=METRIC_ATTR,
        mode=METRIC_MODE,
        max_resource_attr=MAX_RESOURCE_ATTR,
        resource_attr=RESOURCE_ATTR,
    )

    if not use_sagemaker_backend:
        trial_backend = LocalBackend(
            entry_point=str(entry_point),
            pass_args_as_json=True,
        )
    else:
        from sagemaker.pytorch import PyTorch
        import syne_tune

        if "AWS_DEFAULT_REGION" not in os.environ:
            os.environ["AWS_DEFAULT_REGION"] = "us-west-2"
        trial_backend = SageMakerBackend(
            sm_estimator=PyTorch(
                entry_point=str(entry_point),
                instance_type=DEFAULT_CPU_INSTANCE_SMALL,
                instance_count=1,
                framework_version=PYTORCH_LATEST_FRAMEWORK,
                py_version=PYTORCH_LATEST_PY_VERSION,
                role=get_execution_role(),
                dependencies=syne_tune.__path__,
                max_run=10 * 60,
                sagemaker_session=default_sagemaker_session(),
                disable_profiler=True,
                debugger_hook_config=False,
                keep_alive_period_in_seconds=60,  # warm pool feature
            ),
            metrics_names=[METRIC_ATTR],
            pass_args_as_json=True,
        )

    stop_criterion = StoppingCriterion(max_wallclock_time=max_wallclock_time)
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=n_workers,
        start_jobs_without_delay=False,
    )

    tuner.run()







Requirements:


	If use_sagemaker_backend = True, needs
access to AWS SageMaker.




Makes use of the following
train_height_config_json.py training
script:


examples/training_scripts/height_example/train_height_config_json.py

import logging
import time
from typing import Optional, Dict, Any
from argparse import ArgumentParser

from syne_tune import Reporter
from syne_tune.config_space import randint
from syne_tune.utils import add_config_json_to_argparse, load_config_json


report = Reporter()


RESOURCE_ATTR = "epoch"

METRIC_ATTR = "mean_loss"

METRIC_MODE = "min"

MAX_RESOURCE_ATTR = "steps"


def train_height(step: int, width: float, height: float) -> float:
    return 100 / (10 + width * step) + 0.1 * height


def height_config_space(
    max_steps: int, sleep_time: Optional[float] = None
) -> Dict[str, Any]:
    if sleep_time is None:
        sleep_time = 0.1
    return {
        MAX_RESOURCE_ATTR: max_steps,
        "width": randint(0, 20),
        "height": randint(-100, 100),
        "sleep_time": sleep_time,
        "list_arg": ["this", "is", "a", "list", 1, 2, 3],
        "dict_arg": {
            "this": 27,
            "is": [1, 2, 3],
            "a": "dictionary",
            "even": {
                "a": 0,
                "nested": 1,
                "one": 2,
            },
        },
    }


def _check_extra_args(config: Dict[str, Any]):
    config_space = height_config_space(5)
    for k in ("list_arg", "dict_arg"):
        a, b = config[k], config_space[k]
        assert a == b, (k, a, b)


if __name__ == "__main__":
    root = logging.getLogger()
    root.setLevel(logging.INFO)

    parser = ArgumentParser()
    # Append required argument(s):
    add_config_json_to_argparse(parser)
    args, _ = parser.parse_known_args()
    # Loads config JSON and merges with ``args``
    config = load_config_json(vars(args))

    # Check that args with complex types have been received correctly
    _check_extra_args(config)
    width = config["width"]
    height = config["height"]
    sleep_time = config["sleep_time"]
    num_steps = config[MAX_RESOURCE_ATTR]
    for step in range(num_steps):
        # Sleep first, since results are returned at end of "epoch"
        time.sleep(sleep_time)
        # Feed the score back to Syne Tune.
        dummy_score = train_height(step, width, height)
        report(
            **{
                "step": step,
                METRIC_ATTR: dummy_score,
                RESOURCE_ATTR: step + 1,
            }
        )









Speculative Early Checkpoint Removal


examples/launch_fashionmnist_checkpoint_removal.py

"""
Example for speculative checkpoint removal with asynchronous multi-fidelity
"""
from typing import Optional, Dict, Any, List
import logging

from syne_tune.backend import LocalBackend
from syne_tune.callbacks.hyperband_remove_checkpoints_callback import (
    HyperbandRemoveCheckpointsCommon,
)
from syne_tune.constants import ST_TUNER_TIME
from syne_tune.experiments import load_experiment
from syne_tune.optimizer.baselines import MOBSTER
from syne_tune.results_callback import ExtraResultsComposer, StoreResultsCallback
from syne_tune.util import find_first_of_type
from syne_tune import Tuner, StoppingCriterion

from benchmarking.benchmark_definitions.mlp_on_fashionmnist import (
    mlp_fashionmnist_benchmark,
)


# This is used to monitor what the checkpoint removal mechanism is doing, and
# writing out results. This is optional, the mechanism works without this.
class CPRemovalExtraResults(ExtraResultsComposer):
    def __call__(self, tuner: Tuner) -> Optional[Dict[str, Any]]:
        callback = find_first_of_type(tuner.callbacks, HyperbandRemoveCheckpointsCommon)
        return None if callback is None else callback.extra_results()

    def keys(self) -> List[str]:
        return HyperbandRemoveCheckpointsCommon.extra_results_keys()


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.DEBUG)
    random_seed = 31415927
    n_workers = 4
    max_num_checkpoints = 10
    # This time may be too short to see positive effects:
    max_wallclock_time = 1800
    # Monitor how checkpoint removal is doing over time, appending this
    # information to results.csv.zip?
    monitor_cp_removal_in_results = True

    # We pick the MLP on FashionMNIST benchmark
    benchmark = mlp_fashionmnist_benchmark()

    # Local backend
    # By setting ``delete_checkpoints=True``, we ask for checkpoints to be removed
    # once a trial cannot be resumed anymore
    trial_backend = LocalBackend(
        entry_point=str(benchmark.script),
        delete_checkpoints=True,
    )

    # MOBSTER (model-based ASHA) with promotion scheduling (pause and resume).
    # Checkpoints are written for each paused trial, and these are not removed,
    # because in principle, every paused trial may be resumed in the future.
    # If checkpoints are large, this may fill up your disk.
    # Here, we use speculative checkpoint removal to keep the number of checkpoints
    # to at most ``max_num_checkpoints``. To this end, paused trials are ranked by
    # expected cost of removing their checkpoint.
    scheduler = MOBSTER(
        benchmark.config_space,
        type="promotion",
        max_resource_attr=benchmark.max_resource_attr,
        resource_attr=benchmark.resource_attr,
        mode=benchmark.mode,
        metric=benchmark.metric,
        random_seed=random_seed,
        early_checkpoint_removal_kwargs=dict(
            max_num_checkpoints=max_num_checkpoints,
        ),
    )

    stop_criterion = StoppingCriterion(max_wallclock_time=max_wallclock_time)
    # The tuner activates early checkpoint removal iff
    # ``trial_backend.delete_checkpoints``. In this case, it requests details
    # from the scheduler (which is ``early_checkpoint_removal_kwargs`` in our
    # case). Early checkpoint removal is done by appending a callback to those
    # normally used with the tuner.
    if monitor_cp_removal_in_results:
        # We can monitor how well checkpoint removal is working by storing
        # extra results (this is optional)
        extra_results_composer = CPRemovalExtraResults()
        callbacks = [
            StoreResultsCallback(extra_results_composer=extra_results_composer)
        ]
    else:
        extra_results_composer = None
        callbacks = None
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=n_workers,
        callbacks=callbacks,
    )
    tuner.run()

    if monitor_cp_removal_in_results:
        # We have monitored how checkpoint removal has been doing over time. Here,
        # we just look at the information at the end of the experiment
        results_df = load_experiment(tuner.name).results
        final_pos = results_df.loc[:, ST_TUNER_TIME].argmax()
        final_row = dict(results_df.loc[final_pos])
        extra_results_at_end = {
            name: final_row[name] for name in extra_results_composer.keys()
        }
        logging.info(f"Extra results at end of experiment:\n{extra_results_at_end}")

    # We can obtain additional details from the callback, which is the last one
    # in ``tuner``
    callback = find_first_of_type(tuner.callbacks, HyperbandRemoveCheckpointsCommon)
    trials_resumed = callback.trials_resumed_without_checkpoint()
    if trials_resumed:
        logging.info(
            f"The following {len(trials_resumed)} trials were resumed without a checkpoint:\n{trials_resumed}"
        )
    else:
        logging.info("No trials were resumed without a checkpoint")







Requirements:


	Needs “mlp_fashionmnist” benchmark, which requires Syne Tune to have been
installed from source.




This example uses the mlp_fashionmnist benchmark. It runs for about 30
minutes. It demonstrates speculative early checkpoint removal for MOBSTER
with promotion scheduling (pause and resume).



Launch HPO Experiment with Ray Tune Scheduler


examples/launch_height_ray.py

import logging
from pathlib import Path

from ray.tune.schedulers import AsyncHyperBandScheduler
from ray.tune.search.skopt import SkOptSearch
import numpy as np

from syne_tune.backend import LocalBackend
from syne_tune.optimizer.schedulers import RayTuneScheduler
from syne_tune import Tuner, StoppingCriterion
from syne_tune.config_space import randint
from examples.training_scripts.height_example.train_height import (
    RESOURCE_ATTR,
    METRIC_ATTR,
    METRIC_MODE,
    MAX_RESOURCE_ATTR,
)

if __name__ == "__main__":
    logging.getLogger().setLevel(logging.DEBUG)

    random_seed = 31415927
    max_steps = 100
    n_workers = 4

    config_space = {
        MAX_RESOURCE_ATTR: max_steps,
        "width": randint(0, 20),
        "height": randint(-100, 100),
    }
    entry_point = str(
        Path(__file__).parent
        / "training_scripts"
        / "height_example"
        / "train_height.py"
    )

    # Local backend
    trial_backend = LocalBackend(entry_point=entry_point)

    # Hyperband scheduler with SkOpt searcher
    np.random.seed(random_seed)
    ray_searcher = SkOptSearch()
    ray_searcher.set_search_properties(
        mode=METRIC_MODE,
        metric=METRIC_ATTR,
        config=RayTuneScheduler.convert_config_space(config_space),
    )

    ray_scheduler = AsyncHyperBandScheduler(
        max_t=max_steps,
        time_attr=RESOURCE_ATTR,
        mode=METRIC_MODE,
        metric=METRIC_ATTR,
    )

    scheduler = RayTuneScheduler(
        config_space=config_space,
        ray_scheduler=ray_scheduler,
        ray_searcher=ray_searcher,
    )

    stop_criterion = StoppingCriterion(max_wallclock_time=20)
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=n_workers,
    )

    tuner.run()







Makes use of train_height.py.



Stand-Alone Bayesian Optimization


examples/launch_standalone_bayesian_optimization.py

import logging

from syne_tune.config_space import uniform, randint, choice

from syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.common import (
    dictionarize_objective,
)
from syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_factory import (
    make_hyperparameter_ranges,
)
from syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects import (
    create_tuning_job_state,
)
from syne_tune.optimizer.schedulers.searchers.gp_fifo_searcher import GPFIFOSearcher
from syne_tune.optimizer.schedulers.searchers.gp_searcher_utils import encode_state


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)

    random_seed = 31415927

    # toy example of 3 hp's
    config_space = {
        "hp_1": uniform(-5.0, 5.0),
        "hp_2": randint(-5, 5),
        "hp_3": choice(["a", "b", "c"]),
    }
    hp_ranges = make_hyperparameter_ranges(config_space)
    batch_size = 16
    num_init_candidates_for_batch = 10
    state = create_tuning_job_state(
        hp_ranges=hp_ranges,
        cand_tuples=[
            (-3.0, -4, "a"),
            (2.2, -3, "b"),
            (-4.9, -1, "b"),
            (-1.9, -1, "c"),
            (-3.5, 3, "a"),
        ],
        metrics=[dictionarize_objective(x) for x in (15.0, 27.0, 13.0, 39.0, 35.0)],
    )

    gp_searcher = GPFIFOSearcher(
        state.hp_ranges.config_space,
        points_to_evaluate=None,
        random_seed=random_seed,
        metric="objective",
        debug_log=False,
    )
    gp_searcher_state = gp_searcher.get_state()
    gp_searcher_state["state"] = encode_state(state)
    gp_searcher = gp_searcher.clone_from_state(gp_searcher_state)

    next_candidate_list = gp_searcher.get_batch_configs(
        batch_size=batch_size,
        num_init_candidates_for_batch=num_init_candidates_for_batch,
    )

    assert len(next_candidate_list) == batch_size







Syne Tune combines a scheduler (HPO algorithm) with a backend to provide a
complete HPO solution. If you already have a system in place for job
scheduling and managing the state of the tuning problem, you may want to
call the scheduler on its own. This example demonstrates how to do this
for Gaussian process based Bayesian optimization.



Ask Tell Interface


examples/launch_ask_tell_scheduler.py

"""
This is an example on how to use syne-tune in the ask-tell mode.
In this setup the tuning loop and experiments are disentangled. The AskTell Scheduler suggests new configurations
and the users themselves perform experiments to test the performance of each configuration.
Once done, user feeds the result into the Scheduler which uses the data to suggest better configurations.


In some cases, experiments needed for function evaluations can be very complex and require extra orchestration
(example vary from setting up jobs on non-aws clusters to runnig physical lab experiments) in which case this
interface provides all the necessary flexibility
"""
from typing import Dict
import datetime
import logging

import dill
import numpy as np

from syne_tune.backend.trial_status import Trial, Status, TrialResult
from syne_tune.config_space import uniform
from syne_tune.optimizer.baselines import RandomSearch, BayesianOptimization
from syne_tune.optimizer.scheduler import TrialScheduler


class AskTellScheduler:
    bscheduler: TrialScheduler
    trial_counter: int
    completed_experiments: Dict[int, TrialResult]

    def __init__(self, base_scheduler: TrialScheduler):
        self.bscheduler = base_scheduler
        self.trial_counter = 0
        self.completed_experiments = {}

    def ask(self) -> Trial:
        """
        Ask the scheduler for new trial to run
        :return: Trial to run
        """
        trial_suggestion = self.bscheduler.suggest(self.trial_counter)
        trial = Trial(
            trial_id=self.trial_counter,
            config=trial_suggestion.config,
            creation_time=datetime.datetime.now(),
        )
        self.trial_counter += 1
        return trial

    def tell(self, trial: Trial, experiment_result: Dict[str, float]):
        """
        Feed experiment results back to the Scheduler

        :param trial: Trial that was run
        :param experiment_result: {metric: value} dictionary with experiment results
        """
        trial_result = trial.add_results(
            metrics=experiment_result,
            status=Status.completed,
            training_end_time=datetime.datetime.now(),
        )
        self.bscheduler.on_trial_complete(trial=trial, result=experiment_result)
        self.completed_experiments[trial_result.trial_id] = trial_result

    def best_trial(self, metric: str) -> TrialResult:
        """
        Return the best trial according to the provided metric
        """
        if self.bscheduler.mode == "max":
            sign = 1.0
        else:
            sign = -1.0

        return max(
            [value for key, value in self.completed_experiments.items()],
            key=lambda trial: sign * trial.metrics[metric],
        )


def target_function(x, noise: bool = True):
    fx = x * x + np.sin(x)
    if noise:
        sigma = np.cos(x) ** 2 + 0.01
        noise = 0.1 * np.random.normal(loc=x, scale=sigma)
        fx = fx + noise

    return fx


def get_objective():
    metric = "mean_loss"
    mode = "min"
    max_iterations = 100
    config_space = {
        "x": uniform(-1, 1),
    }
    return metric, mode, config_space, max_iterations


def plot_objective():
    """
    In this function, we will inspect the objective by plotting the target function
    :return:
    """
    from syne_tune.try_import import try_import_visual_message

    try:
        import matplotlib.pyplot as plt
    except ImportError:
        print(try_import_visual_message())

    metric, mode, config_space, max_iterations = get_objective()

    plt.set_cmap("viridis")
    x = np.linspace(config_space["x"].lower, config_space["x"].upper, 400)
    fx = target_function(x, noise=False)
    noise = 0.1 * np.cos(x) ** 2 + 0.01

    plt.plot(x, fx, "r--", label="True value")
    plt.fill_between(x, fx + noise, fx - noise, alpha=0.2, fc="r")
    plt.legend()
    plt.grid()
    plt.show()


def tune_with_random_search() -> TrialResult:
    metric, mode, config_space, max_iterations = get_objective()
    scheduler = AskTellScheduler(
        base_scheduler=RandomSearch(config_space, metric=metric, mode=mode)
    )
    for iter in range(max_iterations):
        trial_suggestion = scheduler.ask()
        test_result = target_function(**trial_suggestion.config)
        scheduler.tell(trial_suggestion, {metric: test_result})
    return scheduler.best_trial(metric)


def save_restart_with_gp() -> TrialResult:
    metric, mode, config_space, max_iterations = get_objective()
    scheduler = AskTellScheduler(
        base_scheduler=BayesianOptimization(config_space, metric=metric, mode=mode)
    )
    for iter in range(int(max_iterations / 2)):
        trial_suggestion = scheduler.ask()
        test_result = target_function(**trial_suggestion.config)
        scheduler.tell(trial_suggestion, {metric: test_result})

    # --- The scheduler can be written to disk to pause experiment
    output_path = "scheduler-checkpoint.dill"
    with open(output_path, "wb") as f:
        dill.dump(scheduler, f)

    # --- The Scheduler can be read from disk at a later time to resume experiments
    with open(output_path, "rb") as f:
        scheduler = dill.load(f)

    for iter in range(int(max_iterations / 2)):
        trial_suggestion = scheduler.ask()
        test_result = target_function(**trial_suggestion.config)
        scheduler.tell(trial_suggestion, {metric: test_result})
    return scheduler.best_trial(metric)


def tune_with_gp() -> TrialResult:
    metric, mode, config_space, max_iterations = get_objective()
    scheduler = AskTellScheduler(
        base_scheduler=BayesianOptimization(config_space, metric=metric, mode=mode)
    )
    for iter in range(max_iterations):
        trial_suggestion = scheduler.ask()
        test_result = target_function(**trial_suggestion.config)
        scheduler.tell(trial_suggestion, {metric: test_result})
    return scheduler.best_trial(metric)


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.WARN)
    # plot_objective() # Please uncomment this to plot the objective
    print("Random:", tune_with_random_search())
    print("GP with restart:", save_restart_with_gp())
    print("GP:", tune_with_gp())







This is an example on how to use syne-tune in the ask-tell mode.
In this setup the tuning loop and experiments are disentangled. The AskTell Scheduler suggests new configurations
and the users themselves perform experiments to test the performance of each configuration.
Once done, user feeds the result into the Scheduler which uses the data to suggest better configurations.

In some cases, experiments needed for function evaluations can be very complex and require extra orchestration
(example vary from setting up jobs on non-aws clusters to running physical lab experiments) in which case this
interface provides all the necessary flexibility.



Ask Tell interface for Hyperband


examples/launch_ask_tell_scheduler_hyperband.py


"""
This is an example on how to use syne-tune in the ask-tell mode.
In this setup the tuning loop and experiments are disentangled. The AskTell Scheduler suggests new configurations
and the users themselves perform experiments to test the performance of each configuration.
Once done, user feeds the result into the Scheduler which uses the data to suggest better configurations.


In some cases, experiments needed for function evaluations can be very complex and require extra orchestration
(example vary from setting up jobs on non-aws clusters to runnig physical lab experiments) in which case this
interface provides all the necessary flexibility

This is an extension of launch_ask_tell_scheduler.py to run multi-fidelity methods such as Hyperband
"""

import logging
from typing import Tuple

import numpy as np

from examples.launch_ask_tell_scheduler import AskTellScheduler
from syne_tune.backend.trial_status import Trial, TrialResult
from syne_tune.config_space import uniform
from syne_tune.optimizer.baselines import ASHA
from syne_tune.optimizer.scheduler import SchedulerDecision


def target_function(x, step: int = None, noise: bool = True):
    fx = x * x + np.sin(x)
    if noise:
        sigma = np.cos(x) ** 2 + 0.01
        noise = 0.1 * np.random.normal(loc=x, scale=sigma)
        fx = fx + noise

    if step is not None:
        fx += step * 0.01

    return fx


def get_objective():
    metric = "mean_loss"
    mode = "min"
    max_iterations = 100
    config_space = {
        "x": uniform(-1, 1),
    }
    return metric, mode, config_space, max_iterations


def run_hyperband_step(
    scheduler: AskTellScheduler, trial_suggestion: Trial, max_steps: int, metric: str
) -> Tuple[float, float]:
    for step in range(1, max_steps):
        test_result = target_function(**trial_suggestion.config, step=step)
        decision = scheduler.bscheduler.on_trial_result(
            trial_suggestion, {metric: test_result, "epoch": step}
        )
        if decision == SchedulerDecision.STOP:
            break
    return step, test_result


def tune_with_hyperband() -> TrialResult:
    metric, mode, config_space, max_iterations = get_objective()
    max_steps = 100

    scheduler = AskTellScheduler(
        base_scheduler=ASHA(
            config_space,
            metric=metric,
            resource_attr="epoch",
            max_t=max_steps,
            mode=mode,
        )
    )
    for iter in range(max_iterations):
        trial_suggestion = scheduler.ask()
        final_step, test_result = run_hyperband_step(
            scheduler, trial_suggestion, max_steps, metric
        )
        scheduler.tell(trial_suggestion, {metric: test_result, "epoch": final_step})
    return scheduler.best_trial(metric)


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.WARN)
    print("Hyperband:", tune_with_hyperband())







This is an extension of
launch_ask_tell_scheduler.py to run
multi-fidelity methods such as Hyperband.



Multi Objective Multi Surrogate (MSMOS) Searcher


examples/launch_mb_mo_optimization.py

from pathlib import Path

import numpy as np

from syne_tune import Tuner, StoppingCriterion
from syne_tune.backend import LocalBackend
from syne_tune.config_space import randint, uniform
from syne_tune.optimizer.baselines import MORandomScalarizationBayesOpt


def main():
    random_seed = 6287623
    # Hyperparameter configuration space
    config_space = {
        "steps": randint(0, 100),
        "theta": uniform(0, np.pi / 2),
        "sleep_time": 0.01,
    }
    metrics = ["y1", "y2"]
    modes = ["min", "min"]

    # Creates a FIFO scheduler with a ``MultiObjectiveMultiSurrogateSearcher``. The
    # latter is configured by one default GP surrogate per objective, and with the
    # ``MultiObjectiveLCBRandomLinearScalarization`` acquisition function.
    scheduler = MORandomScalarizationBayesOpt(
        config_space=config_space,
        metric=metrics,
        mode=modes,
        random_seed=random_seed,
    )

    entry_point = str(
        Path(__file__).parent
        / "training_scripts"
        / "mo_artificial"
        / "mo_artificial.py"
    )
    tuner = Tuner(
        trial_backend=LocalBackend(entry_point=entry_point),
        scheduler=scheduler,
        stop_criterion=StoppingCriterion(max_wallclock_time=30),
        n_workers=1,  # how many trials are evaluated in parallel
    )
    tuner.run()


if __name__ == "__main__":
    main()







This example shows how to use the multi-objective multi-surrogate (MSMOS) searcher to tune
a multi-objective problem. In this example, we use two Gaussian process regresors
as the surrogate models and rely on lower confidence bound random scalarizer
as the acquisition function. With that in mind, any Syne Tune Estimator can be
used as surrogate.




            

          

      

      

    

  

    
      
          
            
  
Basics of Syne Tune

This tutorial provides a first overview of Syne Tune. You will learn about the
most important concepts of automated hyperparameter tuning, and how to make it
work for your setup.


Note

In order to run the code coming with this tutorial, you need to have
installed Syne Tune from source.
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Concepts and Terminology

Syne Tune is a library for large-scale distributed hyperparameter optimization
(HPO). Here is some basic terminology. A specific set of values for
hyperparameters is called a configuration. The configuration space is the
domain of a configuration, prescribing type and valid range of each hyperparameter.
Finally, a trial refers to an evaluation of the underlying machine learning
model on a given configuration. A trial may result in one or more observations, for
example the validation error after each epoch of training the model. Some HPO
algorithms may pause a trial and restart it later in time.

HPO experiments in Syne Tune involve the interplay between three components:
Tuner, Backend, and Scheduler. There is also dedicated tooling for
Benchmarking.


Tuner

The Tuner orchestrates the overall search for the best
configuration. It does so by interacting with scheduler and backend. It
queries the scheduler for a new configuration to evaluate whenever a worker is
free, and passes this suggestion to the backend for the execution of this trial.



Scheduler

In Syne Tune, HPO algorithms are called schedulers (base class
TrialScheduler). They search for a new,
most promising configuration and suggest it as a new trial to the tuner. Some
schedulers may decide to resume a paused trial instead of suggesting a new one.
Schedulers may also be in charge of stopping running trials. Syne Tune supports
many schedulers, including
multi-fidelity methods.



Backend

The backend module is responsible for starting, stopping, pausing and resuming
trials, as well as accessing results reported by trials and their statuses (base
class TrialBackend). Syne Tune currently supports four
execution backends to facilitate experimentations: local backend,
Python backend, SageMaker backend, and simulator backend.
Recall that an HPO experiment is defined by two scripts. First, a launcher script
which configures the configuration space, the backend, and the scheduler, then
starts the tuning loop. Second, a training script, in which the machine learning
model of interest (e.g., a deep neural network, or gradient boosted decision trees)
is trained for a fixed hyperparameter configuration, and some validation metric is
reported, either at the end or after each epoch of training. It is the responsibility
of the backend to execute the training script for different configurations, often in
parallel, and to relay their reports back to the tuner.


Local Backend

Class LocalBackend. This backend runs
each training job locally, on the same machine as the tuner. Each training job is
run as a subprocess. Importantly, this means that the number of workers, as
specified by n_workers passed to Tuner, must be smaller or
equal to the number of independent resources on this machine, e.g. the number of
GPUs or CPU cores. Experiments with the local backend can either be launched on
your current machine (in which case this needs to own the resources you are
requesting, such as GPUs), or you can
launch the experiment remotely
as a SageMaker training job, using an instance type of your choice. The figure
below demonstrates the local backend. On the left, both scripts are executed on
the local machine, while on the right, scripts are run remotely.
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	Local backend on a local machine

	Local backend when running on SageMaker






Syne Tune support rotating multiple GPUs on the machine, assigning the next trial
to the least busy GPU, e.g. the GPU with the smallest amount of trials currently
running.

The local backend is simple and has very small delays for starting, stopping, or
resuming trials. However, it also has shortcomings. Most importantly, the number
of trials which can run concurrently, is limited by the resources of the chosen
instance. If GPUs are required, each trial is limited to using a single GPU, so
that several trials can run in parallel.

The Python backend (PythonBackend) is simply a
wrapper around the local backend, which allows you to define an experiment in a
single script (instead of two).



SageMaker Backend

Class SageMakerBackend. This backend
runs each trial evaluation as a separate SageMaker training job. Given sufficient
instance limits, you can run your experiments with any number of workers you like,
and each worker may use all resources on the executing instance. It is even
possible to execute trials on instances of different types, which allows for
joint tuning of hyperparameters and compute resources.
The figure below demonstrates the SageMaker backend. On the left, the launcher
script runs on the local machine, while on the right, it is run remotely.
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	SageMaker backend with tuner running locally

	SageMaker backend with tuner running on SageMaker






The SageMaker backend executes each trial as independent SageMaker training job,
This allows you to use any instance type and configuration you like. Also, you
may use any of the SageMaker frameworks, from scikit-learn over PyTorch
and TensorFlow, up to dedicated frameworks for distributed training. You may
also
bring your own Docker image.

This backend is most suited to tune models for which training is fairly expensive.
SageMaker training jobs incur certain delays for starting or stopping, which are
not present in the local backend. The SageMaker backend can be sped up by using
SageMaker managed warm pools.



Simulator Backend

Class BlackboxRepositoryBackend.
This backend is useful for comparing HPO methods, or variations of such methods.
It runs on a tabulated or surrogate benchmark, where validation metric data
typically obtained online by running a training script has been precomputed
offline. In a corporate setting, simulation experiments are useful for unit and
regression testing, but also to speed up evaluations of prototypes. More details
are given here, and in
this example.

The main advantage of the simulator backend is that it allows for realistic
experimentation at very low cost, and running order of magnitude faster than
real time. A drawback is the upfront cost of generating a tabulated benchmark
of sufficient complexity to match the real problem of interest.

Importantly, Syne Tune is agnostic to which execution backend is being used. You
can easily switch between backends by changing the trial_backend argument
in Tuner:


	launch_height_baselines.py
provides an example for launching experiments with the local backend


	launch_height_python_backend.py
provides an example for launching experiments with the Python backend


	launch_height_sagemaker.py
provides an example for launching experiments with the SageMaker backend


	launch_nasbench201_simulated.py
provides an example for launching experiments with the simulator backend







Benchmarking

A benchmark is a collection of meta-datasets from different configuration spaces,
where the exact dataset split, the evaluation protocol, and the performance
measure are well-specified. Benchmarking allows for experimental reproducibility
and assist us in comparing HPO methods on the specified configurations.
Refer to this tutorial for a complete guide on
benchmarking in Syne Tune.





            

          

      

      

    

  

    
      
          
            
  
Setting up the Problem


Running Example

For most of this tutorial, we will be concerned with one running example:
tuning some hyperparameters of a two-layer perceptron on the FashionMNIST
dataset.



	FashionMNIST

	Two-layer MLP
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This is not a particularly difficult problem. Due to its limited size, and the
type of model, you can run it on a CPU instance. It is not a toy problem
either. Depending on model size, training for the full number of epochs can
take more than 90 minutes. We will present results obtained by running HPO for
3 hours, using 4 workers. In order to get best possible results with
model-based HPO, you would have to run for longer.



Annotating the Training Script

You will normally start with some code to train a machine learning model,
which comes with a number of free parameters you would like to tune. The goal
is to obtain a trained (and tuned) model with low prediction error on future
data from the same task. One way to do this is to split available data into
disjoint training and validation sets, and to score a configuration (i.e.,
an instantiation of all hyperparameters) by first training on the training set,
then computing the error on the validation set. This is what we will do here,
while noting that there are other (more costly) scores we could have used
instead (e.g., cross-validation). Here is an example:


traincode_report_end.py

import argparse
import logging

from benchmarking.training_scripts.mlp_on_fashion_mnist.mlp_on_fashion_mnist import (
    download_data,
    split_data,
    model_and_optimizer,
    train_model,
    validate_model,
)
from syne_tune import Reporter


def objective(config):  # [1]
    # Download data
    data_train = download_data(config)
    # Report results to Syne Tune
    report = Reporter()
    # Split into training and validation set
    train_loader, valid_loader = split_data(config, data_train)
    # Create model and optimizer
    state = model_and_optimizer(config)
    # Training loop
    for epoch in range(1, config["epochs"] + 1):
        train_model(config, state, train_loader)

    # Report validation accuracy to Syne Tune
    # [2]
    accuracy = validate_model(config, state, valid_loader)
    report(accuracy=accuracy)


if __name__ == "__main__":
    root = logging.getLogger()
    root.setLevel(logging.INFO)
    # [3]
    parser = argparse.ArgumentParser()
    parser.add_argument("--epochs", type=int, required=True)
    parser.add_argument("--dataset_path", type=str, required=True)
    # Hyperparameters
    parser.add_argument("--n_units_1", type=int, required=True)
    parser.add_argument("--n_units_2", type=int, required=True)
    parser.add_argument("--batch_size", type=int, required=True)
    parser.add_argument("--dropout_1", type=float, required=True)
    parser.add_argument("--dropout_2", type=float, required=True)
    parser.add_argument("--learning_rate", type=float, required=True)
    parser.add_argument("--weight_decay", type=float, required=True)

    args, _ = parser.parse_known_args()
    # Evaluate objective and report results to Syne Tune
    objective(config=vars(args))







This script imports boiler plate code from
mlp_on_fashionmnist.py.
It is a typical script to train a neural network, using PyTorch:


	[1] objective is encoding the function we would like to optimize. It
downloads the data, splits it into training and validation set, and
constructs the model and optimizer. Next, the model is trained for
config['epochs'] epochs. An epoch constitutes a partitioning of the
training set into mini-batches of size config['batch_size'],
presented to the stochastic gradient descent optimizer in a random
ordering.


	[2] Finally, once training is done, we compute the accuracy of the
model on the validation set and report it back to Syne Tune. To this end,
we create a callback (report = Reporter()) and call it once the training
loop finished, passing the validation accuracy
(report(accuracy=accuracy)).


	[3] Values in config are parameters of the training script. As is
customary in SageMaker, these parameters are command line arguments to the
script. A subset of these parameters are hyperparameters, namely the
parameters we would like to tune. Our example has 7 hyperparameters, 3 of
type int and 4 of type float. Another notable parameter is
config['epochs'], the number of epochs to train. This is not a parameter
to be tuned, even though it plays an important role when we get to early
stopping methods below. If your training problem is iterative in nature, we
recommend you include the number of iterations (or epochs) among the
parameters to your script.


	[4] Most hyperparameters determine the model, optimizer or learning rate
scheduler. In model_and_optimizer, we can see that
config['n_units_1'], config['n_units_2'] are the number of units in
first and second hidden layer of a multi-layer perceptron with ReLU
activations and dropout (FashionMNIST inputs are 28-by-28 grey-scale images,
and there are 10 classes). Also, config['learning_rate'] and
config['weight_decay] parameterize the Adam optimizer.




This script differs by a vanilla training script only by two lines, which
create reporter and call it at the end of training. Namely, we report
the validation accuracy after training as report(accuracy=accuracy).


Note

By default, the configuration is passed to the training script as command
line arguments. This precludes passing arguments of complex type, such as
lists or dictionaries, as there is also a length limit to arguments. In
order to get around these restrictions, you can also pass
arguments via a JSON file.





Defining the Configuration Space

Having defined the objective, we still need to specify the space we would like
to search over. We will use the following configuration space throughout this
tutorial:


hpo_main.py: Configuration space

from syne_tune.config_space import randint, uniform, loguniform


# Configuration space (or search space)
config_space = {
    "n_units_1": randint(4, 1024),
    "n_units_2": randint(4, 1024),
    "batch_size": randint(8, 128),
    "dropout_1": uniform(0, 0.99),
    "dropout_2": uniform(0, 0.99),
    "learning_rate": loguniform(1e-6, 1),
    "weight_decay": loguniform(1e-8, 1),
}









The configuration space is a dictionary with key names corresponding to command
line input parameters of our training script. For each parameter you would like
to tune, you need to specify a Domain, imported
from syne_tune.config_space. A domain consists of a type (float, int,
categorical), a range (inclusive on both ends), and an encoding (linear or
logarithmic). In our example, n_units_1, n_units_2, batch_size are
int with linear encoding (randint), dropout_1, dropout_2 are
float with linear encoding (uniform), and learning_rate,
weight_decay are float with logarithmic encoding (loguniform).
We also need to specify upper and lower bounds: n_units_1 lies between 4
and 1024, the range includes both boundary values.

Choosing a good configuration space for a given problem may require some
iterations. Parameters like learning rate or regularization constants are often
log-encoded, as best values may vary over several orders of magnitude and may
be close to 0. On the other hand, probabilities are linearly encoded. Search
ranges need to be chosen wide enough not to discount potentially useful values
up front, but setting them overly large risks a long tuning time.

In general, the range definitions are more critical for methods based on random
exploration than for model-based HPO methods. On the other hand, we should
avoid to encode finite-sized numerical ranges as categorical for model-based
HPO, instead using one of the more specialized types in Syne Tune. More details
on choosing the configuration space are provided
here, where you will also learn about more types:
categorical, finite range, and ordinal.

Finally, you can also tune only a subset of the hyperparameters of your
training script, providing fixed (default) values for the remaining
ones. For example, the following configuration space fixes the model
architecture:

from syne_tune.config_space import randint, uniform, loguniform

config_space = {
    'n_units_1': 512,
    'n_units_2': 128,
    'batch_size': randint(8, 128),
    'dropout_1': uniform(0, 0.99),
    'dropout_2': uniform(0, 0.99),
    'learning_rate': loguniform(1e-6, 1),
    'weight_decay': loguniform(1e-8, 1),
}









            

          

      

      

    

  

    
      
          
            
  
Random Search


Grid and Random Search

With our tuning problem well-defined, what are basic methods to solve it? The
most frequently used baselines are grid search and random search. Both of
them pick a sequence of hyperparameter configurations, evaluate the objective
for all of them, and return the configuration which attained the best metric
value. This sequence is chosen independently of any metric values received in
the process, a property which not only renders these baselines very simple to
implement, but also makes them embarrassingly parallel.
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	Grid and Random Search (figure by Bergstra & Bengio)






For grid search, we place a grid on each hyperparameter range, which is
uniformly or log-uniformly spaced. The product of these grids determines the
sequence, which can be traversed in regular and random ordering. An obvious
drawback of grid search is that the size of this sequence is exponential in the
number of hyperparameters. Simple “nested loop” implementations are
particularly problematic: if they are stopped early, HPs in outer loops are
sampled much worse than those in inner loops. As seen in the figure above,
grid search is particularly inefficient if some HPs are more important for the
objective values than others. For all of these reasons, grid search is not a
recommended baseline for HPO, unless very few parameters have to be tuned.
Nevertheless, Syne provides an implementation in
GridSearcher.

In random search, the sequence of configurations is chosen by independent
sampling. In the simple case of interest here, each value in a configuration is
chosen by sampling independently from the hyperparameter domain. Recall our
search space:


hpo_main.py: Configuration space

from syne_tune.config_space import randint, uniform, loguniform


# Configuration space (or search space)
config_space = {
    "n_units_1": randint(4, 1024),
    "n_units_2": randint(4, 1024),
    "batch_size": randint(8, 128),
    "dropout_1": uniform(0, 0.99),
    "dropout_2": uniform(0, 0.99),
    "learning_rate": loguniform(1e-6, 1),
    "weight_decay": loguniform(1e-8, 1),
}









Here, n_units_1 is sampled uniformly from 4,...,1024, while
learning_rate is sampled log-uniformly from [1e-6, 1] (i.e., it is
exp(u), where u is sampled uniformly in [-6 log(10), 0]). As seen
in figure above, random search in general does better than grid search when
some HPs are more important than others.



Launcher Script for Random Search

Here is the launcher script we will use throughout this tutorial in order to
run HPO experiments.


hpo_main.py

import logging
from argparse import ArgumentParser
from pathlib import Path

from syne_tune.backend import LocalBackend
from syne_tune.optimizer.baselines import (
    RandomSearch,
    BayesianOptimization,
    ASHA,
    MOBSTER,
)
from syne_tune import Tuner, StoppingCriterion
from syne_tune.config_space import randint, uniform, loguniform


# Configuration space (or search space)
config_space = {
    "n_units_1": randint(4, 1024),
    "n_units_2": randint(4, 1024),
    "batch_size": randint(8, 128),
    "dropout_1": uniform(0, 0.99),
    "dropout_2": uniform(0, 0.99),
    "learning_rate": loguniform(1e-6, 1),
    "weight_decay": loguniform(1e-8, 1),
}


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)
    # [1]
    parser = ArgumentParser()
    parser.add_argument(
        "--method",
        type=str,
        choices=(
            "RS",
            "BO",
            "ASHA-STOP",
            "ASHA-PROM",
            "MOBSTER-STOP",
            "MOBSTER-PROM",
        ),
        default="RS",
    )
    parser.add_argument(
        "--random_seed",
        type=int,
        default=31415927,
    )
    parser.add_argument(
        "--n_workers",
        type=int,
        default=4,
    )
    parser.add_argument(
        "--max_wallclock_time",
        type=int,
        default=3 * 3600,
    )
    parser.add_argument(
        "--experiment_tag",
        type=str,
        default="basic-tutorial",
    )
    args, _ = parser.parse_known_args()

    # Here, we specify the training script we want to tune
    # - `mode` and `metric` must match what is reported in the training script
    # - Metrics need to be reported after each epoch, `resource_attr` must match
    #   what is reported in the training script
    if args.method in ("RS", "BO"):
        train_file = "traincode_report_end.py"
    elif args.method.endswith("STOP"):
        train_file = "traincode_report_eachepoch.py"
    else:
        train_file = "traincode_report_withcheckpointing.py"
    entry_point = Path(__file__).parent / train_file
    max_resource_level = 81  # Maximum number of training epochs
    mode = "max"
    metric = "accuracy"
    resource_attr = "epoch"
    max_resource_attr = "epochs"

    # Additional fixed parameters  [2]
    config_space.update(
        {
            max_resource_attr: max_resource_level,
            "dataset_path": "./",
        }
    )

    # Local backend: Responsible for scheduling trials  [3]
    # The local backend runs trials as sub-processes on a single instance
    trial_backend = LocalBackend(entry_point=str(entry_point))

    # Scheduler: Depends on `args.method`  [4]
    scheduler = None
    # Common scheduler kwargs
    method_kwargs = dict(
        metric=metric,
        mode=mode,
        random_seed=args.random_seed,
        max_resource_attr=max_resource_attr,
        search_options={"num_init_random": args.n_workers + 2},
    )
    sch_type = "promotion" if args.method.endswith("PROM") else "stopping"
    if args.method == "RS":
        scheduler = RandomSearch(config_space, **method_kwargs)
    elif args.method == "BO":
        scheduler = BayesianOptimization(config_space, **method_kwargs)
    else:
        # Multi-fidelity method
        method_kwargs["resource_attr"] = resource_attr
        if args.method.startswith("ASHA"):
            scheduler = ASHA(config_space, type=sch_type, **method_kwargs)
        elif args.method.startswith("MOBSTER"):
            scheduler = MOBSTER(config_space, type=sch_type, **method_kwargs)
        else:
            raise NotImplementedError(args.method)

    # Stopping criterion: We stop after `args.max_wallclock_time` seconds
    # [5]
    stop_criterion = StoppingCriterion(max_wallclock_time=args.max_wallclock_time)

    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=args.n_workers,
        tuner_name=args.experiment_tag,
        metadata={
            "seed": args.random_seed,
            "algorithm": args.method,
            "tag": args.experiment_tag,
        },
    )

    tuner.run()







Random search is obtained by calling this script with --method RS.
Let us walk through the script, keeping this special case in mind:


	[1] The script comes with command line arguments: method selects the
HPO method (random search being given by RS), n_workers the number
of evaluations which can be done in parallel, max_wallclock_time the
duration of the experiment, and results are stored under the tag
experiment_tag


	[2] Recall that apart from the 7 hyperparameters, our training script needs
two additional parameters, which are fixed throughout the experiment. In
particular, we need to specify the number of epochs to train for in
epochs. We set this value to max_resource_level = 81. Here,
“resource” is a more general concept than “epoch”, but for most of this
tutorial, they can be considered to be the same. We need to extend
config_space by these two additional parameters.


	[3] Next, we need to choose a backend, which specifies how Syne Tune should
execute our training jobs (also called trials). The simplest choice is the
local backend, which runs trials as sub-processes on a single instance.


	[4] Most important, we need to choose a scheduler, which is how HPO
algorithms are referred to in Syne Tune. A scheduler needs to suggest
configurations for new trials, and also to make scheduling decisions about
running trials. Most schedulers supported in Syne Tune can be imported from
syne_tune.optimizer.baselines. In our example, we use
RandomSearch, see also
RandomSearcher.

Schedulers need to know how the target metric is referred to in the report
call of the training script (metric), and whether this criterion is to
be minimized or maximized (mode). If its decisions are randomized,
random_seed controls this random sampling.



	[5] Finally, we need to specify a stopping criterion. In our example, we run
random search for max_wallclock_time seconds, the default being 3 hours.
StoppingCriterion can also use other attributes, such as
max_num_trials_started or max_num_trials_completed. If several
attributes are used, you get the or combination.


	Everything comes together in the Tuner. Here, we can also specify
n_workers, the number of workers. This is the maximum number of trials
which are run concurrently. For the local backend, concurrent trials share
the resources of a single instance (e.g., CPU cores or GPUs), so the
effective number of workers is limited in this way. To ensure you really use
n_workers workers, make sure to pick an instance type which caters for
your needs (e.g., no less than n_workers GPUs or CPU cores), and also
make sure your training script does not grab all the resources. Finally,
tuner.run() starts the HPO experiment.






Results for Random Search
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	Results for Random Search






Here is how random search performs on our running example. The x axis is
wall-clock time, the y axis best validation error attained until then. Such
“tuning curves” are among the best ways to compare different HPO methods, as
they display the most relevant information, without hiding overheads due to
synchronization requirements or decision-making.

We ran random search with 4 workers (n_workers = 4) for 3 hours. In fact,
we repeated the experiments 50 times with different random seeds. The solid
line shows the median, the dashed lines the 25 and 75 percentiles. An important
take-away message is that HPO performance can vary substantially when repeated
randomly, especially when the experiment is stopped rather early. When
comparing methods, it is therefore important to run enough random repeats and
use appropriate statistical techniques which acknowledge the inherent random
fluctuations.


Note

In order to learn more about how to launch long-running HPO experiments many
times in parallel on SageMaker, please have a look at
this tutorial.





Recommendations

One important parameter of
RandomSearcher (and the
other schedulers we use in this tutorial) we did not use is
points_to_evaluate, which allows specifying initial configurations to
suggest first. For example:

first_config = dict(
    n_units_1=128,
    n_units_2=128,
    batch_size=64,
    dropout_1=0.5,
    dropout_2=0.5,
    learning_rate=1e-3,
    weight_decay=0.01,
)

scheduler = RandomSearch(
    config_space,
    metric=metric,
    mode=mode,
    random_seed=random_seed,
    points_to_evaluate=[first_config],
)





Here, first_config is the first configuration to be suggested, while
subsequent ones are drawn at random. If the model you would like to tune comes
with some recommended defaults, you should use them in points_to_evaluate,
in order to give random search a head start. In fact, points_to_evaluate
can contain more than one initial configurations, which are then suggested in
the order given there.


Note

Configurations in points_to_evaluate need not be completely specified.
If so, missing values are imputed by a mid-point rule. In fact, the default
for points_to_evaluate is [dict()], namely one configuration where
all values are selected by the mid-point rule. If you want to run pure
random search from the start (which is not recommended), you need to set
points_to_evaluate=[]. Details are provided
here.







            

          

      

      

    

  

    
      
          
            
  
Bayesian Optimization


Sequential Model-Based Search

With limited parallel computing resources, experiments are sequential
processes, where trials are started and report results in some ordering. This
means that when deciding on which configuration to explore with any given
trial, we can make use of all metric results reported by earlier trials, given
that they already finished. In the simplest case, with a single worker, a new
trial can start only once all earlier trials finished. We should be able to use
this information in order to make better and better decisions as the experiment
proceeds.

To make this precise, at any given time when a worker comes available, we need
to make a decision which configuration to evaluate with the new trial, based on
(a) which decisions have been made for all earlier trials, and (b) metric
values reported those earlier trials which have already finished. With more
than one worker, the trial set for (a) can be larger than for (b), since some
trials may still be running: their results are pending. It is important to
take pending trials into account, since otherwise we risk querying our
objective at redundant configurations. The best way to take information (a)
and (b) into account is by way of a statistical model, leading to sequential
model-based decision-making.

What is the challenge for making good next configuration decisions? Say we
have already evaluated the objective at a number of configurations, chosen at
random. One idea is to refine the search nearby the configuration which
resulted in the best metric value so far, thereby exploiting our knowledge.
Even without gradients, such local search can be highly effective. On the other
hand, it risks getting stuck in a local optimum. Another extreme is random
search, where we explore the objective all over the search space. Choosing
between these two extremes, at any given point in time, is known as
explore-exploit trade-off, and is fundamental to sequential model-based
search.



What is Bayesian Optimization?

One of the oldest and most widely used instantiations of sequential model-based
search is Bayesian optimization. There are a number of great tutorials and
review articles on Bayesian optimization, and we won’t repeat them here:


	Slides by Ryan Adams [https://www.cs.toronto.edu/~rgrosse/courses/csc411_f18/tutorials/tut8_adams_slides.pdf]


	Review by Peter Frazier [https://arxiv.org/abs/1807.02811]


	Video by Peter Frazier [https://www.youtube.com/watch?v=c4KKvyWW_Xk]


	Video by Nando de Freitas [https://www.youtube.com/watch?v=vz3D36VXefI]


	Video by Matthew Hoffman [https://www.youtube.com/watch?v=C5nqEHpdyoE]




Most instances of Bayesian optimization work by modelling the objective as
function \(f(\mathbf{x})\), where \(\mathbf{x}\) is a configuration
from the search space. Given such a probabilistic surrogate model, we can
condition it on the observed metric data (b) in order to obtain a posterior
distribution. Finally, we use this posterior distribution along with additional
statistics obtained from the data (such as for example the best metric value
attained so far) in order to compute a acquisition function
\(a(\mathbf{x})\), an (approximate) maximum of which will be our suggested
configuration. While \(a(\mathbf{x})\) can itself be difficult to globally
optimize, it is available in closed form and can typically be differentiated
w.r.t. \(\mathbf{x}\). Moreover, it is important to understand that
\(a(\mathbf{x})\) is not an approximation to \(f(\mathbf{x})\), but
instead scores the expected value of sampling the objective at
\(\mathbf{x}\), thereby embodying the explore-exploit trade-off. In
particular, once some \(\mathbf{x}_*\) is chosen and included into the set
(a), \(a(\mathbf{x}_*)\) is much diminished.

The Bayesian optimization template requires us to make two choices:


	Surrogate model: By far the most common choice is to use Gaussian process
surrogate models (the tutorials linked above explain the basics of Gaussian
processes). A Gaussian process is parameterized by a mean and a covariance
(or kernel) function. In Syne Tune, the default corresponds to what is most
frequently used in practice: Matern 5/2 kernel with automatic relevance
determination (ARD). A nice side effect of this choice is that the model can
learn about the relative relevance of each hyperparameter as more metric data
is obtained, which allows this form of Bayesian optimization to render the
curse of dimensionality much less severe than it is for random search.


	Acquisition function: The default choice in Syne Tune corresponds to the
most popular choice in practice: expected improvement.




GP-based Bayesian optimization is run by our
launcher script
with the argument --method BO. Many options can be specified via
search_options, but we use the defaults here. See
GPFIFOSearcher for all
details. In our example, we set num_init_random to n_workers + 2, which
is the number of initial decisions made by random search, before switching
over to maximizing the acquisition function.



Results for Bayesian Optimization



	[image: Results for Bayesian Optimization]





	Results for Bayesian Optimization






Here is how Bayesian optimization performs on our running example, compared to
random search. We used the same conditions (4 workers, 3 hours experiment
time, 50 random repetitions).

In this particular setup, Bayesian optimization does not outperform random
search after 3 hours. This is a rather common pattern. Bayesian optimization
requires a certain amount of data in order to learn enough about the objective
function (in particular, about which parameters are most relevant) in order to
outperform random search by targeted exploration and exploitation. If we
continued to 4 or 5 hours, we would see a significant difference.



Recommendations

Here, we collect some additional recommendations. Further details are
found here.


Categorical Hyperparameters

While our running example does not have any, hyperparameters of
categorical type are often used. For example:

from syne_tune.config_space import lograndint, choice

config_space = {
    'n_units_1': lograndint(4, 1024),
    # ...
    'activation': choice(['ReLU', 'LeakyReLU', 'Softplus']),
}





Here, activation could determine the type of activation function.
It is important to understand that in Bayesian optimization, a
categorical parameter is encoded as vector in the multi-dimensional
unit cube: the encoding dimension is equal to the number of different
values. This is to make sure there is no ordering information between
the different values, each pair has the same distance in the encoding
space.

This is usually not what you want with numerical values, whose
ordering provide important information to the search. For example,
it sounds simpler to search over the finite range
choice([4, 8, 16, 32, 64, 128, 256, 512, 1024]) than over the infinite
lograndint(4, 1024) for n_units_1, but the opposite is the
case. The former occupies 9 dimensions, the latter 1 dimension in
the encoded space, and ordering information is lost for the former.
A better alternative is logfinrange(4, 1024, 9).

Syne Tune provides a range of finite numerical domains in order to
avoid suboptimal performance of Bayesian optimization due to the uncritical
use of choice. Since this is somewhat subtle, and you may also want
to import configuration spaces from other HPO libraries which do not
have these types, Syne Tune provides an automatic conversion logic
with streamline_config_space(). Details are given
here.


Note

When using Bayesian optimization or any other model-based HPO method,
we strongly recommend to use
streamline_config_space() in order to ensure that
your domains are chosen in a way that works best with internal encoding.





Speeding up Decision-Making

Gaussian process surrogate models have many crucial advantages over
other probabilistic surrogate models typically used in machine learning.
But they have one key disadvantage: inference computations scale
cubically in the number of observations. For most HPO use cases, this is
not a problem, since no more than a few hundred evaluations can be
afforded.

Syne Tune allows to control the number of observations the GP surrogate model
is fit to, via max_size_data_for_model in search_options. If the data
is larger, it is downsampled to this size. Sampling is controlled by another
argument max_size_top_fraction. Namely, this fraction of entries in the
downsampled set are filled by those points in the full set with the best metric
values, while the remaining entries are sampled (with replacement) from the
rest of the full set. The default for max_size_data_for_model is
DEFAULT_MAX_SIZE_DATA_FOR_MODEL.
The feature is switched off by setting this to None or a very large value,
but this is not recommended. Subsampling is repeated every time the surrogate
model is fit.

Beyond, there are some search_options arguments you can use in order to
speed up Bayesian optimization. The most expensive part of making a decision
consists in refitting the parameters of the GP surrogate model, such as the ARD
parameters of the kernel. While this refitting is essential for good performance
with a small number of observations, it can be thinned out or even stopped when
the dataset gets large. You can use opt_skip_init_length,
opt_skip_period to this end (details are
here.



Warping of Inputs

If you use input_warping=True in search_options, inputs are warped
before being fed into the covariance function, the effective kernel becomes
\(k(w(x), w(x'))\), where \(w(x)\) is a warping transform with two
non-negative parameters per component. These parameters are learned along with
other parameters of the surrogate model. Input warping allows the surrogate
model to represent non-stationary functions, while still keeping the numbers
of parameters small. Note that only such components of \(x\) are warped
which belong to non-categorical hyperparameters.




Box-Cox Transformation of Target Values

This option is available only for positive target values. If you use
boxcox_transform=True in search_options, target values are transformed
before being fitted with a Gaussian marginal likelihood. This is using the Box-Cox
transform with a parameter \(\lambda\), which is learned alongside other
parameters of the surrogate model. The transform is \(\log y\) for
\(\lambda = 0\), and \(y - 1\) for \(\lambda = 1\).

Both input warping and Box-Cox transform of target values are combined in this
paper:



Cowen-Rivers, A. et.al.

HEBO: Pushing the Limits of Sample-efficient Hyper-parameter Optimisation

Journal of Artificial Intelligence Research 74 (2022), 1269-1349

ArXiV [https://arxiv.org/abs/2012.03826]






However, they fit \(\lambda\) up front by maximizing the likelihood of the
targets under a univariate Gaussian assumption for the latent \(z\), while
we learn \(\lambda\) jointly with all other parameters.





            

          

      

      

    

  

    
      
          
            
  
Asynchronous Successive Halving and Hyperband


Early Stopping
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	Learning Curves (image from Aaron Klein)






In the methods discussed above, we train each model for 81 epochs before
scoring it. This is expensive, it can take up to 1.5 hours. In order to figure
out whether a configuration is pretty poor, do we really need to train it all
the way to the end?

At least for most neural network training problems, the validation error after
training only a few epoch can be a surprisingly strong signal separating the
best from the worst configurations (see figure above). Therefore, if a certain
trial shows worse performance after (say) 3 epochs than many others, we may
just as well stop it early, allowing the worker to pick up another potentially
more rewarding task.



Synchronous Successive Halving and Hyperband

Successive halving is a simple, yet powerful scheduling method based on the
idea of early stopping. Applied to our running example, we would start 81
trials with different, randomly chosen configurations. Computing validation
errors after 1 epoch, we stop the 54 (or 2/3) worst performing trials, allowing
the 27 (or 1/3) best performing trials to continue. This procedure is repeated
after 3, 9, and 27 epochs, each time the 2/3 worst performing trials are
stopped. This way, only a single trial runs all the way to 81 epochs. Its
configuration has survived stopping decisions after 1, 3, 9, and 27 epochs, so
likely is worth its running time.

In practice, concurrent execution has to be mapped to a small number of
workers, and successive halving is implemented by pausing trials at rung
levels (i.e., after 1, 3, 9, 27 epochs), and then resuming the top 1/3 to
continue training until the next rung level. Pause and resume scheduling is
implemented by checkpointing. We will ignore these details for now, but come
back to them later. Ignoring practical details of scheduling, and assuming that
training time per epoch is the same for each trial, the idea behind successive
halving is to spend the same amount of time on trials stopped after 1, 3, 9,
and 27 epochs, while making sure that at each rung level, the 2/3 worst
performers are eliminated.

Successive halving has two parameters: the reduction factor (3 in our example),
and the grace period (1 in our example). For a reduction factor 2, rung levels
would be 1, 2, 4, 8, 16, 32, 64, and we would eliminate the 1/2 worst
performers at each of them. The larger the reduction factor, the fewer rung
levels, and the more aggressive the filtering at each of them. The default
value in Syne Tune is 3, which seems to work well for most neural network
tuning problems. The grace period is the lowest rung level. Its choice is more
delicate. If set too large, the potential advantage of early stopping is lost,
since even the worst trials are trained for this many epochs. If set too small,
the validation errors at the lowest rung level are determined more by the
random initial weights than the training data, and stopping decisions there
will be arbitrary.

Hyperband, a generalization of successive halving, eliminates the grace
period as free parameter. In our example above, rung levels were
[1, 3, 9, 27, 81], and the grace period was 1. Hyperband defines
brackets as sub-sequences starting at 1, 3, 9, 27, 81, of size 5, 4, 3, 2, 1
respectively. Then, successive halving is run on each of these brackets in
sequence, where the number of trials started for each bracket is adjusted in
a way that roughly equalizes the total number of epochs trained in each bracket.

While successive halving and Hyperband are widely known, they do not work all
that well for hyperparameter tuning of neural network models. The main reason
for this is their synchronous nature of decision-making. If we think of rungs
as lists of slots, which are filled by metric results of trials getting there,
each rung has an a priori fixed size. In our successive halving example, rungs
at r = 1, 3, 9, 27, 81 epochs have sizes 81 / r. Each rung is a
synchronization point. Before any trial can be resumed towards level 3, all
81 trials have to complete their first epoch. The progress of well-performing
trials is delayed, not only because workers are idle due to some trials
finishing faster than others, but also because of sequential computations (we
rarely have 81 workers available). At the other extreme, filling the final
rung requires a single trial to train for 54 epochs, while all other workers
are idle. This can be compensated to some extent by free workers running
trials for the next iteration already, but scheduling becomes rather complex at
this point. Syne Tune provides synchronous Hyperband as
SynchronousHyperbandScheduler.
However, we can usually do much better with asynchronous scheduling.



Asynchronous Successive Halving

An asynchronous scheduler needs to be free of synchronization points. Whenever
a worker becomes available, the decision what it should do next must be
instantaneous, based on the data available at that point in time. It is not
hard to come up with an asynchronous variant successive halving. In fact, it
can be done in several ways.

Returning to our example, we pre-define a system of rungs at 1, 3, 9, 27
epochs as before, and we record metric values of trials reaching each rung.
However, instead of having fixed sizes up front, each rung is a growing list.
Whenever a trial reaches a rung (by having trained as many epochs as the rung
specifies), its metric value is entered into the sorted list. We can now
compute a predicate continue which is true iff the new value lies in the
top 1/3.

There are two variants of asynchronous successive halving (ASHA), with
different requirements on the backend. In the stopping variant, a trial
reaching a rung level is stopped and discarded if continue = False,
otherwise it is allowed to continue. If there is not enough data at a rung, the
trial continues by default. The backend needs to be able to stop jobs at
random times.

In the promotion variant, a trial reaching a rung level is always paused,
its worker is released. Once a worker becomes available, all rungs are scanned
top down. If any paused trial with continue = True is found, it is resumed
to train until the next rung level (e.g., a trial resumed at rung 3 trains
until 9 epochs): the trial is promoted to the next rung. If no paused trial
can be promoted, a new one is started from scratch. This ASHA variant requires
pause and resume scheduling. In particular, a trial needs to checkpoint its
state (at least at rung levels), and these checkpoints need to be accessible
to all workers. On the other hand, the backend never needs to stop running
trials, as the stopping condition for each training job is determined up
front.



Scripts for Asynchronous Successive Halving

In this section, we will focus on the stopping variant of ASHA, leaving
the promotion variant for later. First, we need to modify our training
script. In order to support early stopping decisions, it needs to compute and
report validation errors during training. Recall
traincode_report_end.py
used with random search and Bayesian optimization. We will replace
objective with the following code snippet, giving rise to
traincode_report_eachepoch.py:


traincode_report_eachepoch.py (relevant part)

def objective(config):
    # Download data
    data_train = download_data(config)
    # Report results to Syne Tune
    report = Reporter()
    # Split into training and validation set
    train_loader, valid_loader = split_data(config, data_train)
    # Create model and optimizer
    state = model_and_optimizer(config)
    # Training loop
    for epoch in range(1, config["epochs"] + 1):
        train_model(config, state, train_loader)
        # Report validation accuracy to Syne Tune
        accuracy = validate_model(config, state, valid_loader)
        report(epoch=epoch, accuracy=accuracy)









Instead of computing and reporting the validation error only after
config['epochs'] epochs, we do this at the end of each epoch. To
distinguish different reports, we also include epoch=epoch in each report.
Here, epoch is called resource attribute. For Syne Tune’s asynchronous
Hyperband and related schedulers, resource attributes must have positive
integer values, which you can think of “resources spent”. For neural network
training, the resource attribute is typically “epochs trained”.

This is the only modification we need. Curious readers may wonder why we
report validation accuracy after every epoch, while ASHA really only needs to
know it at rung levels. Indeed, with some extra effort, we could rewrite the
script to compute and report validation metrics only at rung levels, and ASHA
would work just the same. However, for most setups, training for an epoch is
substantially more expensive than computing the validation error at the end,
and we can keep our script simple. Moreover, Syne Tune provides some advanced
model-based extensions of ASHA scheduling, which make good use of metric data
reported at the end of every epoch.

Our launcher script
runs stopping-based ASHA with the argument --method ASHA-STOP. Note that
the entry point is traincode_report_eachepoch.py in this case, and the
scheduler is ASHA. Also, we need to pass the name of the resource attribute
in resource_attr. Finally, mode="stopping" selects the stopping
variant. Further details about ASHA and relevant additional arguments (for
which we use defaults here) are found in
this tutorial.

When you run this script, you will note that many more trials are started than
for random search, and that the majority of trials are stopped after 1 or 3
epochs.



Results for Asynchronous Successive Halving
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	Results for Asynchronous Successive Halving






Here are results for our running example (4 workers; 3 hours; median, 25/75
percentiles over 50 repeats). ASHA stopping makes a big difference,
outperforming random search and Bayesian optimization substantially. Early
stopping can speed up neural network tuning dramatically, compared to standard
scheduling.

If we ran for much longer, Bayesian optimization would eventually catch up
with ASHA and even do better. But of course, wall-clock time matters: it is an
important, if not the most important metric for automated tuning. The faster
satisfying results are obtained, the more manual iterations over data, model
types, and high level features can be afforded.





            

          

      

      

    

  

    
      
          
            
  
Model-Based Asynchronous Successive Halving


Extrapolating Learning Curves
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	Learning Curves (image from Aaron Klein)






By modelling metric data from earlier trials, Bayesian optimization learns to
suggest more useful configurations down the line than randomly sampled ones.
Since new configurations are sampled at random in ASHA, a natural question is
how to combine it with Bayesian decision-making.

It is not immediately clear how to do this, since the data we observe per trial
are not single numbers, but learning curves (see figure above). In fact, the
most useful single function to model would be the validation error after the
final epoch (81 in our example), but the whole point of early stopping
scheduling is to query this function only very rarely. By the nature of
successive halving scheduling, we observe at any point in time a lot more data
for few epochs than for many. Therefore, Bayesian decision-making needs to
incorporate some form of learning curve extrapolation.

One way to do so is to build a joint probabilistic model of all the data. The
validation metric reported at the end of epoch \(r\) for configuration
\(\mathbf{x}\) is denoted as \(f(\mathbf{x}, r)\). In order to allow
for extrapolation from small \(r\) to \(r_{max}\) (81 in our example),
our model needs to capture dependencies along epochs. Moreover, it also has
to represent dependencies between learning curves for different configurations,
since otherwise we cannot use it to score the value of a new configuration we
have not seen data from before.



MOBSTER

A simple method combining ASHA with Bayesian optimization is
MOBSTER [https://openreview.net/forum?id=a2rFihIU7i]. It restricts
Bayesian decision-making to proposing configurations for new trials, leaving
scheduling decisions for existing trials (e.g., stopping, pausing, promoting)
to ASHA. Recall from
Bayesian Optimization
that we need two ingredients: a surrogate model \(f(\mathbf{x}, r)\) and
an acquisition function \(a(\mathbf{x})\):


	Surrogate model: MOBSTER uses joint surrogate models of
\(f(\mathbf{x}, r)\) which start from a Gaussian process model over
\(\mathbf{x}\) and extend it to learning curves, such that the
distribution over \(f(\mathbf{x}, r)\) remains jointly Gaussian. This is
done in several different ways, which are detailed below.


	Acquisition function: MOBSTER adopts an idea from
BOHB [https://arxiv.org/abs/1807.01774], where it is argued that the
function of interest is really \(f(\mathbf{x}, r_{max})\) (where
\(r_{max}\) is the full number of epochs), so expected improvement for
this function would be a reasonable choice. However, this requires at least
a small number of observations at this level. To this end, we use expected
improvement for the function \(f(\mathbf{x}, r_{acq})\), where
\(r_{acq}\) is the largest resource level for which a certain (small)
number of observations are available.




These choices conveniently reduce MOBSTER to a Bayesian optimization searcher
of similar form than without early stopping. One important difference is of
course that a lot more data is available now, which has scaling implications
for the surrogate model. More details about MOBSTER, and further options not
discussed here, are given in this tutorial.

Our launcher script
runs stopping-based MOBSTER with the argument --method MOBSTER-STOP. At
least if defaults are chosen, this is much the same as for ASHA-STOP.
However, we can configure the surrogate model with a range of options, which
are detailed here.



Results for MOBSTER
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	Results for MOBSTER






Here are results for our running example (4 workers; 3 hours; median, 25/75
percentiles over 50 repeats). MOBSTER performs comparably to ASHA on this
example. As with Bayesian optimization versus random search, it would need
more time in order to make a real difference.


Results on NASBench201 (ImageNet-16)

We repeated this comparison on a harder benchmark problem:
NASBench-201 [https://arxiv.org/abs/2001.00326], on the ImageNet-16
dataset. Here, r_max = 200, and rung levels are 1, 3, 9, 27, 81, 200.
We used 8 workers and 8 hours experiment time, and once more report median
and 25/75 percentiles over 50 repeats. Now, after about 5 hours, MOBSTER
starts to break away from ASHA and performs significantly better.
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	Results on NASBench201 (ImageNet-16)






In order to understand why MOBSTER outperforms ASHA, we can visualize the
learning curves of trials. In these plots, neighboring trials are assigned
different colors, circles mark rung levels, and diamonds mark final rung
levels reached.



	ASHA

	MOBSTER
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We can see that ASHA continues to suggest poor configurations at a constant
rate. While these are stopped after 1 epoch, they still take up valuable
resources. In contrast, MOBSTER quickly learns how to avoid the worst
configurations and spends available resource more effectively.






            

          

      

      

    

  

    
      
          
            
  
Promotion-based Scheduling


Pause and Resume. Checkpointing of Trials

As we have seen, one way to implement early stopping scheduling is to make
trials report metrics at certain points (rung levels), and to stop them when
their performance falls behind other trials. This is conceptually simple. A
trial maps to a single training run, and it is very easy to annotate training
code in order to support automated tuning.

Another idea is pause and resume. Here, a trial may be paused at the end of
an epoch, releasing its worker. Any paused trial may be resumed later on when
a worker becomes available, which means that it continues training where it
left when paused. Synchronous schedulers need pause and resume, since trials
reach a synchronization point at different times, and earlier ones have to wait
for the slowest one. For asynchronous schedulers, pause and resume is an
alternative to stopping trials, which can often work better. While a paused
trial needs no resources, it can be resumed later on, so its past training time
is not wasted.

However, pause and resume needs more support from the training script, which
has to make sure that a paused trial can be resumed later on, continuing
training as if nothing happened in between. To this end, the state of the
training job has to be checkpointed (i.e., stored into a file). The
training script
has to be modified once more, by replacing objective with this code:


traincode_report_withcheckpointing.py

import argparse
import logging

from benchmarking.training_scripts.mlp_on_fashion_mnist.mlp_on_fashion_mnist import (
    download_data,
    split_data,
    model_and_optimizer,
    train_model,
    validate_model,
)
from syne_tune import Reporter
from syne_tune.utils import (
    resume_from_checkpointed_model,
    checkpoint_model_at_rung_level,
    add_checkpointing_to_argparse,
    pytorch_load_save_functions,
)


def objective(config):
    # Download data
    data_train = download_data(config)
    # Report results to Syne Tune
    report = Reporter()
    # Split into training and validation set
    train_loader, valid_loader = split_data(config, data_train)
    # Create model and optimizer
    state = model_and_optimizer(config)
    # Checkpointing
    load_model_fn, save_model_fn = pytorch_load_save_functions(
        {"model": state["model"], "optimizer": state["optimizer"]}
    )
    # Resume from checkpoint (optional)  [2]
    resume_from = resume_from_checkpointed_model(config, load_model_fn)
    # Training loop
    for epoch in range(resume_from + 1, config["epochs"] + 1):
        train_model(config, state, train_loader)
        # Write checkpoint (optional)  [1]
        checkpoint_model_at_rung_level(config, save_model_fn, epoch)
        # Report validation accuracy to Syne Tune
        accuracy = validate_model(config, state, valid_loader)
        report(epoch=epoch, accuracy=accuracy)


if __name__ == "__main__":
    root = logging.getLogger()
    root.setLevel(logging.INFO)
    parser = argparse.ArgumentParser()
    parser.add_argument("--epochs", type=int, required=True)
    parser.add_argument("--dataset_path", type=str, required=True)
    # Hyperparameters
    parser.add_argument("--n_units_1", type=int, required=True)
    parser.add_argument("--n_units_2", type=int, required=True)
    parser.add_argument("--batch_size", type=int, required=True)
    parser.add_argument("--dropout_1", type=float, required=True)
    parser.add_argument("--dropout_2", type=float, required=True)
    parser.add_argument("--learning_rate", type=float, required=True)
    parser.add_argument("--weight_decay", type=float, required=True)
    # [3]
    add_checkpointing_to_argparse(parser)

    args, _ = parser.parse_known_args()
    # Evaluate objective and report results to Syne Tune
    objective(config=vars(args))







Checkpointing requires you to implement the following:


	[1] A checkpoint has to be written at the end of each epoch. The precise content
of the checkpoint depends on the training script, but it has to contain the
epoch at which it was written. It is recommended to write the checkpoint
before reporting metrics to Syne Tune, since otherwise the writing of the
checkpoint may be jeopardized by Syne Tune trying to stop the script.


	[2] A checkpoint is to be loaded just before the start of the training loop. If
the checkpoint file is present and the state can be restored, the training
loop starts with the epoch resume_from + 1, where the checkpoint was
written at the end of epoch resume_from. Otherwise, resume_from = 0,
and the training loop starts from scratch.


	[3] Checkpointing requires additional input arguments. You can add them by
hand or use add_checkpointing_to_argparse. The most important is the
local directory name where the checkpoint should be written or loaded from.
A checkpoint may consist of different files. If this argument is not passed
to the script, checkpointing is deactivated.




Syne Tune provides some helper functions for checkpointing, see
FAQ.


	checkpoint_model_at_rung_level(config, save_model_fn, epoch) stores
a checkpoint at the end of epoch epoch. The main work is done by
save_model_fn.


	resume_from = resume_from_checkpointed_model(config, load_model_fn)
loads a checkpoint, and returns its epoch if successful. Otherwise, 0 is
returned. Again, load_model_fn does the main work.


	pytorch_load_save_functions: If you use PyTorch, this is providing
save_model_fn, load_model_fn that should work for you. In
state_dict_objects, you pass a dict of PyTorch objects with a mutable
state (look for load_state_dict, state_dict methods). Make sure to
include all relevant objects (model, algorithm, learning rate scheduler).
Optionally, mutable_state contains additional elementary variables.




Note that while checkpoints are written at the end of each epoch, the most
recent one overwrites previous ones. In fact, for the purpose of pause and
resume, checkpoints have to be written only at rung levels, because trials can
only be paused there. Selective checkpointing could be supported by passing the
rung levels to the training script, but this is currently not done in Syne
Tune.

Our launcher script
runs promotion-based ASHA with the argument --method ASHA-PROM, and
promotion-based MOBSTER with --method MOBSTER-PROM:


	Recall that the argument max_resource_attr for
HyperbandScheduler allows the
scheduler to infer the maximum resource level r_max. For
promotion-based scheduling, this argument has a second function. Namely, it
allows the scheduler to inform the training script until which epoch it has
to train, so it does not have to be stopped anymore from the outside. For
example, say that a trial paused at r=3 is promoted to run until the next
rung level r=9. The scheduler calls the training script with
config[max_resource_attr] = 9 (instead of 81). It is resumed from its
r=3 checkpoint and runs epochs 4, 5, 6, 7, 8, 9, then terminates by
itself. If max_resource_attr is not used, training scripts are started
to be run until the end, and they need to be stopped by the backend.
Depending on the backend, there can be a delay between a stopping signal
being sent and a worker coming available again, which is avoided if
max_resource_attr is used. Moreover, future backends may be able to use
the information on how long a resumed trial needs to be run until paused for
improved scheduling.


	Syne Tune allows promotion-based schedulers to be used with training scripts
which do not implement checkpointing. Our launcher script would just as well
work with traincode_report_eachepoch.py. In this case, a trial to be
resumed is started from scratch, and metric reports up to the resume epoch
are ignored. For example, say a trial paused at r=3 is resumed. If the
training script does not implement checkpointing, it will start from scratch
and report for r = 1, 2, 3, 4, .... The scheduler discards the first 3
reports in this case. However, it is strongly recommended to implement
checkpointing if promotion-based scheduling is to be used.





Early Removal of Checkpoints

By default, the checkpoints written by all trials are retained on disk (for a
trial, later checkpoints overwrite earlier ones). When checkpoints are large
and the local backend is used, this may result in a lot of disk space getting
occupied, or even the disk filling up. Syne Tune supports checkpoints being
removed once they are not needed anymore, or even speculatively, as is detailed
here.




Results for promotion-based ASHA and MOBSTER
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	Results for promotion-based ASHA and MOBSTER






Here are results for our running example (4 workers; 3 hours; median, 25/75
percentiles over 50 repeats). These results are rather similar to what we
obtained for stopping-based scheduling, except the random variations are
somewhat larger for ASHA stopping than for ASHA promotion.

It is not a priori clear when stopping or promotion-based scheduling will work
better. When it comes to the backend, promotion-based scheduling needs
checkpointing, and the backend needs to efficiently handle the transfer of
checkpoints between workers. On the other hand, promotion-based scheduling does
not require the backend to stop jobs (see max_resource_attr discussion
above), which can be subject to delays in some backends. Run with the local
backend, where delays play no role, stopping and promotion-based scheduling
can behave quite differently. In our experiments, we have often observed that
stopping can be more efficient at the beginning, while promotion has an edge
during later stages.

Our recommendation is to implement checkpointing in your training script,
which gives you access to all Syne Tune schedulers, and then to gain some
experience with what works best for your problem at hand.





            

          

      

      

    

  

    
      
          
            
  
SageMaker Backend


Limitations of the Local Backend

We have been using the local backend LocalBackend
in this tutorial so far. Due to its simplicity and very low overheads for
starting, stopping, or resuming trials, this is the preferred choice for
getting started. But with models and datasets getting larger, some
disadvantages become apparent:


	All concurrent training jobs (as well as the tuning algorithm itself) are
run as subprocesses on the same instance. This limits the number of workers
by what is offered by the instance type. You can set n_workers to any
value you like, but what you really get depends on available resources. If
you want 4 GPU workers, your instance types needs to have at least 4 GPUs,
and each training job can use only one of them.


	It is hard to encapsulate dependencies of your training code. You need to
specify them explicitly, and they need to be compatible with the Syne Tune
dependencies. You cannot use Docker images.


	You may be used to work with SageMaker frameworks, or even specialized setups
such as distributed training. In such cases, it is hard to get tuning to work
with the local backend.






Launcher Script for SageMaker Backend

Syne Tune offers the SageMaker backend
SageMakerBackend as alternative to the local one.
Using it requires some preparation, as is detailed
here.

Recall our
launcher script.
In order to use the SageMaker backend, we need to create trial_backend
differently:

trial_backend = SageMakerBackend(
    # we tune a PyTorch Framework from Sagemaker
    sm_estimator=PyTorch(
        entry_point=entry_point.name,
        source_dir=str(entry_point.parent),
        instance_type="ml.c5.4xlarge",
        instance_count=1,
        role=get_execution_role(),
        dependencies=[str(repository_root_path() / "benchmarking")],
        max_run=int(1.05 * args.max_wallclock_time),
        framework_version="1.7.1",
        py_version="py3",
        disable_profiler=True,
        debugger_hook_config=False,
        sagemaker_session=default_sagemaker_session(),
    ),
    metrics_names=[metric],
)





In essence, the SageMakerBackend is parameterized
with a SageMaker estimator, which executes the training script. In our example,
we use the PyTorch SageMaker framework as a pre-built container for the
dependencies our training scripts requires. However, any other type of
SageMaker estimator [https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html]
can be used here just as well. Finally, if you include any of the metrics reported
by your training script in metrics_names, their values are visualized in the
dashboard for the SageMaker training job.

If your training script requires additional dependencies not contained in the
chosen SageMaker framework, you can specify those in a requirements.txt
file in the same directory as your training script (i.e., in the source_dir
of the SageMaker estimator). In our example, this file needs to contain the
filelock dependence.


Note

This simple example avoids complications about writing results to S3 in
a unified manner, or using special features of SageMaker which can speed
up tuning substantially. For more information about the SageMaker backend,
please consider this tutorial.







            

          

      

      

    

  

    
      
          
            
  
Outlook


Further Topics

We are at the end of this basic tutorial. There are many further topics we did
not touch here. Some are established, but not basic, while others are still
experimental. Here is an incomplete overview:


	Running many experiments in parallel: We have stressed the importance
of running repetitions of experiments, as results carry quite some stochastic
variation. Also, there are higher-level decisions best done by
trial-and-error, which can be seen as “outer loop random search”. Syne Tune
offers facilities to launch many tuning experiments in parallel, as SageMaker
training jobs. More details are found in
this tutorial, see also the
FAQ.


	Multi-fidelity Schedulers: Syne Tune provides many more multi-fidelity
schedulers than ASHA and MOBSTER. An overview and categorization of supported
methods is given in this tutorial.


	Population-based Training: This is a popular scheduler for tuning
reinforcement learning, where optimization hyperparameters like learning rate
can be changed at certain points during the training. An example is at
examples/launch_pbt.py, see also
PopulationBasedTraining. Note that
checkpointing
is mandatory for PBT.


	Constrained HPO: In many applications, more than a single metric play a
role. With constrained HPO, you can maximize recall subject to a constraint
on precision; minimize prediction latency subject to a constraint on
accuracy; or maximize accuracy subject to a constraint on a fairness metric.
Constrained HPO is a special case of
Bayesian Optimization, where
searcher='bayesopt_constrained', and the name of the constraint metric
(the constraint is feasible iff this metric is non-positive) must be given
as constraint_attr in search_options. More details on constrained HPO
and methodology adopted in Syne Tune can be found
here [https://arxiv.org/abs/1910.07003], see also
ConstrainedGPFIFOSearcher.


	Multi-objective HPO: Another way to approach tuning problems with multiple
metrics is trying to sample the Pareto frontier, i.e. identifying
configurations whose performance along one metric cannot be improved without
degrading performance along another. Syne Tune provides a range of methodology
in this direction. An example is at examples/launch_height_moasha.py.
More details on multi-objective HPO and methodology adopted in Syne Tune can
be found here [https://arxiv.org/abs/2106.12639], see also
MOASHA.


	Transfer-learning Schedulers: Syne Tune provides several transfer-learning schedulers. To get started check out this tutorial.








            

          

      

      

    

  

    
      
          
            
  
How to Choose a Configuration Space

One important step in applying hyperparameter optimization to your tuning
problem is to define a configuration space (or search space). Doing this
optimally for any given problem is more of an art than a science, but in this
tutorial you will learn about the basics and some gotchas. Syne Tune also
provides some logic in streamline_config_space() to
automatically transform domains into forms more suitable for Bayesian
optimization, this is explained here as well.


Introduction

Here is an example for a configuration space:

from syne_tune.config_space import (
    lograndint, uniform, loguniform, choice,
)

config_space = {
    'n_units': lograndint(4, 1024),
    'dropout': uniform(0, 0.9),
    'learning_rate': loguniform(1e-6, 1),
    'activation': choice(['relu', 'tanh']),
    'epochs': 128,
}





Not all entries in config_space need to be hyperparameters. For example,
epochs is simply a constant passed to the training function. For every
hyperparameter, a domain has to be specified. The domain determines the value
range of the parameter and its internal encoding.

Each hyperparameter is independent of the other entries in config_space. In
particular, the domain of a hyperparameter cannot depend on the value of
another. In fact, common actions involving a configuration space, such as
sampling, encoding, or decoding a configuration are done independently on its
hyperparameters.



Domains

A domain not only defines the value range of a parameter, but also its internal
encoding. The latter is important in order to define what uniform sampling
means, a basic component of many HPO algorithms. The following domains are
currently supported (for full details, see syne_tune.config_space):


	uniform(lower, upper): Real-valued uniform in [lower, upper]


	loguniform(lower, upper): Real-valued log-uniform in
[lower, upper]. More precisely, the value is exp(x), where
x is drawn uniformly in [log(lower), log(upper)].


	randint(lower, upper): Integer uniform in lower, ..., upper.
The value range includes both lower and upper (difference to
Python range convention, where upper would not be included).


	lograndint(lower, upper): Integer log-uniform in
lower, ..., upper. More precisely, the value is
int(round(exp(x))), where x is drawn uniformly in
[log(lower - 0.5), log(upper + 0.5)].


	choice(categories): Uniform from the finite list categories
of values. Entries in categories should ideally be of type
str, but types int and float are also allowed (the latter
can lead to errors due to round-off).


	ordinal(categories, kind): Variant of choice for which the
order of entries in categories matters. For methods like Bayesian
optimization, nearby elements in the list have closer encodings.
Compared to choice, the encoding consists of a single number
here. Different variants are implemented. If kind="equal"
(general default), we use randint(0, len(categories) - 1)
internally on the positions in categories, so that each category
is chosen with the same probability. If kind="nn" (default if
categories strictly increasing and of type int or float),
categories must contain strictly increasing int or float
values. Internally, we use uniform for an interval containing all
values, a real value is mapped to a category by nearest neighbor. If
kind="nn-log", this is done in the log space.
logordinal(categories) is a synonym for
ordinal(categories, kind="nn-log"). The latter two kinds are
finite set versions of uniform, loguniform, the different
categories are (in general) not chosen with equal probabilities.


	finrange(lower, upper, size): Can be used as finite analogue of
uniform. Uniform from the finite range lower, ..., upper of
size size, where entries are equally spaced. For example,
finrange(0.5, 1.5, 3) means 0.5, 1.0, 1.5, and
finrange(0.1, 1.0, 10) means 0.1, 0.2, ..., 1.0. We require
that size >= 2. Note that both lower and upper are part
of the value range.


	logfinrange(lower, upper, size): Can be used as finite analogue
of loguniform. Values are exp(x), where x is drawn
uniformly from the finite range log(lower), ..., log(upper) of
size size (entries equally spaced). Note that both lower and upper
are part of the value range.




By default, the value type for finrange and logfinrange is float.
It can be changed to int by the argument cast_int=True. For example,
logfinrange(8, 256, 6, cast_int=True) results in 8, 16, 32, 64, 128,
256 and value type int, while logfinrange(8, 256, 6) results in
8.0, 16.0, 32.0, 64.0, 128.0, 256.0 and value type float.



Recommendations

How to choose the domain for a given hyperparameter? Obviously, we want to
avoid illegal values: learning rates should be positive, probabilities lie
in [0, 1], and numbers of units must be integers. Apart from this, the
choice of domain is not always obvious, and different choices can affect
search performance significantly in some cases.

With streamline_config_space(), Syne Tune provides some
logic which transforms domains into others more suitable for Bayesian
optimization. For example:

from syne_tune.config_space import randint, uniform, choice
from syne_tune.utils import streamline_config_space

config_space = {
    'n_units': randint(4, 1024),
    'dropout': uniform(0, 0.9),
    'learning_rate': uniform(1e-6, 1),
    'weigth_decay': choice([0.001, 0.01, 0.1, 1.0]),
    'magic_constant': choice([1, 2, 5, 10, 15, 30]),
}
new_config_space = streamline_config_space(config_space)
# Results in:
# new_config_space = {
#     'n_units': lograndint(4, 1024),
#     'dropout': uniform(0, 0.9),
#     'learning_rate': loguniform(1e-6, 1),
#     'weigth_decay': logfinrange(0.001, 1.0, 4),
#     'magic_constant': logordinal([1, 2, 5, 10, 15, 30]),
# }





Here, new_config_space results in the same set of configurations, but the
internal encoding is more suitable for many of the model-based HPO methods in
Syne Tune. Why?


	Avoid using choice (categorical) for numerical parameters.
Many HPO algorithms make very good use of the information that a
parameter is numerical, therefore has a linear ordering. They cannot
do that if you do not tell them, and search performance will normally
suffer. A good example is
Bayesian optimization.
Numerical parameters are encoded as themselves (the int domain is relaxed to
the corresponding float interval), allowing the surrogate model (e.g.,
Gaussian process covariance kernel) to exploit ordering and distance in these
numerical spaces. On the other hand, a categorical parameter with 10
different values is one-hot encoded to 10(!) dimensions in
[0, 1]. Now, all pairs of distinct values have exactly the same
distance in this embedding, so that any ordering or distance
information is lost. Bayesian optimization does not perform well in
general in high-dimensional embedding spaces.

It is for this reason that streamline_config_space()
converts the domains of weight_decay and magic_constant from
choice to logfinrange and logordinal respectively.



	Use infinite ranges. No competitive HPO algorithm ever enumerates
all possible configurations and iterates over all of them. There is
almost certainly no gain in restricting a learning rate to 5 values
you just picked out of your hat, instead of just using the
loguniform domain. However, there is a lot to be lost. First, if you
use choice, Bayesian optimization may perform poorly. Second, you may
just be wrong with your initial choice and have to do time-consuming extra
steps of refinement.


	For finite numerical domains, use finrange or logfinrange. If
you insist on a finite range (in some cases, this may be the better choice)
for a numerical parameter, make use of finrange or logfinrange
instead of choice, as alternatives to uniform and loguniform
respectively. If your value spacing is not regular, you can use ordinal
or logordinal. For example,
choice([0.0005, 0.001, 0.005, 0.01, 0.05, 0.1]) can be replaced by
logordinal([0.0005, 0.001, 0.005, 0.01, 0.05, 0.1]), which is what
streamline_config_space() would do.


	Use a log transform for parameters which may vary over several orders
of magnitude. Examples are learning rates or regularization constants.
In the example above, streamline_config_space()
converts n_units from randint(4, 1024) to lograndint(4, 1024)
and learning_rate from uniform(1e-6, 1) to
loguniform(1e-6, 1).


	Use points_to_evaluate. On top of refining your configuration space, we
strongly recommend to
specify initial default configurations
by points_to_evaluate.




As a user, you can memory all of this, or you can use
streamline_config_space() and just do the following:


	Use uniform for float values, randint for int values, and
leave the decision for log scaling to the logic.


	Use choice for each finite domain, just make sure that all entries have
the same type (str, int, or float).
streamline_config_space() will transform your choice
into finrange, logfinrange, ordinal, or logordinal for value
types float or int.




You should also use streamline_config_space() when
importing configuration spaces from other HPO libraries, which may not support
the finite numerical domains Syne Tune has.


Note

The conversion of choice to finrange or logfinrange in
streamline_config_space() can be approximate. While
the list has the same size, some entries may be changed. For example,
choice([1, 2, 5, 10, 20, 50]) is replaced by logfinrange with
values 1, 2, 5, 10, 22, 48. If this is a problem for certain domains, use
the exclude_names argument.



Finally, here is what streamline_config_space() is doing:


	For a domain uniform(lower, upper) or randint(lower, upper):
If lower > 0 and upper >= lower * 100, replace domain by
loguniform(lower, upper) or lograndint(lower, upper).


	For a domain choice(categories), where all entries in categories
are of type int or float: This domain is replaced by
finrange, logfinrange, ordinal, or logordinal (with the same
value type), depending on best fit. Namely, categories is sorted to
\(x_0 < \dots < x_{n-1}\), and a linear function
\(a * j + b, j = 0,\dots, n-1\) is fit to \([x_j]\), and to
\([\log x_j]\) if \(x_0 > 0\). The quality of the fit is scored by
\(R^2\), it determines logarithmic or linear encoding, and also the choice
between finrange and ordinal. For ordinal, we always use
kind="nn".


	In order to exclude certain hyperparameters from replacements, pass their
names in the exclude_names argument of
streamline_config_space().








            

          

      

      

    

  

    
      
          
            
  
Using the Built-in Schedulers

In this tutorial, you will learn how to use and configure the most important
built-in HPO algorithms. Alternatively, you can also use most algorithms from
Ray Tune [https://docs.ray.io/en/master/tune/index.html].

This tutorial provides a walkthrough of
some of the topics addressed here.


Schedulers and Searchers

The decision-making algorithms driving an HPO experiments are referred to as
schedulers. As in Ray Tune, some of our schedulers are internally configured
by a searcher. A scheduler interacts with the backend, making decisions on
which configuration to evaluate next, and whether to stop, pause or resume
existing trials. It relays “next configuration” decisions to the searcher. Some
searchers maintain a surrogate model which is fitted to metric data coming
from evaluations.


Note

There are two ways to create many of the schedulers of Syne Tune:


	Import wrapper class from syne_tune.optimizer.baselines, for example
RandomSearch for random search


	Use template classes FIFOScheduler
or HyperbandScheduler together with
the searcher argument, for example FIFOScheduler with
searcher="random" for random search




Importing from syne_tune.optimizer.baselines is often simpler. However,
in this tutorial, we will use the template classes in order to expose the
common structure and to explain arguments only once.





FIFOScheduler

This is the simplest kind of scheduler. It cannot stop or pause trials, each
evaluation proceeds to the end. Depending on the searcher, this scheduler
supports:


	Random search [searcher="random"]


	Bayesian optimization with Gaussian processes [searcher="bayesopt"]


	Grid search [searcher="grid"]


	TPE with kernel density estimators [searcher="kde"]


	Constrained Bayesian optimization [searcher="bayesopt_constrained"]


	Cost-aware Bayesian optimization [searcher="bayesopt_cost"]


	Bore [searcher="bore"]




We will only consider the first two searchers in this tutorial. Here is a
launcher script using FIFOScheduler:

import logging

from syne_tune.backend import LocalBackend
from syne_tune.optimizer.schedulers import FIFOScheduler
from syne_tune import Tuner, StoppingCriterion

from benchmarking.benchmark_definitions import \
    mlp_fashionmnist_benchmark


if __name__ == '__main__':
    logging.getLogger().setLevel(logging.DEBUG)
    n_workers = 4
    max_wallclock_time = 120

    # We pick the MLP on FashionMNIST benchmark
    # The 'benchmark' object contains arguments needed by scheduler and
    # searcher (e.g., 'mode', 'metric'), along with suggested default values
    # for other arguments (which you are free to override)
    benchmark = mlp_fashionmnist_benchmark()
    config_space = benchmark.config_space

    backend = LocalBackend(entry_point=benchmark.script)

    # GP-based Bayesian optimization searcher. Many options can be specified
    # via `search_options`, but let's use the defaults
    searcher = "bayesopt"
    search_options = {'num_init_random': n_workers + 2}
    scheduler = FIFOScheduler(
        config_space,
        searcher=searcher,
        search_options=search_options,
        mode=benchmark.mode,
        metric=benchmark.metric,
    )

    tuner = Tuner(
        trial_backend=backend,
        scheduler=scheduler,
        stop_criterion=StoppingCriterion(
            max_wallclock_time=max_wallclock_time
        ),
        n_workers=n_workers,
    )

    tuner.run()





What happens in this launcher script?


	We select the mlp_fashionmnist benchmark, adopting its default
hyperparameter search space without modifications.


	We select the local backend, which runs up to n_workers = 4 processes in
parallel on the same instance.


	We create a FIFOScheduler with searcher = "bayesopt". This means that
new configurations to be evaluated are selected by Bayesian optimization, and
all trials are run to the end. The scheduler needs to know the
config_space, the name of metric to tune (metric) and whether to
minimize or maximize this metric (mode). For mlp_fashionmnist, we
have metric = "accuracy" and mode = "max", so we select a
configuration which maximizes accuracy.


	Options for the searcher can be passed via search_options. We use
defaults, except for changing num_init_random (see below) to the number
of workers plus two.


	Finally, we create the tuner, passing trial_backend, scheduler, as
well as the stopping criterion for the experiment (stop after 120 seconds)
and the number of workers. The experiment is started by tuner.run().




FIFOScheduler provides the full range
of arguments. Here, we list the most important ones:


	config_space: Hyperparameter search space. This argument is mandatory.
Apart from hyperparameters to be searched over, the space may contain fixed
parameters (such as epochs in the example above). A config passed to
the training script is always extended by these fixed parameters. If you use
a benchmark, you can use benchmark["config_space"] here, or you can
modify this default search space.


	searcher: Selects searcher to be used (see below).


	search_options: Options to configure the searcher (see below).


	metric, mode: Name of metric to tune (i.e, key used in report
call by the training script), which is either to be minimized (mode="min")
or maximized (mode="max"). If you use a benchmark, just use
benchmark["metric"] and benchmark["mode"] here.


	points_to_evaluate: Allows to specify a list of configurations which are
evaluated first. If your training code corresponds to some open source ML
algorithm, you may want to use the defaults provided in the code. The entry
(or entries) in points_to_evaluate do not have to specify values for all
hyperparameters. For any hyperparameter not listed there, the following rule
is used to choose a default. For float and int value type, the
mid-point of the search range is used (in linear or log scaling). For
categorical value type, the first entry in the value set is used. The default
is a single config with all values chosen by the default rule. Pass an empty
list in order to not specify any initial configs.


	random_seed: Master random seed. Random sampling in schedulers and
searchers are done by a number of numpy.random.RandomState generators,
whose seeds are derived from random_seed. If not given, a random seed is
sampled and printed in the log.





Random Search

The simplest HPO baseline is random search, which you obtain with
searcher="random", or by using
RandomSearch instead of
FIFOScheduler. Search decisions are not based on past data, a new
configuration is chosen by sampling attribute values at random, from
distributions specified in config_space. These distributions are detailed
here.

If points_to_evaluate is specified, configurations are first taken from
this list before any are drawn at random. Options for configuring the searcher
are given in search_options. These are:


	debug_log: If True, a useful log output about the search progress is
printed.


	allow_duplicates: If True, the same configuration may be suggested
more than once. The default is False, in that sampling is without
replacement.






Bayesian Optimization

Bayesian optimization is obtained by searcher='bayesopt', or by using
BayesianOptimization instead of
FIFOScheduler. More information about Bayesian optimization is provided
here.

Options for configuring the searcher are given in search_options. These
include options for the random searcher.
GPFIFOSearcher provides the
full range of arguments. We list the most important ones:


	num_init_random: Number of initial configurations chosen at random (or
via points_to_evaluate). In fact, the number of initial configurations
is the maximum of this and the length of points_to_evaluate. Afterwards,
configurations are chosen by Bayesian optimization (BO). In general, BO is
only used once at least one metric value from past trials is available. We
recommend to set this value to the number of workers plus two.


	opt_nstarts, opt_maxiter: BO employs a Gaussian process surrogate
model, whose own hyperparameters (e.g., kernel parameters, noise variance)
are chosen by empirical Bayesian optimization. In general, this is done
whenever new data becomes available. It is the most expensive computation in
each round. opt_maxiter is the maximum number of L-BFGS iterations. We
run opt_nstarts such optimizations from random starting points and pick
the best.


	max_size_data_for_model, max_size_top_fraction: GP computations scale
cubically with the number of observations, and decision making can become
very slow for too many trials. Whenever there are more than
max_size_data_for_model observations, the dataset is downsampled to this
size. Here, max_size_data_for_model * max_size_top_fraction of the entries
correspond to the cases with the best metric values, while the remaining
entries are drawn at random (without replacement) from all other cases.
Defaults to
DEFAULT_MAX_SIZE_DATA_FOR_MODEL.


	opt_skip_init_length, opt_skip_period: Refitting the GP
hyperparameters in each round can become expensive, especially when the
number of observations grows large. If so, you can choose to do it only
every opt_skip_period rounds. Skipping optimizations is done only once
the number of observations is above opt_skip_init_length.


	gp_base_kernel: Selects the covariance (or kernel) function to be used in
the surrogate model. Current choices are “matern52-ard” (Matern 5/2 with
automatic relevance determination; the default) and “matern52-noard”
(Matern 5/2 without ARD).


	acq_function: Selects the acquisition function to be used. Current choices
are “ei” (negative expected improvement; the default) and “lcb” (lower
confidence bound). The latter has the form \(\mu(x) - \kappa \sigma(x)\),
where \(\mu(x)\), \(\sigma(x)\) are predictive mean and standard
deviation, and \(\kappa > 0\) is a parameter, which can be passed via
acq_function_kwargs={"kappa": 0.5} for \(\kappa = 0.5\).


	input_warping: If this is True, inputs are warped before being fed
into the covariance function, the effective kernel becomes
\(k(w(x), w(x'))\), where \(w(x)\) is a warping transform with two
non-negative parameters per component. These parameters are learned along with
other parameters of the surrogate model. Input warping allows the surrogate
model to represent non-stationary functions, while still keeping the numbers
of parameters small. Note that only such components of \(x\) are warped
which belong to non-categorical hyperparameters.


	boxcox_transform: If this is True, target values are transformed before
being fitted with a Gaussian marginal likelihood. This is using the Box-Cox
transform with a parameter \(\lambda\), which is learned alongside other
parameters of the surrogate model. The transform is \(\log y\) for
\(\lambda = 0\), and \(y - 1\) for \(\lambda = 1\). This option
requires the targets to be positive.







HyperbandScheduler

This scheduler comes in at least two different variants, one may stop trials
early (type="stopping"), the other may pause trials and resume them later
(type="promotion"). For tuning neural network models, it tends to work
much better than FIFOScheduler. You may have read about successive halving
and Hyperband before. Chances are you read about synchronous scheduling of
parallel evaluations, while both HyperbandScheduler and FIFOScheduler
implement asynchronous scheduling, which can be substantially more
efficient. This tutorial provides
details about synchronous and asynchronous variants of successive halving and
Hyperband.

Here is a launcher script using
HyperbandScheduler:

import logging

from syne_tune.backend import LocalBackend
from syne_tune.optimizer.schedulers import HyperbandScheduler
from syne_tune import Tuner, StoppingCriterion

from benchmarking.benchmark_definitions import \
    mlp_fashionmnist_benchmark

if __name__ == '__main__':
    logging.getLogger().setLevel(logging.DEBUG)
    n_workers = 4
    max_wallclock_time = 120

    # We pick the MLP on FashionMNIST benchmark
    # The 'benchmark' object contains arguments needed by scheduler and
    # searcher (e.g., 'mode', 'metric'), along with suggested default values
    # for other arguments (which you are free to override)
    benchmark = mlp_fashionmnist_benchmark()
    config_space = benchmark.config_space

    backend = LocalBackend(entry_point=benchmark.script)

    # MOBSTER: Combination of asynchronous successive halving with
    # GP-based Bayesian optimization
    searcher = 'bayesopt'
    search_options = {'num_init_random': n_workers + 2}
    scheduler = HyperbandScheduler(
        config_space,
        searcher=searcher,
        search_options=search_options,
        type="stopping",
        max_resource_attr=benchmark.max_resource_attr,
        resource_attr=benchmark.resource_attr,
        mode=benchmark.mode,
        metric=benchmark.metric,
        grace_period=1,
        reduction_factor=3,
    )

    tuner = Tuner(
        trial_backend=backend,
        scheduler=scheduler,
        stop_criterion=StoppingCriterion(
            max_wallclock_time=max_wallclock_time
        ),
        n_workers=n_workers,
    )

    tuner.run()





Much of this launcher script is the same as for FIFOScheduler, but
HyperbandScheduler comes with a number
of extra arguments we will explain in the sequel (type,
max_resource_attr, grace_period, reduction_factor,
resource_attr). The mlp_fashionmnist benchmark trains a two-layer MLP
on FashionMNIST (more details are
here). The accuracy is computed and
reported at the end of each epoch:

for epoch in range(resume_from + 1, config['epochs'] + 1):
    train_model(config, state, train_loader)
    accuracy = validate_model(config, state, valid_loader)
    report(epoch=epoch, accuracy=accuracy)





While metric="accuracy" is the criterion to be optimized,
resource_attr="epoch" is the resource attribute. In the schedulers
discussed here, the resource attribute must be a positive integer.

HyperbandScheduler maintains reported
metrics for all trials at certain rung levels (levels of resource attribute
epoch at which scheduling decisions are done). When a trial reports
(epoch, accuracy) for a rung level == epoch, the scheduler makes a
decision whether to stop (pause) or continue. This decision is done based on
all accuracy values encountered before at the same rung level. Whenever a
trial is stopped (or paused), the executing worker becomes available to evaluate
a different configuration.

Rung level spacing and stop/go decisions are determined by the parameters
max_resource_attr, grace_period, and reduction_factor. The first
is the name of the attribute in config_space which contains the maximum
number of epochs to train (max_resource_attr == "epochs" in our
benchmark). This allows the training script to obtain
max_resource_value = config["max_resource_attr"]. Rung levels are
\(r_{min}, r_{min} \eta, r_{min} \eta^2, \dots, r_{max}\), where
\(r_{min}\) is grace_period, \(\eta\) is reduction_factor, and
\(r_{max}\) is max_resource_value. In the example above,
max_resource_value = 81, grace_period = 1, and reduction_factor = 3,
so that rung levels are 1, 3, 9, 27, 81. The spacing is such that stop/go
decisions are done less frequently for trials which already went further: they
have earned trust by not being stopped earlier. \(r_{max}\) need not be
of the form \(r_{min} \eta^k\). If max_resource_value = 56 in the
example above, the rung levels would be 1, 3, 9, 27, 56.

Given such a rung level spacing, stop/go decisions are done by comparing
accuracy to the 1 / reduction_factor quantile of values recorded at
the rung level. In the example above, our trial is stopped if accuracy is
no better than the best 1/3 of previous values (the list includes the current
accuracy value), otherwise it is stopped.

Further details about HyperbandScheduler and multi-fidelity HPO methods
are given in this tutorial.
HyperbandScheduler provides the full
range of arguments. Here, we list the most important ones:


	max_resource_attr, grace_period, reduction_factor: As detailed
above, these determine the rung levels and the stop/go decisions. The
resource attribute is a positive integer. We need reduction_factor >= 2.
Note that instead of max_resource_attr, you can also use max_t,
as detailed
here.


	rung_increment: This parameter can be used instead of reduction_factor
(the latter takes precedence). In this case, rung levels are spaced linearly:
\(r_{min} + j \nu, j = 0, 1, 2, \dots\), where \(\nu\) is
rung_increment. The stop/go rule in the successive halving scheduler is
set based on the ratio of successive rung levels.


	rung_levels: Alternatively, the user can specify the list of rung levels
directly (positive integers, strictly increasing). The stop/go rule in the
successive halving scheduler is set based on the ratio of successive rung
levels.


	type: The most important values are "stopping", "promotion" (see
above).


	brackets: Number of brackets to be used in Hyperband. More details are
found
here.
The default is 1 (successive halving).




Depending on the searcher, this scheduler supports:


	Asynchronous successive halving (ASHA)
[searcher="random"]


	MOBSTER
[searcher="bayesopt"]


	Asynchronous BOHB
[searcher="kde"]


	Hyper-Tune
[searcher="hypertune"]


	Cost-aware Bayesian optimization [searcher="bayesopt_cost"]


	Bore [searcher="bore"]


	DyHPO [searcher="dyhpo", type="dyhpo"]




We will only consider the first two searchers in this tutorial.


Asynchronous Hyperband (ASHA)

If HyperbandScheduler is configured
with a random searcher, we obtain ASHA, as proposed in
A System for Massively Parallel Hyperparameter Tuning [https://arxiv.org/abs/1810.05934].
More details are provided here.
Nothing much can be configured via search_options in this case. The
arguments are the same as for random search with FIFOScheduler.



Model-based Asynchronous Hyperband (MOBSTER)

If HyperbandScheduler is configured with
a Bayesian optimization searcher, we obtain MOBSTER, as proposed in
Model-based Asynchronous Hyperparameter and Neural Architecture Search [https://openreview.net/forum?id=a2rFihIU7i].
By default, MOBSTER uses a multi-task Gaussian process surrogate model for
metrics data observed at all resource levels. More details are provided
here.




Recommendations

Finally, we provide some general recommendations on how to use our built-in
schedulers.


	If you can afford it for your problem, random search is a useful baseline
(RandomSearch). However, if even a
single full evaluation takes a long time, try ASHA
(ASHA) instead. The default for ASHA
is type="stopping", but you should consider type="promotion" as well
(more details on this choice are given
here.


	Use these baseline runs to get an idea how long your experiment needs to run.
It is recommended to use a stopping criterion of the form
stop_criterion=StoppingCriterion(max_wallclock_time=X), so that the
experiment is stopped after X seconds.


	If your tuning problem comes with an obvious resource parameter, make sure to
implement it such that results are reported during the evaluation, not only
at the end. When training a neural network model, choose the number of epochs
as resource. In other situations, choosing a resource parameter may be more
difficult. Our schedulers require positive integers. Make sure that
evaluations for the same configuration scale linearly in the resource
parameter: an evaluation up to 2 * r should be roughly twice as
expensive as one up to r.


	If your problem has a resource parameter, always make sure to try
HyperbandScheduler, which in many
cases runs much faster than
FIFOScheduler.


	If you end up tuning the same ML algorithm or neural network model on
different datasets, make sure to set points_to_evaluate appropriately. If
the model comes from frequently used open source code, its built-in defaults
will be a good choice. Any hyperparameter not covered in
points_to_evaluate is set using a midpoint heuristic. While still better
than choosing the first configuration at random, this may not be very good.


	In general, the defaults should work well if your tuning problem is expensive
enough (at least a minute per unit of r). In such cases, MOBSTER
(MOBSTER) can outperform ASHA
substantially. However, if your problem is cheap, so you can afford a lot of
evaluations, the searchers based on GP surrogate models may end up expensive.
In fact, once the number of evaluations surpassed a certain threshold, the
data is filtered down before fitting the surrogate model (see
here).
You can adjust this threshold or change opt_skip_period in order to speed
up MOBSTER.








            

          

      

      

    

  

    
      
          
            
  
Multi-Fidelity Hyperparameter Optimization

This tutorial provides an overview of multi-fidelity HPO algorithms implemented
in Syne Tune. Multi-fidelity scheduling is one of the most successful recent
ideas used to speed up HPO. You will learn about the differences and relationships
between different methods, and how to choose the best approach for your own
problems.


Note

In order to run the code in this tutorial, you need to have
installed the blackbox-repository
dependencies.
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Introduction

In this section, we define and motivate some basic definitions. As this
tutorial is mostly driven by examples, we will not go into much detail here.


What is Hyperparameter Optimization (HPO)?

In hyperparameter optimization (HPO), the goal is to minimize an a priori
unknown function \(f(\mathbf{x})\) over a configuration space
\(\mathbf{x}\in\mathcal{X}\). Here, \(\mathbf{x}\) is a hyperparameter
configuration. For example, \(f(\mathbf{x})\) could be obtained by
training a neural network model on a training dataset, then computing its error
on a disjoint validation dataset. The hyperparameters may configure several
aspects of this setup, for example:


	Optimization parameters: Learning rate, batch size, momentum fraction,
regularization constant, dropout fraction, choice of stochastic gradient
descent (SDG) optimizer, warm-up ratio


	Architecture parameters: Number of layers, width of layers, number of
convolution filters, number of self-attention heads




If HPO ranges over architecture parameters, potentially including the operator
types and connectivity of cells (or layers), it is also referred to as neural
architecture search (NAS).

In general, HPO is a more difficult optimization problem than training for
weights and biases, for a number of reasons:


	Hyperparameters are often discrete (integer or categorical), so smooth
optimization principles do not apply


	HPO is the outer loop of a nested (or bi-level) optimization problem, where
the inner loop consists of training for weights and biases. This means that
an evaluation of \(f(\mathbf{x})\) can be very expensive (hours or even
days)


	The nested structure implies further difficulties. Training is
non-deterministic (random initialization and mini-batch ordering), so
\(f(\mathbf{x})\) is really a random function. Even for continuous
hyperparamters, a gradient of \(f(\mathbf{x})\) is not tractable to obtain




For these reasons, a considerable amount of technology has so far been applied
to the HPO problem. In the context of this tutorial, two directions are most
relevant:


	Saving compute resources and time by using partial evaluations of
\(f(\mathbf{x})\) most of the time. Such evaluations are called low
fidelity or low resource below


	Fitting data from \(f(\mathbf{x})\) (and its lower fidelities) with a
surrogate probabilistic model. The latter has properties that the real target
function lacks (fast to evaluate; gradients can be computed), and this can
efficiently guide the search. The main purpose of a surrogate model is to
reduce the number of evaluations of \(f(\mathbf{x})\), while still finding
a high quality optimum






Fidelities and Resources

In this section, we will introduce concepts of multi-fidelity hyperparameter
optimization. Examples will be given further below. The reader may skip this
section and return to it as a glossary.

An evaluation of \(f(\mathbf{x})\) requires a certain amount of compute
resources and wallclock time. Most of this time is spent in training the model.
In most cases, training resources and time can be broken down into units. For
example:


	Neural networks are trained for a certain number of epochs (i.e., sweeps
over the training set). In this case, training for one epoch could be one
resource unit. This resource unit will be used as running example in this
tutorial.


	Machine learning models can also be trained on subsets of the training set,
in order to save resources. We could create a nested system of sets, where for
simplicity all sizes are integer multiples of the smallest one. In this case,
training on the smallest subset size is one resource unit.




We can decide the amount of resources when evaluating a configuration, giving
rise to observations of \(f(\mathbf{x}, r)\), where \(r\in\{1, 2, 3,
\dots, r_{max}\}\) denotes the resource used (e.g., number of epochs of training).

It is common to define \(f(\mathbf{x}, r_{max}) = f(\mathbf{x})\), so that
the original criterion of interest has the largest resource that can be chosen.
In this context, any \(f(\mathbf{x}, r)\) with \(r < r_{max}\) is called
a low fidelity criterion w.r.t. \(f(\mathbf{x}, r_{max})\). The smaller
\(r\), the lower the fidelity. A smaller resource requires less computation
and waiting time, but it also produces a datapoint of less quality when
approximating the target metric. Importantly, all methods discussed here make
the following assumption:


	For every fixed \(\mathbf{x}\), running time and compute cost of
evaluating \(f(\mathbf{x}, r)\) scales roughly proportional to
\(r\). If this is not the case for the natural resource unit in your
problem, you need to map \(r\) to your unit in a non-linear way. Note
that time may still strongly depend on the configuration \(\mathbf{x}\)
itself.






Multi-Fidelity Scheduling

How could an existing HPO technology be extended in order to make use of
multi-fidelity observations \(f(\mathbf{x}, r)\) at different resources?
There are two basic principles which come to mind:


	A priori decisions: Whenever a decision is required which configuration
\(\mathbf{x}\) to evaluate next, the method also decides the resource
\(r\) to be spent on that evaluation.


	A posteriori decisions: Whenever a new configuration \(\mathbf{x}\) can
be run, it is started without a definite amount of resource attached to it.
After it spent some resources, its low-fidelity observations are compared
to others who spent the same resource before. Decisions on stopping, or also
on resuming, trials are taken based on the outcome of such comparisons.




While some work on multi-fidelity Bayesian optimization has chosen the former
option, methods with a posteriori decision-making have been far more successful.
All methods discussed in this tutorial adhere to the a posteriori principle for
decisions which trials to stop or resume from a paused state. In the sequel, we
will use the terminology scheduling decisions rather than a posteriori.

How to implement such scheduling decisions? In general, we need to compare a
number of trials with each other on the basis of observations at a certain
resource level \(r\) (or, more generally, on values up to \(r\)). In
this tutorial, and in Syne Tune more generally, we use terminology defined in
the ASHA [https://arxiv.org/abs/1810.05934] publication. A rung is a list
of trials \(\mathbf{x}_j\) and observations \(f(\mathbf{x}_j, r)\) at a
certain resource level \(r\). This resource is also called rung level. In
general, a decision on what to do with one or several trials in the rung is
taken by sorting the rung members w.r.t. their metric values. A positive
decision (i.e., continue, or resume) is taken if the trial ranks among the
better ones (above a certain quantile), a negative one (i.e., stop, or keep
paused) is taken otherwise.

More details will be given when we come to real examples below. Just a few
remarks at this point, which will be substantiated with examples:


	Modern successive halving methods innovated over earlier proposals by
suggesting a geometric spacing of rung levels, and by calibrating the
thresholds in scheduling decisions according to this spacing. For example,
the median stopping rule [https://research.google/pubs/pub46180/]
predates successive halving, but is typically outperformed by ASHA (while MSR
is implemented in Syne Tune, it is not discussed in this tutorial).


	Scheduling decisions can either be made synchronously or asynchronously. In
the former case, decisions are batched up for many trials, while in the latter
case, decisions for each trial are made instantaneously.


	Asynchronous scheduling can either be implemented as start-and-stop, or as
pause-and-resume. In the former case, trials are started when workers
become available, and they may be stopped at rung levels (and just continue
otherwise). In pause-and-resume scheduling, any trial is always run until the
next rung level and paused there. When a worker becomes available, it may be
used to resume any of the paused trials, in case they compare well against
peers at the same rung. These modalities place different requirements on the
training script and the execution backend.








            

          

      

      

    

  

    
      
          
            
  
Setting up the Problem

If you have not done this before, it is recommended you first work through the
Basics of Syne Tune tutorial, in order to become
familiar with concepts such as configuration, configuration space,
backend, scheduler.


Note

In this tutorial, we will use a surrogate benchmark in order to obtain
realistic results with little computation. To this end, you need
to have the blackbox-repository dependencies installed, as detailed
here.
Note that
the first time you use a surrogate benchmark, its data files are downloaded
and stored to your S3 bucket, this can take a considerable amount of time.
The next time you use the benchmark, it is loaded from your local disk or
your S3 bucket, which is fast.




Running Example

For most of this tutorial, we will be concerned with one running example: the
NASBench-201 benchmark [https://arxiv.org/abs/2001.00326]. NASBench-201 is
a frequently used neural architecture search benchmark with a configuration
space of six categorical parameters, with five values each. The authors
trained networks under all these configurations and provide metrics, such as
training error, evaluation error and runtime after each epoch, free for
researchers to use. In this tutorial, we make use of the CIFAR100 variant of
this benchmark, where the model architectures have been trained on the
CIFAR100 image classification dataset.

NASBench-201 is an example for a tabulated benchmark. Researchers can
benchmark and compare HPO algorithms on the data without having to spend
efforts to train models. They do not need expensive GPU computation in order to
explore ideas or do comparative studies.

Syne Tune is particularly well suited to work with tabulated benchmarks. First,
it contains a blackbox repository for maintenance and fast access to tabulated
benchmarks. Second, it features a simulator backend which simulates training
evaluations from a blackbox. The simulator backend can be used with any Syne
Tune scheduler, and experiment runs are very close to what would be obtained by
running training for real. In particular, the simulation maintains correct
timings and temporal order of events. Importantly, time is simulated as well.
Not only are experiments very cheap to run (on basic CPU hardware), they also
finish many times faster than real time.



The Launcher Script

The most flexible way to run HPO experiments in Syne Tune is by writing a
launcher script. In this tutorial, we will use the following launcher
script.


hpo_main.py

import logging
from argparse import ArgumentParser

from syne_tune.experiments.benchmark_definitions import nas201_benchmark
from syne_tune.backend.simulator_backend.simulator_callback import (
    SimulatorCallback,
)
from syne_tune.blackbox_repository.simulated_tabular_backend import (
    BlackboxRepositoryBackend,
)
from syne_tune.optimizer.baselines import (
    ASHA,
    MOBSTER,
    HyperTune,
    SyncHyperband,
    SyncBOHB,
    SyncMOBSTER,
    DEHB,
)
from syne_tune import Tuner, StoppingCriterion

if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)
    parser = ArgumentParser()
    parser.add_argument(
        "--method",
        type=str,
        choices=(
            "ASHA-STOP",
            "ASHA-PROM",
            "ASHA6-STOP",
            "MOBSTER-JOINT",
            "MOBSTER-INDEP",
            "HYPERTUNE-INDEP",
            "HYPERTUNE4-INDEP",
            "HYPERTUNE-JOINT",
            "SYNCHB",
            "SYNCSH",
            "SYNCMOBSTER",
            "BOHB",
            "DEHB",
        ),
        default="ASHA-STOP",
    )
    parser.add_argument(
        "--random_seed",
        type=int,
        default=31415927,
    )
    parser.add_argument(
        "--experiment_tag",
        type=str,
        default="mf-tutorial",
    )
    parser.add_argument(
        "--dataset",
        type=str,
        choices=("cifar10", "cifar100", "ImageNet16-120"),
        default="cifar100",
    )
    args = parser.parse_args()

    # [1]
    # Setting up simulator backend for blackbox repository
    # We use the NASBench201 blackbox for the training set `args.dataset`
    benchmark = nas201_benchmark(args.dataset)
    max_resource_attr = benchmark.max_resource_attr
    trial_backend = BlackboxRepositoryBackend(
        elapsed_time_attr=benchmark.elapsed_time_attr,
        max_resource_attr=max_resource_attr,
        blackbox_name=benchmark.blackbox_name,
        dataset=benchmark.dataset_name,
        surrogate=benchmark.surrogate,
        surrogate_kwargs=benchmark.surrogate_kwargs,
    )

    # [2]
    # Select configuration space for the benchmark. Here, we use the default
    # for the blackbox
    blackbox = trial_backend.blackbox
    # Common scheduler kwargs
    method_kwargs = dict(
        metric=benchmark.metric,
        mode=benchmark.mode,
        resource_attr=blackbox.fidelity_name(),
        random_seed=args.random_seed,
        max_resource_attr=max_resource_attr,
    )
    # Insert maximum resource level into configuration space. Doing so is
    # best practice and has advantages for pause-and-resume schedulers
    config_space = blackbox.configuration_space_with_max_resource_attr(
        max_resource_attr
    )

    scheduler = None
    if args.method in {"ASHA-STOP", "ASHA-PROM", "ASHA6-STOP"}:
        # [3]
        # Scheduler: Asynchronous Successive Halving (ASHA)
        # The 'stopping' variant stops trials which underperform compared to others
        # at certain resource levels (called rungs).
        # The 'promotion' variant pauses each trial at certain resource levels
        # (called rungs). Trials which outperform others at the same rung, are
        # promoted later on, to run to the next higher rung.
        # We configure this scheduler with random search: configurations for new
        # trials are drawn at random
        scheduler = ASHA(
            config_space,
            type="promotion" if args.method == "ASHA-PROM" else "stopping",
            brackets=6 if args.method == "ASHA6-STOP" else 1,
            **method_kwargs,
        )
    elif args.method in {"MOBSTER-JOINT", "MOBSTER-INDEP"}:
        # Scheduler: Asynchronous MOBSTER
        # We configure the scheduler with GP-based Bayesian optimization, using
        # the "gp_multitask" or the "gp_independent" surrogate model.
        search_options = None
        if args.method == "MOBSTER-INDEP":
            search_options = {"model": "gp_independent"}
        scheduler = MOBSTER(
            config_space,
            search_options=search_options,
            type="promotion",
            **method_kwargs,
        )
    elif args.method in {"HYPERTUNE-INDEP", "HYPERTUNE4-INDEP", "HYPERTUNE-JOINT"}:
        # Scheduler: Hyper-Tune
        # We configure the scheduler with GP-based Bayesian optimization, using
        # the "gp_multitask" or the "gp_independent" surrogate model.
        search_options = None
        if args.method == "HYPERTUNE-JOINT":
            search_options = {"model": "gp_multitask"}
        scheduler = HyperTune(
            config_space,
            search_options=search_options,
            type="promotion",
            brackets=4 if args.method == "HYPERTUNE4-INDEP" else 1,
            **method_kwargs,
        )
    elif args.method in {"SYNCHB", "SYNCSH"}:
        # Scheduler: Synchronous successive halving or Hyperband
        # We configure this scheduler with random search: configurations for new
        # trials are drawn at random
        scheduler = SyncHyperband(
            config_space,
            brackets=1 if args.method == "SYNCSH" else None,
            **method_kwargs,
        )
    elif args.method == "SYNCMOBSTER":
        # Scheduler: Synchronous MOBSTER
        # We configure this scheduler with GP-BO search. The default surrogate
        # model is "gp_independent": independent processes at each rung level,
        # which share a common ARD kernel, but separate mean functions and
        # covariance scales.
        scheduler = SyncMOBSTER(
            config_space,
            **method_kwargs,
        )
    elif args.method == "BOHB":
        # Scheduler: Synchronous BOHB
        # We configure this scheduler with KDE search, which is using the
        # "two-density" approximation of the EI acquisition function from
        # TPE (Bergstra & Bengio).
        scheduler = SyncBOHB(
            config_space,
            **method_kwargs,
        )
    elif args.method == "DEHB":
        # Scheduler: Differential Evolution Hyperband (DEHB)
        # We configure this scheduler with random search.
        scheduler = DEHB(
            config_space,
            **method_kwargs,
        )

    stop_criterion = StoppingCriterion(
        max_wallclock_time=benchmark.max_wallclock_time,
        max_num_evaluations=benchmark.max_num_evaluations,
    )

    # [4]
    tuner = Tuner(
        trial_backend=trial_backend,
        scheduler=scheduler,
        stop_criterion=stop_criterion,
        n_workers=benchmark.n_workers,
        sleep_time=0,
        callbacks=[SimulatorCallback()],
        tuner_name=args.experiment_tag,
        metadata={
            "seed": args.random_seed,
            "algorithm": args.method,
            "tag": args.experiment_tag,
            "benchmark": "nas201-" + args.dataset,
        },
    )

    tuner.run()







Let us have a walk through this script, assuming it is called with the default
--method ASHA-STOP:


	If you worked through Basics of Syne Tune, you
probably miss the training scripts. Since we use the simulator backend with a
blackbox (NASBench-201), a training script is not required, since the backend
is directly linked to the blackbox repository and obtains evaluation data from
there.


	[1] We first select the benchmark and create the simulator backend linked
with this benchmark. Relevant properties of supported benchmarks are
collected in syne_tune.experiments.benchmark_definitions, using
SurrogateBenchmarkDefinition.
Some properties are tied to the benchmark and must not be changed
(elapsed_time_attr, metric, mode, blackbox_name,
max_resource_attr). Other properties are default values suggested for the
benchmark and may be changed by the user (n_workers,
max_num_evaluations, max_wallclock_time, surrogate). Some of the
blackboxes are not computed on a dense grid, they require a surrogate
regression model in order to be functional. For such, surrogate and
surrogate_kwargs need to be considered. However, NASBench-201 comes with
a finite configuration space, which has been sampled exhaustively.


	[1] We then create the
BlackboxRepositoryBackend.
Instead of a training script, this backend needs information about the
blackbox used for the simulation. elapsed_time_attr is the name of the
elapsed time metric of the blackbox (time from start of training until end
of epoch). max_resource_attr is the name of the maximum resource entry in
the configuration space (more on this shortly).


	[2] Next, we select the configuration space and determine some attribute
names. With a tabulated benchmark, we are bound to use the configuration space
coming with the blackbox, trial_backend.blackbox.configuration_space. If
another configuration space is to be used, a surrogate regression model has to
be specified. In this case, config_space_surrogate can be passed at the
construction of BlackboxRepositoryBackend. Since NASBench-201 has a native
finite configuration space, we can ignore this extra complexity in this
tutorial. However, choosing a suitable configuration space and specifying a
surrogate can be important for model-based HPO methods. Some more informations
are given here.


	[2] We can determine resource_attr (name of resource attribute) from the
blackbox as blackbox.fidelity_name(). Next, if max_resource_attr is
specified, we attach the information about the largest resource level to the
configuration space, via
blackbox.configuration_space_with_max_resource_attr(max_resource_attr).
Doing so is best practice in general. In the end, the training script needs
to know how long to train for at most (i.e., the maximum number of epochs in
our example), this should not be hardcoded. Another advantage of attaching
the maximum resource information to the configuration space is that
pause-and-resume schedulers can use it to signal the training script how long
to really run for. This is explained in more detail
when we come to these schedulers.
In short, we strongly recommend to use max_resource_attr and to configure
schedulers with it.


	[2] If max_resource_attr is not to be used, the scheduler needs to be
passed the maximum resource value explicitly. For ASHA-STOP, this is the
max_t attribute. This is not recommended, and not shown here.


	[3] At this point, we create the multi-fidelity scheduler, which is ASHA in
the default case. Most supported schedulers can easily be imported from
syne_tune.optimizer.baselines, using common names.


	[4] Finally, we create a stopping criterion and a Tuner. This should be
well known from Basics of Syne Tune. One
speciality here is that we require sleep_time=0 and
callbacks=[SimulatorCallback()] for things to work out with the simulator
backend. Namely, since time is simulated, the Tuner does not really have
to sleep between its iterations (simulated time will be increased in distinct
steps). Second,
SimulatorCallback
is needed for simulation of time. It is fine to add additional callbacks here,
as long as SimulatorCallback is one of them.






The Blackbox Repository

Giving a detailed account of the blackbox repository is out of scope of this
tutorial. If you run the launcher script above, you will be surprised how
quickly it finishes. The only real time spent is on logging, fetching metric
values from the blackbox, and running the scheduler code. Since the latter is
very fast (mostly some random sampling and data organization), whole simulated
HPO experiments with many parallel workers can be done in mere seconds.

However, when you run it for the very first time, you will have to wait for
quite some time. This is because the blackbox repository downloads the raw data
for the benchmark of your choice, processes it, and (optionally) stores it to
your S3 bucket. It also stores a local copy. If the data is already in your S3
bucket, it will be downloaded from there if you run on a different instance,
this is rather fast. But downloading and processing the raw data can take an
hour or more for some of the blackboxes.





            

          

      

      

    

  

    
      
          
            
  
Synchronous Successive Halving and Hyperband

In this section, we will introduce some simple multi-fidelity HPO methods based
on synchronous decision-making. Methods discussed here are not model-based,
they suggest new configurations simply by drawing them uniformly at random from
the configuration space, much like
random search does.


Early Stopping Hyperparameter Configurations

The figure below depicts learning curves of a set of neural networks with
different hyperparameter configurations trained for the same number of epochs.
After a few epochs we are already able to visually distinguish between the
well-performing and the poorly performing ones. However, the ordering is not
perfect, and we might still require the full amount of 100 epochs to identify
the best performing configuration.



	[image: Learning curves of random configurations]





	Learning curves for randomly drawn hyperparameter configurations






The idea of early stopping based HPO methods is to free up compute resources by
early stopping the evaluation of poorly performing configurations and allocate
them to more promising ones. This speeds up the optimization process, since we
have a higher throughput of configurations that we can try.

Recall the notation of resource from the
introduction. In this
tutorial, resource equates to epochs trained, so \(r=2\) refers to metric
values evaluated at the end of the second epoch. The main objective of interest,
validation error in our tutorial, is denoted by \(f(\mathbf{x}, r)\), where
\(\mathbf{x}\) is the configuration, \(r\) the resource level. Our
problem typically defines a maximum resource level \(r_{max}\), so that in
general the goal is to find \(\mathbf{x}\) which minimizes
\(f(\mathbf{x}, r_{max})\). In NASBench-201, the maximum number of epochs
is \(r_{max} = 200\).



Synchronous Successive Halving

One of the simplest competitive multi-fidelity HPO methods is
synchronous successive halving [https://arxiv.org/abs/1502.07943] (SH). The
basic idea is to start with \(N\) configurations randomly sampled from the
configuration space, training each of them for \(r_{min}\) epochs only
(e.g., \(r_{min} = 1\)). We then discard a fraction of the worst performing
trials and train the remaining ones for longer. Iterating this process, fewer
trials run for longer, until at least one trial reaches \(r_{max}\) epochs.

More formally, successive halving (SH) is parameterized by a minimum resource
\(r_{min}\) (for example 1 epoch) and a halving constant
\(\eta\in\{2, 3, \dots\}\). The defaults in Syne Tune are
\(r_{min} = 1\) and \(\eta = 3\), and we will use these for now. Next,
we define rung levels
\(\mathcal{R} = \{ r_{min}, r_{min}\eta, r_{min}\eta^2, \dots \}\), so that
all \(r\in \mathcal{R}\) satisfy \(r\le r_{max}\). In our example,
\(\mathcal{R} = \{ 1, 3, 9, 27, 81 \}\). Moreover, the initial number of
configurations is set to \(N = \eta^5 = 243\). In general, a trial is
trained until reaching the next recent rung level, then evaluated there, and
the validation errors of all trials at a rung level are used to decide which of
them to discard. We start with running \(N\) trials until rung level
\(r_{min}\). Sorting the validation errors, we keep the top \(1 / \eta\)
fraction (i.e, \(N / \eta\) configurations) and discard all the rest. The
surviving trials are trained for \(r_{min}\eta\) epochs, and the process is
repeated. Synchronized at each rung level, a \(1 / \eta\) fraction of
trials survives and finds it budget to be multiplied by \(\eta\). With this
particular choice of \(N\), only a single trial will be trained to the full
resource \(r_{max}\). In our example:


	We first train 243 randomly chosen configurations for 1 epoch each


	Once all of them are finished, we promote those 81 trials with the lowest
validation errors to train for 3 epochs


	Then, the 27 best-performing ones after 3 epochs are trained for 9 epochs


	The 9 best ones after 9 epochs are trained for 27 epochs


	The 3 best ones after 27 epochs are trained for 81 epochs


	The single best configuration after 81 epochs is trained for 200 epochs




Finally, once one such round of SH is finished, we start the next round with a
new set of initial configurations, until the total budget is spent.

Our launcher script runs synchronous
successive halving if method="SYNCSH". The relevant parameters are
grace_period ( \(r_{min}\) ) and reduction_factor ( \(\eta\) ).
Moreover, for SH, we need to set brackets=1, since otherwise an extension
called Hyperband is run (to be discussed shortly).

API docs:


	Baseline: SyncHyperband


	Additional arguments: SynchronousGeometricHyperbandScheduler




Synchronous SH employs pause-and-resume scheduling (see
introduction). Once a
trial reaches a rung level, it is paused there. This is because the decision of
which trials to promote to the next rung level can only be taken once the
current rung level is completely filled up: only then can we determine the top
\(1 / \eta\) fraction of trials which are to be resumed. Syne Tune supports
pause-and-resume schedulers with checkpointing. Namely, the state of a trial
(e.g., weights of neural network model) is stored when it is paused. Once a
trial is resumed, the checkpoint is loaded and training can resume from there.
Say a trial is paused at \(r = 9\) and is later resumed towards
\(r = 27\). With checkpointing, we have to train for \(27 - 9 = 18\)
epochs only instead of 27 epochs for training from scratch. More details are
given here. For
tabulated benchmarks, checkpointing is supported by default.

Finally, it is important to understand in which sense the method detailed in
this section is synchronous. This is because decision-making on which
trials to resume is synchronized at certain points in time, namely when a rung
level is completed. In general, a trial reaching a rung level has to be paused,
because it is not the last one required to fill the rung. In our example, the
rung at \(r = 1\) requires 243 trials to finish training for one epoch, so
that 242 of them have to be paused for some time.

Synchronous decision-making does not mean that parallel compute resources
(called workers in Syne Tune) need to sit idle. In Syne Tune, workers are
asychronously scheduled in general: whenever a worker finishes, it is assigned
a new task immediately. Say a worker just finished, but we find all remaining
slots in the current rung to be pending (meaning that other workers evaluate
trials to end up there, but are not finished yet). We cannot resume a trial
from this rung, because promotion decisions require all slots to be filled. In
such cases, our implementation starts a new round of SH (or further
contributes to a new round already started for the same reason).

In the sequel, the synchronous / asynchronous terminology always refers to
decision-making, and not to scheduling of parallel resources.



Synchronous Hyperband

While SH can greatly improve upon random search, the choice of \(r_{min}\)
can have an impact on its performance. If \(r_{min}\) is too small, our
network might not have learned anything useful, and even the best configurations
may be filtered out at random. If \(r_{min}\) is too large on the other
hand, the benefits of early stopping may be greatly diminished.

Hyperband [https://arxiv.org/abs/1603.06560] is an extension of SH that
mitigates the risk of setting \(r_{min}\) too small. It runs SH as
subroutine, where each round, called a bracket, balances between
\(r_{min}\) and the number of initial configurations \(N\), such that
the same total amount of resources is used. One round of Hyperband consists of
a sequential loop over brackets.

The number of brackets can be chosen anywhere between 1 (i.e., SH) and the
number of rung levels. In Syne Tune, the default number of brackets is the
maximum. Without going into formal details, here are the brackets for our
NASBench-201 example:


	Bracket 0: \(r_{min} = 1, N = 243\)


	Bracket 1: \(r_{min} = 3, N = 98\)


	Bracket 2: \(r_{min} = 9, N = 41\)


	Bracket 3: \(r_{min} = 27, N = 18\)


	Bracket 4: \(r_{min} = 81, N = 9\)


	Bracket 5: \(r_{min} = 200, N = 6\)




Our launcher script runs synchronous
Hyperband if method="SYNCHB". Since brackets is not used when creating
SyncHyperband, the maximum value 6 is chosen. We also use the default
values for grace_period (1) and reduction_factor (3).

API docs:


	Baseline: SyncHyperband


	Additional arguments: SynchronousGeometricHyperbandScheduler




The advantages of Hyperband over SH are mostly theoretical. In practice, while
Hyperband can improve on SH if \(r_{min}\) chosen for SH is clearly too
small, it tends to perform worse than SH if \(r_{min}\) is adequate. This
disadvantage of Hyperband is somewhat mitigated in the Syne Tune
implementation, where new brackets are started whenever workers cannot
contribute to the current bracket (because remaining slots in the current rung
are pending, see above).





            

          

      

      

    

  

    
      
          
            
  
Asynchronous Successive Halving

In this section, we will turn our attention to methods adopting asynchronous
decision-making, which tend to be more efficient than their synchronous
counterparts.


Asynchronous Successive Halving: Early Stopping Variant

In synchronous successive halving (SH), decisions on whether to promote a trial
or not can be delayed for a long time. In our example, say we are lucky and
sample an excellent configuration early on, among the 243 initial ones. In
order to promote it to train for 81 epochs, we first need to train 243 trials
for 1 epoch, then 81 for 3 epochs, 27 for 9 epochs, and 9 for 27 epochs. Our
excellent trial will always be among the top \(1/3\) of others at these
rung levels, but its progress through the rungs is severely delayed.

In asynchronous successive halving (ASHA) [https://arxiv.org/abs/1810.05934],
the aim is to promote promising configurations as early as possible. There are
two different variants of ASHA, and we will begin with the (arguably) simpler
one. Whenever a worker becomes available, a new configuration is sampled at
random, and a new trial starts training from scratch. Whenever a trial reaches
a rung level, a decision is made immediately on whether to stop training or
let it continue. This decision is made based on all data available at the rung
until now. If the trial is among the top \(1 / \eta\) fraction of
configurations previously registered at this rung, it continues. Otherwise, it
is stopped. As long as a rung has less than \(\eta\) trials, the default is
to continue.

Different to synchronous SH, there are no fixed rung sizes. Instead, each rung
grows over time. ASHA is free of synchronization points. Promising trials can
be trained for many epochs without having to wait for delayed promotion
decisions. While asynchronous decision-making can be much more efficient at
running good configurations to the end, it runs the risk of making bad
decisions based on too little data.

Our launcher script runs the stopping
variant of ASHA if method="ASHA-STOP".

API docs:


	Baseline: ASHA


	Additional arguments: HyperbandScheduler
(type="stopping" selects the early stopping variant)






Asynchronous Successive Halving: Promotion Variant

In fact, the algorithm originally proposed as
ASHA [https://arxiv.org/abs/1810.05934] is slightly different to what has
been detailed above. Instead of starting a trial once and rely on early
stopping, this promotion variant is of the pause-and-resume type. Namely,
whenever a trial reaches a rung, it is paused there. Whenever a worker becomes
available, all rungs are scanned top to bottom. If a paused trial is found
which lies in the top \(1 / \eta\) of all rung entries, it is promoted:
it may resume and train until the next rung level. If no promotable paused
trial is found, a new trial is started from scratch. Our
launcher script runs the stopping
variant of ASHA if method="ASHA-PROM".

API docs:


	Baseline: ASHA


	Additional arguments: HyperbandScheduler
(type="promotion" selects the promotion variant)




If these two variants (stopping and promotion) are compared under ideal
conditions, one sometimes does better than the other, and vice versa. However,
they come with different requirements. The promotion variant pauses and resumes
trials, therefore benefits from checkpointing being implemented for the
training code. If this is not the case, the stopping variant may be more
attractive.

On the other hand, the stopping variant requires the backend to frequently stop
workers and bringing them back in order to start a new trial. For some
backends, the turn-around time for this process may be slow, in which case the
promotion type can be more attractive. In this context, it is important to
understand the relevance of passing max_resource_attr to the scheduler
(and, in our case, also to the
BlackboxRepositoryBackend).
Recall the discussion here. If the
configuration space contains an entry with the maximum resource, whose key is
passed to the scheduler as max_resource_attr, the latter can modify this
value when calling the backend to start or resume a trial. For example, if a
trial is resumed at \(r = 3\) to train until \(r = 9\), the scheduler
passes a configuration to the backend with {max_resource_attr: 9}. This
means that the training code knows how long it has to run, it does not have to
be stopped by the backend.

ASHA can be significantly accelerated by using PASHA [https://openreview.net/forum?id=syfgJE6nFRW]
(Progressive ASHA) that dynamically allocates maximum resources for the tuning
procedure depending on the need. PASHA starts with a small initial amount of
maximum resources and progressively increases them if the ranking of the
configurations in the top two rungs has not stabilized. In practice PASHA
leads to e.g. 3x speedup compared to ASHA, but this can be even higher
for large datasets with millions of examples. A tutorial about PASHA is
here.



Asynchronous Hyperband

Finally, ASHA can also be extended to use multiple brackets. Namely, whenever
a new trial is started, its bracket (or, equivalently, its \(r_{min}\)
value) is sampled randomly from a distribution. In Syne Tune, this distribution
is proportional to the rung sizes in synchronous Hyperband. In our example
with 6 brackets (see details here),
this distribution is \(P(r_{min}) = [1:243/415, 3:98/415, 9:41/415,
27:18/415, 81:9/415, 200:6/415]\). Our launcher script runs asynchronous Hyperband with 6
brackets if method="ASHA6-STOP".

API docs:


	Baseline: ASHA


	Additional arguments: HyperbandScheduler
(brackets selects the number of brackets, defaults to 1)




As also noted in ASHA [https://arxiv.org/abs/1810.05934], the algorithm
often works best with a single bracket, so that brackets=1 is the default
in Syne Tune. However, we will see further below that model-based variants of
ASHA with multiple brackets can outperform the single-bracket version if the
distribution over \(r_{min}\) is adaptively chosen.

Finally, Syne Tune implements two variants of ASHA with brackets > 1. In
the default variant, there is only a single system of rungs. For each new
trial, \(r_{min}\) is sampled to be equal to one of the rung levels, which
means the trial does not have to compete with others at rung levels
\(r < r_{min}\). The other variant is activated by passing
rung_system_per_bracket=True to
HyperbandScheduler. In this case, each
bracket has its own rung system, and trials started in one bracket only have
to compete with others in the same bracket.



Early Removal of Checkpoints

By default, the checkpoints written by all trials are retained on disk (for a
trial, later checkpoints overwrite earlier ones). When checkpoints are large
and the local backend is used, this may result in a lot of disk space getting
occupied, or even the disk filling up. Syne Tune supports checkpoints being
removed once they are not needed anymore, or even speculatively, as is detailed
here.





            

          

      

      

    

  

    
      
          
            
  
Model-based Synchronous Hyperband

All methods considered so far have been extensions of random search by clever
multi-fidelity scheduling. In this section, we consider combinations of
Bayesian optimization with multi-fidelity scheduling, where configurations are
chosen based on performance of previously chosen ones, rather than being
sampled at random.

Basics of Syne Tune: Bayesian Optimization
provides an introduction to Bayesian optimization in Syne Tune.


Synchronous BOHB

The first model-based method we consider is
BOHB [https://arxiv.org/abs/1807.01774], which uses the
TPE [https://papers.nips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html]
formulation of Bayesian optimization. In the latter, an approximation to the
expected improvement (EI) acquisition function is interpreted via a ratio of
two densities. BOHB uses kernel density estimators rather than tree Parzen
estimators (as in TPE) to model the two densities.

BOHB uses the same scheduling mechanism (i.e., rung levels, promotion
decisions) than synchronous Hyperband (or SH), but it uses a model fit to past
data for suggesting the configuration of every new trial.
Recall that
validation error after \(r\) epochs is denoted by \(f(\mathbf{x}, r)\),
where \(\mathbf{x}\) is the configuration. BOHB fits KDEs separately to the
data obtained at each rung level. When a new configuration is to be suggested,
it first determines the largest rung level \(r_{acq}\) supported by enough
data for the two densities to be properly fit. It then makes a TPE decision at
this resource level. Our launcher script
runs synchronous BOHB if method="BOHB".

API docs:


	Baseline: SyncBOHB


	Additional arguments: SynchronousGeometricHyperbandScheduler




While BOHB is often more efficient than SYNCHB, it is held back by synchronous
decision-making. Note that BOHB does not model the random function
\(f(\mathbf{x}, r)\) directly, which makes it hard to properly react to
pending evaluations, i.e. trials which have been started but did not
return metric values yet. BOHB ignores pending evaluations if present, which
could lead to redundant decisions being made if the number of workers (i.e.,
parallelization factor) is large.



Synchronous MOBSTER

Another model-based variant is synchronous
MOBSTER [https://openreview.net/forum?id=a2rFihIU7i]. We will provide more
details on MOBSTER below, when discussing model-based asynchronous methods.

Our launcher script runs synchronous
MOBSTER if method="SYNCMOBSTER". Note that the default surrogate model for
SyncMOBSTER is gp_independent, where the data at each rung level
is represented by an independent Gaussian process (more details are given
here).
It turns out that SyncMOBSTER outperforms
SyncBOHB substantially on the benchmark chosen here.

API docs:


	Baseline: SyncMOBSTER


	Additional arguments: SynchronousGeometricHyperbandScheduler




When running these experiments with the simulator backend, we note that
suddenly it takes quite some time for an experiment to be finished. Still many
times faster than real time, we now need many minutes instead of seconds. This
is a reminder that model-based decision-making can take time. In GP-based
Bayesian optimization, hyperparameters of a Gaussian process model are fit for
every decision, and acquisition functions are being optimized over many
candidates. On the real time scale (the x axis in our result plots), this time
is often well spent. After all, SyncMOBSTER outperforms SyncBOHB
significantly. But since decision-making computations cannot be tabulated, they
slow down the simulations.

As a consequence, we should be careful with result plots showing performance
with respect to number of training evaluations, as these hide both the time
required to make decisions, as well as potential inefficiencies in scheduling
jobs in parallel. HPO methods should always be compared with real experiment
time on the x axis, and the any-time performance of methods should be
visualized by plotting curves, not just quoting “final values”. Examples are
provided here.


Note

Syne Tune allows to launch experiments remotely and in parallel in order
to still obtain results rapidly, as is detailed
here.





Differential Evolution Hyperband

Another recent model-based extension of synchronous Hyperband is
Differential Evolution Hyperband (DEHB) [https://arxiv.org/abs/2105.09821].
DEHB is typically run with multiple brackets. A main difference to Hyperband
is that configurations promoted from a rung to the next are also modified by
an evolutionary rule, involving mutation, cross-over and selection. Since
configurations are not just sampled once, but potentially modified at every
rung, the hope is to find well-performing configurations faster. Our
launcher script runs DEHB if
method="DEHB".

API docs:


	Baseline: DEHB


	Additional arguments: GeometricDifferentialEvolutionHyperbandScheduler




The main feature of DEHB over synchronous Hyperband is that configurations can
be modified at every rung. However, this feature also has a drawback. Namely,
DEHB cannot make effective use of checkpointing. If a trial is resumed with a
different configuration, starting from its last recent checkpoint is not
admissable. However, our implementation is careful to make use of
checkpointing in the very first bracket of DEHB, which is equivalent to a
normal run of synchronous SH.





            

          

      

      

    

  

    
      
          
            
  
Model-based Asynchronous Hyperband

We have seen that asynchronous decision-making tends to outperform synchronous
variants in practice, and model-based extensions of the latter can outperform
random sampling of new configurations. In this section, we discuss combinations
of Bayesian optimization with asynchronous decision-making, leading to the
currently best performing multi-fidelity methods in Syne Tune.

All examples here can either be run in stopping or promotion mode of ASHA. We
will use the promotion mode here (i.e., pause-and-resume scheduling).


Surrogate Models of Learning Curves

Recall
that validation error after \(r\) epochs is denoted by
\(f(\mathbf{x}, r)\), with \(\mathbf{x}\) the configuration. Here,
\(r\mapsto f(\mathbf{x}, r)\) is called learning curve. A learning curve
surrogate model predicts \(f(\mathbf{x}, r)\) from observed data. A
difficult requirement in the context of multi-fidelity HPO is that observations
are much more abundant at smaller resource levels \(r\), while predictions
are more valuable at larger \(r\).

In the context of Gaussian process based
Bayesian optimization, Syne Tune supports
a number of different learning curve surrogate models. The type of model is
selected upon construction of the scheduler:

scheduler = MOBSTER(
    config_space,
    type="promotion",
    search_options=dict(
        model="gp_multitask",
        gp_resource_kernel="exp-decay-sum",
    ),
    metric=benchmark.metric,
    mode=benchmark.mode,
    resource_attr=resource_attr,
    random_seed=random_seed,
    max_resource_attr=max_resource_attr,
)





Here, options configuring the searcher are collected in search_options. The
most important options are model, selecting the type of surrogate model,
and gp_resource_kernel selecting the covariance model in the case
model="gp_multitask".


Independent Processes at each Rung Level

A simple learning curve surrogate model is obtained by
search_options["model"] = "gp_independent". Here, \(f(\mathbf{x}, r)\)
at each rung level \(r\) is represented by an independent Gaussian process
model. The models have individual constant mean functions
\(\mu_r(\mathbf{x}) = \mu_r\) and covariance functions
\(k_r(\mathbf{x}, \mathbf{x}') = c_r k(\mathbf{x}, \mathbf{x}')\),
where \(k(\mathbf{x}, \mathbf{x}')\) is a Matern-5/2 ARD kernel without
variance parameter, which is shared between the models, and the \(c_r > 0\)
are individual variance parameters. The idea is that while validation errors at
different rung levels may be scaled and shifted, they should still exhibit
similar dependencies on the hyperparameters. The noise variance \(\sigma^2\)
used in the Gaussian likelihood is the same across all data. However, if
search_options["separate_noise_variances"] = True, different noise
variances \(\sigma_r^2\) are used for data at different rung levels.



Multi-Task Gaussian Process Models

A more advanced set of learning curve surrogate models is obtained by
search_options["model"] = "gp_multitask" (which is the default for
asynchronous MOBSTER). In this case, a single Gaussian process model
represents \(f(\mathbf{x}, r)\) directly, with mean function
\(\mu(\mathbf{x}, r)\) and covariance function
\(k((\mathbf{x}, r), (\mathbf{x}', r'))\). The GP model is selected by
search_options["gp_resource_kernel"], currently supported options are
"exp-decay-sum", "exp-decay-combined", "exp-decay-delta1",
"freeze-thaw", "matern52", "matern52-res-warp",
"cross-validation". The default choice is "exp-decay-sum", which is
inspired by the exponential decay model proposed
here [https://arxiv.org/abs/1406.3896]. Details about these different
models are given here [https://openreview.net/forum?id=a2rFihIU7i] and in
the source code.

Decision-making is somewhat more expensive with "gp_multitask" than with
"gp_independent", because the notorious cubic scaling of GP inference
applies over observations made at all rung levels. However, the extra cost is
limited by the fact that most observations by far are made at the lowest
resource level \(r_{min}\) anyway.



Additive Gaussian Models

Two additional models are selected by
search_options["model"] = "gp_expdecay" and
search_options["model"] = "gp_issm". The former is the exponential
decay model proposed here [https://arxiv.org/abs/1406.3896], the latter is
a variant thereof. These additive Gaussian models represent dependencies across
\(r\) in a cheaper way than in "gp_multitask", and they can be fit to
all observed data, not just at rung levels. Also, joint sampling is cheap.

However, at this point, additive Gaussian models remain experimental, and they
will not be further discussed here. They can be used with MOBSTER, but not with
Hyper-Tune.




Asynchronous MOBSTER

MOBSTER [https://openreview.net/forum?id=a2rFihIU7i] combines ASHA and
asynchronous Hyperband with GP-based Bayesian optimization. A Gaussian process
learning curve surrogate model is fit to the data at all rung levels, and
posterior predictive distributions are used in order to compute acquisition
function values and decide on which configuration to start next. We distinguish
between MOBSTER-JOINT with a GP multi-task model ("gp_multitask") and
MOBSTER-INDEP with an independent GP model ("gp_independent"), as detailed
above. The acquisition function is expected improvement (EI) at the rung level
\(r_{acq}\) also used by BOHB.

Our launcher script runs (asynchronous)
MOBSTER-JOINT if method="MOBSTER-JOINT". The searcher can be configured
with search_options, but MOBSTER-JOINT with the "exp-decay-sum"
covariance model is the default.

API docs:


	Baseline: MOBSTER


	Additional arguments: HyperbandScheduler


	search_options: GPMultiFidelitySearcher




As shown below, MOBSTER can outperform ASHA
significantly. This is achieved by starting many less trials that stop very
early (after 1 epoch) due to poor performance. Essentially, MOBSTER rapidly
learns some important properties about the NASBench-201 problem and avoids
basic mistakes which random sampling of configurations runs into at a constant
rate. While ASHA stops such poor trials early, they still take away resources,
which MOBSTER can spend on longer evaluations of more promising configurations.
This advantage of model-based over random sampling based multi-fidelity methods
is even more pronounced when starting and stopping jobs comes with delays. Such
delays are typically present in real world distributed systems, but are absent
in our simulations.

Different to BOHB, MOBSTER takes into account pending evaluations, i.e.
trials which have been started but did not return metric values yet. This is
done by integrating out their metric values by Monte Carlo. Namely, we draw a
certain number of joint samples over pending targets and average the acquisition
function over these. In the context of multi-fidelity, if a trial is running, a
pending evaluation is registered for the next recent rung level it will reach.

Why is the surrogate model in MOBSTER-JOINT fit to the data at rung levels
only? After all, training scripts tend to report validation errors after each
epoch, why not use all this data? Syne Tune allows to do so (for the
"gp_multitask" model), by passing searcher_data="all" when creating
the HyperbandScheduler (another
intermediate is searcher_data="rungs_and_last"). However, while this may
lead to a more accurate model, it also becomes more expensive to fit, and does
not tend to make a difference, so the default searcher_data="rungs" is
recommended.

Finally, we can also combine ASHA with
BOHB decision-making, by choosing
searcher="kde" in
HyperbandScheduler. This is an
asynchronous version of BOHB.


MOBSTER-INDEP

Our launcher script runs
(asynchronous) MOBSTER-INDEP if method="MOBSTER-INDEP". The independent
GPs model is selected by search_options["model"] = "gp_independent".
MOBSTER tends to perform slightly better with a joint multi-task GP model than
with an independent GPs model, justifying the Syne Tune default. In our
experience so far, changing the covariance model in MOBSTER-JOINT has only
marginal impact.

API docs:


	Baseline: MOBSTER


	Additional arguments: HyperbandScheduler


	search_options: GPMultiFidelitySearcher
(here, we use search_options["model"] = "gp_independent")






MOBSTER and Hyperband

Just like ASHA can be run with multiple brackets,
so can MOBSTER, simply by selecting brackets when creating
HyperbandScheduler. In our experience so
far, just like with ASHA, MOBSTER tends to work best with a single bracket.



Controlling MOBSTER Computations

MOBSTER often outperforms ASHA substantially. However, when applied to a problem
where many evaluations can be done, fitting the GP surrogate model to all observed
data can become slow. In fact, Gaussian process inference scales cubically in the
number of observations. The amount of computation spent by MOBSTER can be controlled:


	Setting the limit max_size_data_for_model: Once the total number of
observations is above this limit, the data is sampled down to this size. This is
done in a way which retains all observations from trials which reached higher
rung levels, while data from trials stopped early are more likely to be removed.
This down sampling is redone every time the surrogate model is fit, so that
new data (especially at higher rungs) is taken into account. Also, scheduling
decisions about stopping, pausing, or promoting trials are always done based on
all data.

The default value for max_size_data_for_model is
DEFAULT_MAX_SIZE_DATA_FOR_MODEL.
It can be changed by passing
search_options = {"max_size_data_for_model": XYZ} when creating the
MOBSTER scheduler. You can switch off the limit mechanism by passing None
or a very large value. As the current default value is on the smaller end, to
ensure fast computations, you may want to experiment with larger values as
well.



	Parameters opt_skip_init_length, opt_skip_period: When fitting the GP
surrogate model, the most expensive computation by far is refitting its own
parameters, such as kernel parameters. The frequency of this computation can
be regulated, as detailed
here.







Hyper-Tune

Hyper-Tune [https://arxiv.org/abs/2201.06834] is a model-based extension of
ASHA with some additional features compared to MOBSTER. It can be seen as
extending MOBSTER-INDEP (with the "gp_independent" surrogate model) in two
ways. First, it uses an acquisition function based on an ensemble predictive
distribution, while MOBSTER relies on the \(r_{acq}\) heuristic from BOHB.
Second, if multiple brackets are used (Hyperband case), Hyper-Tune offers an
adaptive mechanism to sample the bracket for a new trial. Both extensions are
based on a quantification of consistency of data on different rung levels, which
is used to weight rung levels according to their reliability for making
decisions (namely, which configuration \(\mathbf{x}\) and bracket
\(r_{min}\) to associate with a new trial).

Our launcher script runs Hyper-Tune
if method="HYPERTUNE-INDEP". The searcher can be configured with
search_options, but the independent GPs model "gp_independent" is the
default. In this example, Hyper-Tune is using a single bracket, so the
difference to MOBSTER-INDEP is due to the ensemble predictive distribution for
the acquisition function.

Syne Tune also implements Hyper-Tune with the GP multi-task surrogate models
used in MOBSTER. In result plots for this tutorial, original Hyper-Tune is
called HYPERTUNE-INDEP, while this latter variant is called HYPERTUNE-JOINT.
Our launcher script runs this variant
if method="HYPERTUNE-JOINT".

API docs:


	Baseline: HyperTune


	Additional arguments: HyperbandScheduler


	search_options: HyperTuneSearcher
(search_options["model"] = "gp_independent" by default, but HYPERTUNE-JOINT
is using "gp_multitask")




Finally, computations of Hyper-Tune can be
controlled in the same way as in MOBSTER.


Hyper-Tune with Multiple Brackets

Just like ASHA and MOBSTER, Hyper-Tune can also be run with multiple brackets,
simply by using the brackets argument of
HyperbandScheduler. If brackets > 1,
Hyper-Tune samples the bracket for a new trial from an adaptive distribution
closely related to the ensemble distribution used for acquisitions. Our
launcher script runs Hyper-Tune with 4
brackets if method="HYPERTUNE4-INDEP".

Recall that both ASHA and MOBSTER tend to work better for one than for multiple
brackets. This may well be due to the fixed, non-adaptive distribution that
brackets are sampled from. Ideally, a method would learn over time whether a
low rung level tends to be reliable in predicting the ordering at higher ones,
or whether it should rather be avoided (and \(r_{min}\) should be
increased). This is what the adaptive mechanism in Hyper-Tune tries to do. In
our comparisons, we find that HYPERTUNE-INDEP with multiple brackets can
outperform MOBSTER-JOINT with a single bracket.



Details

In this section, we provide some details about Hyper-Tune and our
implementation. The Hyper-Tune extensions are based on a quantification of
consistency of data on different rung levels For example, assume that
\(r < r_{*}\) are two rung levels, with sufficiently many points at
\(r_{*}\). If \(\mathcal{X}_{*}\) collects trials with data at
\(r_{*}\), all these have also been observed at \(r\). Sampling
\(f(\mathcal{X}_{*}, r)\) from the posterior distribution of the surrogate
model, we can compare the ordering of these predictions at \(r\) with the
ordering of observations at \(r_{*}\), using a pair-wise ranking loss. A
large loss value means frequent cross-overs of learning curves between
\(r\) and \(r_{*}\), and predictions at rung level \(r\) are
unreliable when it comes to the ordering of trials \(\mathcal{X}_{*}\) at
\(r_{*}\).

At any point during the algorithm, denote by \(r_{*}\) the largest rung
level with a sufficient number of observations (our implementation requires 6
points). Assuming that \(r_{*} > r_{min}\), we can estimate a distribution
\([\theta_r]\) over rung levels \(\mathcal{R}_{*} =
\{r\in\mathcal{R}\, |\, r\le r_{*}\}\) as follows. We draw \(S\) independent
samples from the model at these rung levels. For each sample \(s\), we
compute loss values \(l_{r, s}\) for \((r, r_{*})\) over all
\(r\in\mathcal{R}_{*}\), and determine the argmin indicator
\([\text{I}_{l_{r, s} = m_s}]\), where
\(m_s = \text{min}(l_{r, s} | r\in\mathcal{R}_{*})\). The distribution
\([\theta_r]\) is obtained as normalized sum of these indicators over
\(s=1,\dots, S\). We also need to compute loss values \(l_{r_{*}, s}\),
this is done using a cross-validation approximation, see
here [https://arxiv.org/abs/2201.06834] or the code in
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune
for details. In the beginning, with too little data at the second rung level,
we use \(\theta_{r_{min}} = 1\) and 0 elsewhere.

Decisions about a new configuration are based on an acquisition function over a
predictive distribution indexed by \(\mathbf{x}\) alone. For Hyper-Tune, an
ensemble distribution with weighting distribution \([\theta_r]\) is used.
Sampling from this distribution works by first sampling
\(r\sim [\theta_r]\), then \(f(\mathbf{x}) = f(\mathbf{x}, r)\) from
the predictive distribution for that \(r\). This means that models from all
rung levels are potentially used, weighted by how reliable they predict the
ordering at the highest level \(r_{*}\) supported by data. In our
experiments so far, this adaptive weighting can outperform the
\(r_{acq}\) heuristic used in BOHB and MOBSTER.

Note that our implementation generalizes
Hyper-Tune [https://arxiv.org/abs/2201.06834] in that ranking losses and
\([\theta_r]\) are estimated once \(r_{*} > r_{min}\) (i.e., once
\(r_{*}\) is equal to the second rung level). In the original work, one has
to wait until \(r_{*} = r_{max}\), i.e. the maximum rung level is
supported by enough data. We find that for many expensive tuning problems,
early decision-making can make a large difference, so if the Hyper-Tune
extensions provide benefits, they should be used as early during the experiment
as possible. For example, in the trial plots for Hyper-Tune shown above, it
takes more than 10000 seconds for 6 trials to reach the full 200 epochs, so in
the original variant of Hyper-Tune, advanced decision-making only starts when
more than half of the experiment is already done.

If Hyper-Tune is used with more than one bracket, the \([\theta_r]\) is
also used in order to sample the bracket for a new trial. To this end, we need
to determine a distribution \(P(r)\) over all rung levels which feature as
\(r_{min}\) in a bracket. In our NASBench-201 example, if Hyper-Tune is run
with 5 brackets, the support of \(P(r)\) would be \(\mathcal{S} =
\{1, 3, 9, 27, 81\}\). Also, denote the
default distribution used in ASHA
and MOBSTER by \(P_0(r)\). Let
\(r_0 = \text{min}(r_{*}, \text{max}(\mathcal{S}))\). For
\(r\in\mathcal{S}\), we define \(P(r) = M \theta_r / r\) for
\(r\le r_0\), and \(P(r) = P_0(r)\) for \(r > r_0\), where
\(M = \sum_{r\in\mathcal{S}, r\le r_0} P_0(r)\). In other words, we use
\(\theta_r / r\) for rung levels supported by data, and the default
\(P_0(r)\) elsewhere. Once more, this slightly generalizes
Hyper-Tune [https://arxiv.org/abs/2201.06834].




DyHPO

DyHPO [https://arxiv.org/abs/2202.09774] is another recent model-based
multi-fidelity method. It is a promotion-based scheduler like the ones below
with type="promotion", but differs from MOBSTER and Hyper-Tune in that
promotion decisions are done based on the surrogate model, not on the
quantile-based rule of successive halving. In a nutshell:


	Rung levels are equi-spaced:
\(\mathcal{R} = \{ r_{min}, r_{min} + \nu, r_{min} + 2 \nu, \dots \}\).
If \(r_{min} = \nu\), this means that a trial which is promoted or
started from scratch, always runs for \(\nu\) resources, independent
of its current rung level.


	Once a worker is free, we can either promote a paused trial or start a new
one. In DyHPO, all paused trials compete with a number of new configurations
for the next \(\nu\) resources to be spent. The scoring criterion is a
special version of expected improvement, so depends on the surrogate model.


	Different to MOBSTER, the surrogate model is used more frequently. Namely,
in MOBSTER, if any trial can be promoted, the surrogate model is not
accessed. This means that DyHPO comes with higher decision-making costs,
which need to be controlled.


	Since scoring trials paused at the highest rung populated so far requires
extrapolation in terms of resource \(r\), it cannot be used with
search_options["model"] = "gp_independent". The other surrogate models
are supported.




Our implementation of DyHPO differs from the published work in a number of
important points:


	DyHPO [https://arxiv.org/abs/2202.09774] uses an advanced surrogate model
based on a neural network covariance kernel which is fitted to the current
data. Our implementation supports DyHPO with the GP surrogate models
detailed above, except for "gp_independent".


	Our decision rule is different from DyHPO as published, and can be seen as
a hybrid between DyHPO and ASHA. Namely, we throw a coin \(\{0, 1\}\)
with probability \(P_1\) being configurable as probability_sh. If this
gives 1, we try to promote a trial using the ASHA rule based on quantiles.
Here, the quantile thresholds are adjusted to the linear spacing of rung
levels. If no trial can be promoted this way, we fall back to the DyHPO rule.
If the coin comes up 0, we use the DyHPO rule. The algorithm as published is
obtained for \(P_1 = 0\). However, we find that a non-zero
probability_sh is crucial for obtaining robust behaviour, since the
original DyHPO rule on its own tends to start too many trials at the beginning
before promoting any paused ones.


	Since in DyHPO, the surrogate model is used more frequently than in MOBSTER,
it is important to control surrogate model computations, as detailed
above. Apart from the default for
max_size_data_for_model, we also use opt_skip_period = 3 as default
for DyHPO.




API docs:


	Baseline: DyHPO


	Additional arguments: HyperbandScheduler


	search_options: GPMultiFidelitySearcher
(note that search_options["model"] must not be equal to "gp_independent")








            

          

      

      

    

  

    
      
          
            
  
Comparison of Methods

In this section, we present an empirical comparison of all methods discussed in
this tutorial. The methodology of our study is as follows:


	We use the NASBench-201 benchmark (CIFAR100 dataset)


	All methods are run with a max_wallclock_time limit of 6 hours (or 21600
seconds). We plot minimum validation error attained as function of wallclock
time (which, in our case, is simulated time)


	Results are aggregated over a number of repetitions. The number of
repetitions is 50 for SYNCSH, SYNCHB, BOHB, DEHB, ASHA-STOP, ASHA-PROM,
ASHA6-STOP and SYNCMOBSTER, while MOBSTER-JOINT, MOBSTER-INDEP,
HYPERTUNE1-INDEP, HYPERTUNE4-INDEP and HYPERTUNE-JOINT are repeated 30 times.
Figures plot the interquartile mean in bold and a bootstrap 95% confidence
interval for this estimator in dashed lines (the IQM is a robust estimator of
the mean, but depends on more data than the median)


	SYNCSH, ASHA-STOP, ASHA-PROM, MOBSTER-JOINT, MOBSTER-INDEP, HYPERTUNE1-INDEP
use 1 bracket, HYPERTUNE4-INDEP, HYPERTUNE-JOINT use 4 brackets, and SYNCHB,
BOHB, DEHB, SYNCMOBSTER use the maximum of 6 brackets


	In SYNCSH, SYNCHB, ASHA-STOP, ASHA-PROM, ASHA6-STOP, new configurations are
drawn at random, while BOHB, SYNCMOBSTER, MOBSTER-JOINT, MOBSTER-INDEP,
HYPERTUNE1-INDEP, HYPERTUNE4-INDEP, HYPERTUNE-JOINT are variants of Bayesian
optimization. In DEHB, configurations in the first bracket are drawn at
random, but in later brackets, they are evolved from earlier ones


	ASHA-STOP, ASHA6-STOP use early stopping, while SYNCSH, SYNCHB, BOHB,
SYNCMOBSTER, ASHA-PROM, MOBSTER-JOINT, MOBSTER-INDEP, HYPERTUNE1-INDEP,
HYPERTUNE4-INDEP, HYPERTUNE-JOINT use pause-and-resume. DEHB is a synchronous
method, but does not resume trials from checkpoints (except in the very first
bracket)




Here are results, grouped by synchronous decision-making, asynchronous
decision-making (promotion type), and asynchronous decision-making (stopping
type). ASHA-PROM results are repeated in all plots for reference.



	[image: Synchronous HPO]





	Synchronous Multi-fidelity HPO








	[image: Asynchronous HPO]





	Asynchronous Multi-fidelity HPO (promotion)








	[image: Asynchronous Stopping]





	Asynchronous Multi-fidelity HPO (stopping)






These results are obtained on a single benchmark with a rather small
configuration space. Nevertheless, they are roughly in line with results we
obtained on a larger range of benchmarks. A few conclusions can be drawn, which
may help readers choosing the best HPO method and its configuration for their
own problem.


	Asynchronous methods outperform synchronous ones in general, in particular
when it comes to any-time performance. A notable exception (on this
benchmark) is SYNCMOBSTER, which performs en par with the best asynchronous
methods.


	Among the synchronous methods, SYNCMOBSTER performs best, followed by
BOHB. SYNCHB and SYNCSH perform very similar. The performance of DEHB is
somewhat disappointing on this benchmark.


	The best-performing methods on this benchmark are MOBSTER-JOINT and
HYPERTUNE1-INDEP, with HYPERTUNE4-INDEP a close runner-up. For MOBSTER, the
joint multi-task surrogate model should be preferred, while for HYPERTUNE,
the independent GPs model works better.


	On this benchmark, moving to multiple brackets does not pay off for the
asynchronous methods. However, on benchmarks where the choice of
\(r_{min}\) is more critical, moving beyond successive halving can be
beneficial. In such cases, we currently recommend to use HYPERTUNE-INDEP,
whose adaptive weighting and bracket sampling is clearly more effective than
simpler heuristics used in Hyperband or BOHB.







            

          

      

      

    

  

    
      
          
            
  
Benchmarking in Syne Tune

Benchmarking refers to the comparison of a range of HPO algorithms on one or
more tuning problems, or benchmarks. This tutorial provides an overview of
tooling which facilitates benchmarking of HPO algorithms in Syne Tune. The same
tooling can be used to rapidly create launcher scripts for any HPO experiment,
allowing you to easily switch between local, SageMaker, and simulator backend.
The tutorial also shows how any number of experiments can be run in parallel,
in order to obtain desired results faster.


Note

In order to run the code in this tutorial, you need to have
installed Syne Tune from source.
Also, make sure to have installed the blackbox-repository
dependencies.




Note

Benchmarking (i.e., comparing different HPO methods) is using the Syne Tune
experimentation framework in syne_tune.experiments. In this framework,
a benchmark is simply just a tuning problem endowed with some defaults.
There are other use cases of experimentation than benchmarking (see
here and
here), but the term benchmark for tuning
problem is used in all of them.





	Benchmarking with Simulator Backend

	Benchmarking with Local Backend

	Benchmarking with SageMaker Backend

	Visualization of Results

	Contributing Your Benchmark








            

          

      

      

    

  

    
      
          
            
  
Benchmarking with Simulator Backend

The fastest and cheapest way to compare a number of different HPO methods, or
variants thereof, is benchmarking with the simulator backend. In this case,
all training evaluations are simulated by querying metric and time values from
a tabulated blackbox or a surrogate model. Not only are expensive computations
on GPUs avoided, but the experiment also runs faster than real time. In some
cases, results for experiments with max_wallclock_time of several hours,
can be obtained in a few seconds.


Note

In order to use surrogate benchmarks and the simulator backend, you need
to have the blackbox-repository dependencies installed, as detailed
here.
For the YAHPO blackbox, you also need the yahpo dependencies. Note that
the first time you use a surrogate benchmark, its data files are downloaded
and stored to your S3 bucket, this can take a considerable amount of time.
The next time you use the benchmark, it is loaded from your local disk or
your S3 bucket, which is fast.




Note

The experimentation framework in syne_tune.experiments which is used
here, is not limited to benchmarking (i.e., comparing the performance
between different HPO methods), but is also the default way to run many
experiments in parallel, say with different configuration spaces. This is
explained more in
this tutorial.




Defining the Experiment

As usual in Syne Tune, the experiment is defined by a number of scripts. We
will look at an example in
benchmarking/examples/benchmark_hypertune/.
Common code used in these benchmarks can be found in syne_tune.experiments.


	Local launcher: syne_tune.experiments.launchers.hpo_main_simulator


	Remote launcher: syne_tune.experiments.launchers.launch_remote_simulator


	Benchmark definitions: syne_tune.experiments.benchmark_definitions




Let us look at the scripts in order, and how you can adapt them to your needs:


	benchmarking/examples/benchmark_hypertune/baselines.py:
Defines the HPO methods to take part in the experiment, in the form of a
dictionary methods which maps method names to factory functions, which in
turn map MethodArguments to scheduler
objects. The MethodArguments class
contains the union of attributes needed to configure schedulers. In particular,
scheduler_kwargs contains constructor arguments. For your convenience, the
mapping from MethodsArguments to scheduler are defined for most baseline
methods in syne_tune.experiments.default_baselines (as noted just below,
this mapping involves merging argument dictionaries), but you can override
arguments as well (for example, type in the examples here). Note that if
you like to compare different variants of a method, you need to create
different entries in methods, for example Methods.MOBSTER_JOINT and
Methods.MOBSTER_INDEP are different variants of MOBSTER.


	benchmarking/examples/benchmark_hypertune/benchmark_definitions.py:
Defines the benchmarks to be considered in this experiment, in the form of a
dictionary benchmark_definitions with values of type
SurrogateBenchmarkDefinition.
In general, you will just pick definitions from
syne_tune.experiments.benchmark_definitions, unless you are using your
own surrogate benchmark not contained in Syne Tune. But you can also modify
parameters, for example surrogate and surrogate_kwargs in order to
select a different surrogate model, or you can change the defaults for
n_workers or max_wallclock_time.


	benchmarking/examples/benchmark_hypertune/hpo_main.py:
Script for launching experiments locally. All you typically need to do here
is to import syne_tune.experiments.launchers.hpo_main_simulator and (optionally)
to add additional command line arguments you would like to parameterize your
experiment with. In our example here, we add two options, num_brackets
which configures Hyperband schedulers, and num_samples which configures
the Hyper-Tune methods only. Apart from extra_args, you also need to
define map_method_args, which modifies method_kwargs (the arguments of
MethodArguments) based on the extra
arguments. Details for map_method_args are given just below. Finally,
main() is called with your
methods and benchmark_definitions dictionaries, and (optionally) with
extra_args and map_method_args. We will see shortly how the launcher
is called, and what happens inside.


	benchmarking/examples/benchmark_hypertune/launch_remote.py:
Script for launching experiments remotely, in that each experiment runs as its
own SageMaker training job, in parallel with other experiments. You need to
import syne_tune.experiments.launchers.launch_remote_simulator and pass the same
methods, benchmark_definitions, extra_args as
in benchmarking.examples.benchmark_hypertune.hpo_main. Moreover, you
need to specify paths for source dependencies. If you installed Syne Tune
from sources, it is easiest to specify
source_dependencies=benchmarking.__path__, as this allows access to all
benchmarks and examples included there. On top of that,
you can pass an indicator function is_expensive_method to tag the HPO
methods which are themselves expensive to run. As detailed below, our script
runs different seeds (repetitions) in parallel for expensive methods, but
sequentially for cheap ones. We will see shortly how the launcher is called,
and what happens inside.


	benchmarking/examples/benchmark_hypertune/requirements.txt:
Dependencies for hpo_main.py to be run remotely as SageMaker training job,
in the context of launching experiments remotely. In particular, this needs
the dependencies of Syne Tune itself. A safe bet here is syne-tune[extra]
and tqdm (which is the default if requirements.txt is missing). However,
you can decrease startup time by narrowing down the dependencies you really
need (see
FAQ).
In our example here, we need gpsearchers and kde for methods. For
simulated experiments, you always need to have blackbox-repository here.
In order to use YAHPO benchmarks, also add yahpo.





Specifying Extra Arguments

In many cases, you will want to run different methods using their default
arguments, or only change them as part of the definition in baselines.py.
But sometimes, it can be useful to be able to set options via extra command line
arguments. This can be done via extra_args and map_method_args, which are
typically used in order to be able to configure scheduler arguments for certain
methods. But in principle, any argument of
MethodArguments can be modified. Here,
extra_args is simply extending arguments to the command line parser, where the
name field contains the name of the option without any leading “-“.

map_method_args has the signature

method_kwargs = map_method_args(args, method, method_kwargs)





Here, method_kwargs are arguments of
MethodArguments, which can be modified
by map_method_args (the modified dictionary is returned). args is the
result of command line parsing, and method is the name of the method to
be constructed based on these arguments. The latter argument allows
map_method_args to depend on the method. In our example
benchmarking/examples/benchmark_hypertune/hpo_main.py,
num_brackets applies to all methods, while num_samples only applies
to the variants of Hyper-Tune. Both arguments modify the dictionary
scheduler_kwargs in MethodArguments,
which contains constructor arguments for the scheduler.

Note the use of recursive_merge. This means that the changes done in
map_method_args are recursively merged into the prior method_kwargs. In
our example, we may already have method_kwargs.scheduler_kwargs or even
method_kwargs.scheduler_kwargs.search_options. While the new settings here
take precedence, prior content of method_kwargs not affected remains in
place. In the same way, extra arguments passed to baseline wrappers in
syne_tune.experiments.default_baselines are recursively merged into the
arguments determined by the default logic.


Note

map_method_args is applied to rewrite method_kwargs just before the
method is created. This means that all entries of
MethodArguments can be modified from
their default values. You can also use map_method_args independent of
extra_args (however, if extra_args is given, then map_method_args
must be given as well).





Writing Extra Results

By default, Syne Tune writes result files metadata.json, results.csv.zip,
and tuner.dill for every experiment, see
here. Here,
results.csv.zip contains all data reported by training jobs, along with
time stamps. The contents of this dataframe can be customized, by adding extra
columns to it. This is done by passing extra_results_composer of type
ExtraResultsComposer when creating the
StoreResultsCallback callback, which
is passed in callbacks to Tuner. You can use this
mechanism by passing a ExtraResultsComposer
object as extra_results to main. This object extracts extra information
and returns it as dictionary, which is appended to the results dataframe. A
complete example is
benchmarking/examples/benchmark_dyhpo.




Launching Experiments Locally

Here is an example of how simulated experiments are launched locally (if you
installed Syne Tune from source, you need to start the script from the
benchmarking/examples directory):

python benchmark_hypertune/hpo_main.py \
  --experiment_tag tutorial-simulated --benchmark nas201-cifar100 \
  --method ASHA --num_seeds 10





This call runs a number of experiments sequentially on the local machine:


	experiment_tag: Results of experiments are written to
~/syne-tune/{experiment_tag}/*/{experiment_tag}-*/. This name should
confirm to S3 conventions (alphanumerical and -; no underscores).


	benchmark: Selects benchmark from keys of benchmark_definitions.
If this is not given, experiments for all keys in benchmark_definitions
are run in sequence.


	method: Selects HPO method to run from keys of methods. If this is
not given, experiments for all keys in methods are run in sequence.


	num_seeds: Each experiment is run num_seeds times with different
seeds (0, ..., num_seeds - 1). Due to random factors both in training
and tuning, a robust comparison of HPO methods requires such repetitions.
Fortunately, these are cheap to obtain in the simulation context. Another
parameter is start_seed (default: 0), giving seeds
start_seed, ..., num_seeds - 1. For example, --start_seed 5  --num_seeds 6
runs for a single seed equal to 5. The dependence of random choices on the
seed is detailed below.


	max_wallclock_time, n_workers: These arguments overwrite the defaults
specified in the benchmark definitions.


	max_size_data_for_model: Parameter for Bayesian optimization, MOBSTER or
Hyper-Tune, see
here
and
here.


	scale_max_wallclock_time: If 1, and if n_workers is given as
argument, but not max_wallclock_time, the benchmark default
benchmark.max_wallclock_time is multiplied by :math:B / min(A, B),
where A = n_workers, B = benchmark.n_workers. This means we run for
longer if n_workers < benchmark.n_workers, but keep
benchmark.max_wallclock_time the same otherwise.


	use_long_tuner_name_prefix: If 1, results for an experiment are written
to a directory whose prefix is
f"{experiment_tag}-{benchmark_name}-{seed}", followed by a postfix
containing date-time and a 3-digit hash. If 0, the prefix is
experiment_tag only. The default is 1 (long prefix).


	restrict_configurations: See
below.


	fcnet_ordinal: Applies to FCNet benchmarks only. The hyperparameter
hp_init_lr has domain choice([0.0005, 0.001, 0.005, 0.01, 0.05, 0.1]).
Since the parameter is really ordinal, this is
not a good choice. With this
option, the domain can be switched to different variants of ordinal.
The default is nn-log, which is the domain
logordinal([0.0005, 0.001, 0.005, 0.01, 0.05, 0.1]) (this is also the
replacement which streamline_config_space() would do).
In order to keep the original categorical domain, use
--fcnet_ordinal none.




If you defined additional arguments via extra_args, you can use them
here as well. For example, --num_brackets 3 would run all
multi-fidelity methods with 3 brackets (instead of the default 1).



Launching Experiments Remotely

There are some drawbacks of launching experiments locally. First, they block
the machine you launch from. Second, different experiments are run sequentially,
not in parallel. Remote launching has exactly the same parameters as launching
locally, but experiments are sliced along certain axes and run in parallel,
using a number of SageMaker training jobs. Here is an example (if you
installed Syne Tune from source, you need to start the script from the
benchmarking/examples directory):

python benchmark_hypertune/launch_remote.py \
  --experiment_tag tutorial-simulated --benchmark nas201-cifar100 \
  --num_seeds 10





Since --method is not used, we run experiments for all methods. Also, we
run experiments for 10 seeds. There are 7 methods, so the total number of
experiments is 70 (note that we select a single benchmark here). Running this
command will launch 43 SageMaker training jobs, which do the work in parallel.
Namely, for methods ASHA, SYNCHB, BOHB, all 10 seeds are run
sequentially in a single SageMaker job, since our is_expensive_method
function returns False for them. Simulating experiments is so fast for
these methods that it is best to run seeds sequentially. However, for
MOBSTER-JOINT, MOBSTER-INDEP, HYPERTUNE-INDEP, HYPERTUNE-JOINT,
our is_expensive_method returns True, and we use one SageMaker
training jobs for each seeds, giving rise to 4 * 10 = 40 jobs running in
parallel. For these methods, the simulation time is quite a bit longer, because
decision making takes more time (these methods fit Gaussian process surrogate
models to data and optimize acquisition functions). Results are written to
~/syne-tune/{experiment_tag}/ASHA/ for the cheap method ASHA, and to
/syne-tune/{experiment_tag}/MOBSTER-INDEP-3/ for the expensive method
MOBSTER-INDEP and seed 3.

The command above selected a single benchmark nas201-cifar100. If
--benchmark is not given, we iterate over all benchmarks in
benchmark_definitions. This is done sequentially, which works fine for a
limited number of benchmarks.

However, you may want to run experiments on a large number of benchmarks, and
to this end also parallelize along the benchmark axis. To do so, you can pass
a nested dictionary as benchmark_definitions. For example, we could use the
following:

from syne_tune.experiments.benchmark_definitions import (
    nas201_benchmark_definitions,
    fcnet_benchmark_definitions,
    lcbench_selected_benchmark_definitions,
)

benchmark_definitions = {
    "nas201": nas201_benchmark_definitions,
    "fcnet": fcnet_benchmark_definitions,
    "lcbench": lcbench_selected_benchmark_definitions,
}





In this case, experiments are sliced along the axis
("nas201", "fcnet", "lcbench") to be run in parallel in different SageMaker
training jobs.


Dealing with ResourceLimitExceeded Errors

When launching many experiments in parallel, you may run into your AWS resource
limits, so that no more SageMaker training jobs can be run. The default behaviour
in this case is to wait for 10 minutes and try again. You can influence this by
--estimator_fit_backoff_wait_time <wait_time>, where <wait_time> is the
waiting time between attempts in seconds. If this is 0 or negative, the script
terminates with an error once your resource limits are reached.




Pitfalls of Experiments from Tabulated Blackboxes

Comparing HPO methods on tabulated benchmarks, using simulation, has obvious
benefits. Costs are very low. Moreover, results are often obtain many times
faster than real time. However, we recommend you do not rely on such kind of
benchmarking only. Here are some pitfalls:


	Tabulated benchmarks are often of limited complexity, because more complex
benchmarks cannot be sampled exhaustively


	Tabulated benchmarks do not reflect the stochasticity of real benchmarks
(e.g., random weight initialization, random ordering of mini-batches)


	While tabulated benchmarks like nas201 or fcnet are evaluated
exhaustively or on a fine grid, other benchmarks (like lcbench) contain
observations only at a set of randomly chosen configurations, while their
configuration space is much larger or even infinite. For such benchmarks,
you can either restrict the scheduler to suggest configurations only from
the set supported by the benchmark (see subsection just below), or you can
use a surrogate model which interpolates observations from those contained
in the benchmark to all others in the configuration space. Unfortunately, the
choice of surrogate model can strongly affect the benchmark, for the same
underlying data. As a general recommendation, you should be careful with
surrogate benchmarks which offer a large configuration space, but are based
on only medium amounts of real data.






Restricting Scheduler to Configurations of Tabulated Blackbox

For a tabulated benchmark like lcbench, most entries of the configuration
space are not covered by data. For such, you can either use a surrogate, which
can be configured by attributes surrogate, surrogate_kwargs, and
add_surrogate_kwargs of
SurrogateBenchmarkDefinition.
Or you can restrict the scheduler to only suggest configurations covered by
data. The latter is done by the option --restrict_configurations 1. The
advantage of doing so is that your comparison does not depend on the choice of
surrogate, but only on the benchmark data itself. However, there are also some
drawbacks:


	This option is currently not supported for the following schedulers:


	Grid Search


	SyncBOHB


	BOHB


	DEHB


	REA


	KDE


	PopulationBasedTraining


	ZeroShotTransfer


	ASHACTS


	MOASHA






	Schedulers like Gaussian process based Bayesian optimization typically use
local gradient-based optimization of the acquisition function. This is not
possible with --restrict_configurations 1. Instead, they evaluate the
acquisition function at a finite number num_init_candidates of points and
pick the best one


	In general, you should avoid to use surrogate benchmarks which offer a large
configuration space, but are based on only medium amounts of real data. When
using --restrict_configurations 1 with such a benchmark, your methods
may perform better than they should, just because they nearly sample the
space exhaustively




In general, --restrict_configurations 1 is supported for schedulers which
select the next configuration from a finite set. In contrast, methods like
DEHB or BOHB (or Bayesian optimization with local acquisition function
optimization) optimize over encoded vectors, then round the solution back to a
configuration. In order to use a tabulated benchmark like lcbench with these
methods, you need to specify a surrogate. Maybe the least intrusive surrogate
is nearest neighbor. Here is the benchmark definition for lcbench:


syne_tune/experiments/benchmark_definitions/lcbench.py

def lcbench_benchmark(dataset_name: str, datasets=None) -> SurrogateBenchmarkDefinition:
    """
    The default is to use nearest neighbour regression with ``K=1``. If
    you use a more sophisticated surrogate, it is recommended to also
    define ``add_surrogate_kwargs``, for example:

    .. code-block:: python

       surrogate="RandomForestRegressor",
       add_surrogate_kwargs={
           "predict_curves": True,
           "fit_differences": ["time"],
       },

    :param dataset_name: Value for ``dataset_name``
    :param datasets: Used for transfer learning
    :return: Definition of benchmark
    """
    return SurrogateBenchmarkDefinition(
        max_wallclock_time=7200,
        n_workers=4,
        elapsed_time_attr="time",
        metric="val_accuracy",
        mode="max",
        blackbox_name="lcbench",
        dataset_name=dataset_name,
        surrogate="KNeighborsRegressor",  # 1-nn surrogate
        surrogate_kwargs={"n_neighbors": 1},
        max_num_evaluations=4000,
        datasets=datasets,
        max_resource_attr="epochs",
    )









The 1-NN surrogate is selected by surrogate="KNeighborsRegressor" and setting
the number of nearest neighbors to 1. For each configuration, the surrogate finds
the nearest neighbor in the table (w.r.t. Euclidean distance between encoded
vectors) and returns its metric values.



Selecting Benchmarks from benchmark_definitions

Each family of tabulated (or surrogate) blackboxes accessible to the
benchmarking tooling discussed here, are represented by a Python file in
syne_tune.experiments.benchmark_definitions (the same directly also
contains definitions for real benchmarks). For example:


	NASBench201 (syne_tune.experiments.benchmark_definitions.nas201):
Tabulated, no surrogate needed.


	FCNet (syne_tune.experiments.benchmark_definitions.fcnet):
Tabulated, no surrogate needed.


	LCBench (syne_tune.experiments.benchmark_definitions.lcbench):
Needs surrogate model (scikit-learn regressor) to be selected.


	YAHPO (syne_tune.experiments.benchmark_definitions.yahpo):
Contains a number of blackboxes, some with a large number of instances.
All these are surrogate benchmarks, with a special surrogate model.




Typically, a blackbox concerns a certain machine learning algorithm with a fixed
configuration space. Many of them have been evaluated over a number of
different datasets. Note that in YAHPO, a blackbox is called scenario, and
a dataset is called instance, so that a scenario can have a certain number
of instances. In our terminology, a tabulated benchmark is obtained by
selecting a blackbox together with a dataset.

The files in syne_tune.experiments.benchmark_definitions typically
contain:


	Functions named *_benchmark, which map arguments (such as dataset_name)
to the benchmark definition
SurrogateBenchmarkDefinition
and * being the name of the blackbox (or scenario).


	Dictionaries named *_benchmark_definitions with
SurrogateBenchmarkDefinition
values. If a blackbox has a lot of datasets, we also define a dictionary
*_selected_benchmark_definitions, which selects benchmarks which are
interesting (e.g., not all baselines achieving the same performance rapidly).
In general, we recommend starting with these selected benchmarks.





The YAHPO Family

A rich source of blackbox surrogates in Syne Tune comes from
YAHPO [https://github.com/slds-lmu/yahpo_gym], which is also detailed in
this paper [https://arxiv.org/abs/2109.03670]. YAHPO contains a number of
blackboxes (called scenarios), some of which over a lot of datasets (called
instances). All our definitions are in
syne_tune.experiments.benchmark_definitions.yahpo. Further details can
also be found in the import code
syne_tune.blackbox_repository.conversion_scripts.scripts.yahpo_import.
Here is an overview:


	yahpo_nb301: NASBench301. Single scenario and instance.


	yahpo_lcbench: LCBench. Same underlying data than our own LCBench, but
different surrogate model.


	yahpo_iaml: Family of blackboxes, parameterized by ML method
(yahpo_iaml_methods) and target metric (yahpo_iaml_metrics). Each of
th`ese have 4 datasets (OpenML datasets).


	yahpo_rbv2: Family of blackboxes, parameterized by ML method
(yahpo_rbv2_methods) and target metric (yahpo_rbv2_metrics). Each of
these come with a large number of datasets (OpenML datasets). Note that
compared to YAHPO Gym, we filtered out scenarios which are invalid (e.g., F1
score 0, AUC/F1 equal to 1). We also determined useful max_wallclock_time
values (yahpo_rbv2_max_wallclock_time), and selected benchmarks which
show interesting behaviour (yahpo_rbv2_selected_instances).





Note

At present (YAHPO Gym v1.0), the yahpo_lcbench surrogate has been
trained on invalid LCBench original data (namely, values for first and last
fidelity value have to be removed). As long as this is not fixed, we
recommend using our built-in lcbench blackbox instead.




Note

In YAHPO Gym, yahpo_iaml and yahpo_rbv2 have a fidelity attribute
trainsize with values between 1/20 and 1, which is the fraction
of full dataset the method has been trained. Our import script multiplies
trainsize values with 20 and designates type randint(1, 20), since
common Syne Tune multi-fidelity schedulers require resource_attr values
to be positive integers. yahpo_rbv2 has a second fidelity attribute
repl, whose value is constant 10, this is removed by our import script.








            

          

      

      

    

  

    
      
          
            
  
Benchmarking with Local Backend

A real benchmark (as opposed to a benchmark based on tabulated data or a
surrogate model) is based on a training script, which is executed for each
evaluation. The local backend is the default choice in Syne Tune for running
on real benchmarks.


Note

While Syne Tune contains benchmark definitions for all surrogate benchmarks
in syne_tune.experiments.benchmark_definitions, examples for real
benchmarks are only available when Syne Tune is installed from source.
They are located in benchmarking.




Defining the Experiment

As usual in Syne Tune, the experiment is defined by a number of scripts.
We will look at an example in
benchmarking/examples/launch_local/.
Common code used in these benchmarks can be found in
syne_tune.experiments:


	Local launcher: syne_tune.experiments.launchers.hpo_main_local


	Remote launcher: syne_tune.experiments.launchers.launch_remote_local


	Definitions for real benchmarks: benchmarking.benchmark_definitions




Let us look at the scripts in order, and how you can adapt them to your needs:


	benchmarking/examples/launch_local/baselines.py:
This is the same as in the
simulator case.


	benchmarking/examples/launch_local/hpo_main.py:
This is the same as in the
simulator case, but based on
syne_tune.experiments.launchers.hpo_main_local. We will see shortly how the
launcher is called, and what happens inside.


	benchmarking/examples/launch_local/launch_remote.py:
Much the same as in the
simulator case, but based on
syne_tune.experiments.launchers.launch_remote_local. We will see shortly how the
launcher is called, and what happens inside. Note that
source_dependencies=benchmarking.__path__, which allows the launcher
script to access the training code and benchmark definitions.


	benchmarking/examples/launch_local/requirements-synetune.txt:
This file is for defining the requirements of the SageMaker training job in
remote launching, it mainly has to contain the Syne Tune dependencies. Your
training script may have additional dependencies, and they are combined with
the ones here automatically, as detailed below.




Extra arguments can be specified by extra_args, map_method_args, and
extra results can be written using extra_results, as is explained
here.



Launching Experiments Locally

Here is an example of how experiments with the local backend are launched
locally:

python benchmarking/examples/launch_local/hpo_main.py \
  --experiment_tag tutorial-local --benchmark resnet_cifar10 \
  --method ASHA --num_seeds 1 --n_workers 1





This call runs a single experiment on the local machine (which needs to have a
GPU with PyTorch being installed):


	experiment_tag: Results of experiments are written to
~/syne-tune/{experiment_tag}/*/{experiment_tag}-*/. This name should
confirm to S3 conventions (alphanumerical and -; no underscores).


	benchmark: Selects benchmark from keys of
real_benchmark_definitions().
The default is resnet_cifar10.


	method: Selects HPO method to run from keys of methods. If this is
not given, experiments for all keys in methods are run in sequence.


	num_seeds: Each experiment is run num_seeds times with different
seeds (0, ..., num_seeds - 1). Due to random factors both in training and
tuning, a robust comparison of HPO methods requires such repetitions. Another
parameter is start_seed (default: 0), giving seeds
start_seed, ..., num_seeds - 1. For example, --start_seed 5 --num_seeds 6
runs for a single seed equal to 5.


	n_workers, max_wallclock_time: You can overwrite the default values
for the selected benchmark by these command line arguments.


	max_size_data_for_model: Parameter for Bayesian optimization, MOBSTER or
Hyper-Tune, see
here
and
here.


	num_gpus_per_trial: If you run on an instance with more than one GPU,
you can prescribe how many GPUs should be allocated to each trial. The default
is 1. Note that if the product of n_workers and num_gpus_per_trial is
larger than the number of GPUs on the instance, trials will be delayed.


	gpus_to_use: Allows to restrict the GPUs used by Syne Tune. For example,
if your instance has 8 GPUs, but you also want to use the latter four of them,
use gpus_to_use=[4, 5, 6, 7].


	delete_checkpoints: If 1, checkpoints of trials are removed whenever they
are not needed anymore. The default is 0, in that all checkpoints are
retained.


	scale_max_wallclock_time: If 1, and if n_workers is given as
argument, but not max_wallclock_time, the benchmark default
benchmark.max_wallclock_time is multiplied by :math:B / min(A, B),
where A = n_workers, B = benchmark.n_workers. This means we run for
longer if n_workers < benchmark.n_workers, but keep
benchmark.max_wallclock_time the same otherwise.


	use_long_tuner_name_prefix: If 1, results for an experiment are written
to a directory whose prefix is
f"{experiment_tag}-{benchmark_name}-{seed}", followed by a postfix
containing date-time and a 3-digit hash. If 0, the prefix is
experiment_tag only. The default is 1 (long prefix).




If you defined additional arguments via extra_args, you can use them here
as well.


Note

When launching an experiment locally, you need to be on an instance which
supports the required computations (e.g., has 1 or more GPUs), and you need
to have installed all required dependencies, including those of the
SageMaker framework. In the example above, resnet_cifar10 uses the
PyTorch framework, and n_workers=4 by default, which we overwrite by
n_workers=1: you need to launch on a machine with 1 GPU, and with
PyTorch being installed and properly setup to run GPU computations. If you
cannot be bothered with all of this, please consider
remote launching as an
alternative. On the other hand, you can launch experiments locally without
using SageMaker (or AWS) at all.





Benchmark Definitions

In the example above, we select a benchmark via --benchmark resnet_cifar10.
All currently included real benchmarks are collected in
real_benchmark_definitions(),
a function which returns the dictionary of real benchmarks, configured by some
extra arguments. If you are happy with selecting one of these existing benchmarks,
you may safely skip this subsection.

For resnet_cifar10, this selects
resnet_cifar10_benchmark(),
which returns meta-data for the benchmark as a
RealBenchmarkDefinition
object. Here, the argument sagemaker_backend is False in our case,
since we use the local backend, and additional **kwargs override arguments
of RealBenchmarkDefinition. Important arguments are:


	script: Absolute filename of the training script. If your script requires
additional dependencies on top of the SageMaker framework, you need to
specify them in requirements.txt in the same directory.


	config_space: Configuration space, this must include max_resource_attr


	metric, mode, max_resource_attr, resource_attr: Names related
to the benchmark, either of methods reported (output) or of config_space
entries (input).


	max_wallclock_time, n_workers, max_num_evaluations: Defaults for
tuner or stopping criterion, suggested for this benchmark.


	instance_type: Suggested AWS instance type for this benchmark.


	framework, estimator_kwargs: SageMaker framework and additional
arguments to SageMaker estimator.




Note that parameters like n_workers, max_wallclock_time, or
instance_type are given default values here, which can be overwritten
by command line arguments. This is why the function signature ends with
**kwargs, and we execute _kwargs.update(kwargs) just before creating
the RealBenchmarkDefinition object.



Launching Experiments Remotely

Remote launching is particularly convenient for experiments with the local
backend, even if you just want to run a single experiment. For local
launching, you need to be on an EC2 instance of the desired instance type, and
Syne Tune has to be installed there along with all dependencies of your
benchmrk. None of this needs to be done for remote launching. Here is an
example:

python benchmarking/examples/launch_local/launch_remote.py \
  --experiment_tag tutorial-local --benchmark resnet_cifar10 \
  --num_seeds 5





Since --method is not used, we run experiments for all methods (RS,
BO, ASHA, MOBSTER), and for 5 seeds. These are 20 experiments,
which are mapped to 20 SageMaker training jobs. These will run on instances of
type ml.g4dn.12xlarge, which is the default for resnet_cifar10 and the
local backend. Instances of this type have 4 GPUs, so we can use n_workers
up to 4 (the default being 4). Results are written to S3, using paths such as
syne-tune/{experiment_tag}/ASHA-3/ for method ASHA and seed 3.

Finally, some readers may be puzzled why Syne Tune dependencies are defined in
benchmarking/examples/launch_local/requirements-synetune.txt, and not in
requirements.txt instead. The reason is that dependencies of the SageMaker
estimator for running the experiment locally is really the union of two such
files. First, requirements-synetune.txt for the Syne Tune dependencies,
and second, requirements.txt next to the training script. The remote
launching script is creating a requirements.txt file with this union in
benchmarking/examples/launch_local/, which should not become part of the
repository.



Visualizing Tuning Metrics in the SageMaker Training Job Console

When experiments are launched remotely with the local or SageMaker backend, a
number of metrics are published to the SageMaker training job console (this
feature can be switched off with --remote_tuning_metrics 0):


	BEST_METRIC_VALUE: Best
metric value attained so far


	BEST_TRIAL_ID: ID of trial
for best metric value so far


	BEST_RESOURCE_VALUE:
Resource value for best metric value so far


	BEST_HP_PREFIX, followed
by hyperparameter name: Hyperparameter value for best metric value so far




You can inspect these metrics in real time in AWS CloudWatch. To do so:


	Locate the training job running your experiment in the AWS SageMaker console.
Click on Training, then Training jobs, then on the job in the list.
For the command above, the jobs are named like
tutorial-local-RS-0-XyK8 (experiment tag, then method, then seed, then
4-character hash).


	Under Metrics, you will see a number of entries, starting with
best_metric_value and best_trial_id.


	Further below, under Monitor, click on View algorithm metrics. This
opens a CloudWatch dashboard


	At this point, you need to change a few defaults, in that CloudWatch only
samples metrics (by grepping the logs) every 5 minutes and then displays
average values over the 5-minute window. Click on Browse and select the
metrics you want to display. For now, select best_metric_value,
best_trial_id, best_resource_value.


	Click on Graphed metrics, and for every metric, select
Period -> 30 seconds. Also, select Statistics -> Maximum for metrics
best_trial_id, best_resource_value. For best_metric_value, select
Statistics -> Minimum if your objective metric is minimized (mode="min"),
and Statistics -> Maximum otherwise. In our resnet_cifar10 example,
the objective is accuracy, to be maximized, so we select the latter.


	Finally, select `10s for auto-refresh (the circle with arrow in the
upper right corner), and change the temporal resolution by displaying 1h
(top row).




This visualization shows you the best metric value attained so far, and which
trial attained it for which resource value (e.g., number of epochs). It can be
improved. For example, we could plot the curves in different axes. Also, we can
visualize the best hyperparameter configuration found so far. In the
resnet_cifar10 example, this is given by the metrics best_hp_lr,
best_hp_batch_size, best_hp_weight_decay, best_hp_momentum.



Random Seeds and Paired Comparisons

Random effects are the most important reason for variations in experimental
outcomes, due to which a meaningful comparison of HPO methods needs to run
a number of repetitions (also called seeds above). There are two types of
random effects:


	Randomness in the evaluation of the objective \(f(x)\) to optimize:
repeated evaluations of \(f\) for the same configuration \(x\)
result in different metric values.
In neural network training, these variations originate from random weight
initialization and the ordering of mini-batches.


	Randomness in the HPO algorithm itself. This is evident for random search
and ASHA, but just as well concerns Bayesian optimization, since the
initial configurations are drawn at random, and the optimization of the
acquisition function involves random choices as well.




Syne Tune allows the second source of randomness to be controlled by passing
a random seed to the scheduler at initialization. If random search is run
several times with the same random seed for the same configuration space,
exactly the same sequence of configurations is suggested. The same holds for ASHA.
When running random search and Bayesian optimization with the same random seed,
the initial configurations (which in BO are either taken from
points_to_evaluate or drawn at random) are identical.

The scheduler random seed used in a benchmark experiment is a combination of
a master random seed and the seed number introduced above (the latter has
values \(0, 1, 2, \dots\)). The master random seed is passed to
launch_remote.py or hpo_main.py as --random_seed. If no master
random seed is passed, it is drawn at random and output. The master random
seed is also written into metadata.json as part of experimental results.
Importantly, the scheduler random seed is the same across different methods
for the same seed. This implements a practice called paired comparison,
whereby for each seed, different methods are fed with the same random number
sequence. This practice reduces variance between method outcomes, while
still taking account of randomness by running the experiment several times
(for different seeds \(0, 1, 2, \dots\)).


Note

When comparing several methods on the same benchmark, it is recommended
to (a) repeat the experiment several times (via --num_seeds), and
to (b) use the same master random seed. If all comparisons are done
with a single call of launch_remote.py or hpo_main.py, this is
automatically the case, as the master random seed is drawn at random.
However, if the comparison extends over several calls, make sure to
note down the master random seed from the first call and pass this
value via --random_seed to subsequent calls. The master random seed
is also stored as random_seed in the metadata metadata.json as
part of experimental results.







            

          

      

      

    

  

    
      
          
            
  
Benchmarking with SageMaker Backend

The SageMaker backend allows you to run distributed tuning across several
instances, where the number of parallel evaluations is not limited by the
configuration of an instance, but only by your compute budget.


Defining the Experiment

The scripts required to define an experiment are pretty much the same as in the
local backend case. We will look at an example in
benchmarking/examples/launch_sagemaker/.
Common code used in these benchmarks can be found in
syne_tune.experiments:


	Local launcher: syne_tune.experiments.launchers.hpo_main_sagemaker


	Remote launcher: syne_tune.experiments.launchers.launch_remote_sagemaker


	Definitions for real benchmarks: benchmarking.benchmark_definitions




The scripts
benchmarking/examples/launch_sagemaker/baselines.py,
benchmarking/examples/launch_sagemaker/hpo_main.py, and
benchmarking/examples/launch_sagemaker/launch_remote.py
are identical in structure to what happens in the
local backend case, with the only
difference that syne_tune.experiments.launchers.hpo_main_sagemaker or
syne_tune.experiments.launchers.launch_remote_sagemaker are imported from. Moreover,
Syne Tune dependencies need to be specified in
benchmarking/examples/launch_sagemaker/requirements.txt.

In terms of benchmarks, the same definitions can be used for the SageMaker
backend, in particular you can select from
real_benchmark_definitions().
However, the functions there are called with sagemaker_backend=True, which
can lead to different values in
RealBenchmarkDefinition.
For example,
resnet_cifar10_benchmark()
returns instance_type=ml.g4dn.xlarge for the SageMaker backend (1 GPU per
instance), but instance_type=ml.g4dn.12xlarge for the local backend (4 GPUs
per instance). This is because for the local backend to support n_workers=4,
the instance needs to have at least 4 GPUs, but for the SageMaker backend, each
worker uses its own instance, so a cheaper instance type can be used.

Extra arguments can be specified by extra_args, map_method_args, and
extra results can be written using extra_results, as is explained
here.



Launching Experiments Locally

Here is an example of how experiments with the SageMaker backend are launched
locally:

python benchmarking/examples/launch_sagemaker/hpo_main.py \
  --experiment_tag tutorial-sagemaker --benchmark resnet_cifar10 \
  --method ASHA --num_seeds 1





This call launches a single experiment on the local machine (however, each
trial launches the training script as a SageMaker training job, using the
instance type suggested for the benchmark). The command line arguments are the
same as in the
local backend case. Additional
arguments are:


	n_workers, max_wallclock_time: Overwrite the default values for the
selected benchmark.


	max_failures: Number of trials which can fail without terminating the
entire experiment.


	warm_pool: This flag is discussed
below.


	max_size_data_for_model: Parameter for Bayesian optimization, MOBSTER or
Hyper-Tune, see
here
and
here.


	scale_max_wallclock_time: If 1, and if n_workers is given as
argument, but not max_wallclock_time, the benchmark default
benchmark.max_wallclock_time is multiplied by :math:B / min(A, B),
where A = n_workers, B = benchmark.n_workers. This means we run for
longer if n_workers < benchmark.n_workers, but keep
benchmark.max_wallclock_time the same otherwise.


	use_long_tuner_name_prefix: If 1, results for an experiment are written
to a directory whose prefix is
f"{experiment_tag}-{benchmark_name}-{seed}", followed by a postfix
containing date-time and a 3-digit hash. If 0, the prefix is
experiment_tag only. The default is 1 (long prefix).




If you defined additional arguments via extra_args, you can use them here
as well.



Launching Experiments Remotely

Sagemaker backend experiments can also be launched remotely, in which case
each experiment is run in a SageMaker training job, using a cheap instance
type, within which trials are executed as SageMaker training jobs as well. The
usage is the same as in the
local backend case.

When experiments are launched remotely with the SageMaker backend, a number of
metrics are published to the SageMaker training job console (this feature can
be switched off with --remote_tuning_metrics 0). This is detailed
here.



Using SageMaker Managed Warm Pools

The SageMaker backend supports
SageMaker managed warm pools [https://docs.aws.amazon.com/sagemaker/latest/dg/train-warm-pools.html],
a recently launched feature of SageMaker. In a nutshell, this feature allows
customers to circumvent start-up delays for SageMaker training jobs which share
a similar configuration (e.g., framework) with earlier jobs which have already
terminated. For Syne Tune with the SageMaker backend, this translates to
experiments running faster or, for a fixed max_wallclock_time, running more
trials. Warm pools are used if the command line argument --warm_pool 1 is
used with hpo_main.py. For the example above:

python benchmarking/examples/launch_sagemaker/hpo_main.py \
  --experiment_tag tutorial-sagemaker --benchmark resnet_cifar10 \
  --method ASHA --num_seeds 1 --warm_pool 1





The warm pool feature is most useful with multi-fidelity HPO methods (such as
ASHA and MOBSTER in our example). Some points you should be aware of:


	When using SageMaker managed warm pools with the SageMaker backend, it is
important to use start_jobs_without_delay=False when creating the
Tuner.


	Warm pools are a billable resource, and you may incur extra costs arising
from the fact that up to n_workers instances are kept running for about
10 minutes at the end of your experiment. You have to request warm pool quota
increases for instance types you would like to use. For our example, you need
to have quotas for (at least) four ml.g4dn.xlarge instances, both for
training and warm pool usage.


	As a sanity check, you can watch the training jobs in the console. You
should see InUse and Reused in the Warm pool status column.
Running the example above, the first 4 jobs should complete in about 7 to 8
minutes, while all subsequent jobs should take only 2 to 3 minutes.








            

          

      

      

    

  

    
      
          
            
  
Visualization of Results

As we have seen, Syne Tune is a powerful tool for running a large number of
experiments in parallel, which can be used to compare different tuning
algorithms, or to split a difficult tuning problem into smaller pieces, which
can be worked on in parallel. In this section, we show how results of all
experiments of such a comparative study can be visualized, using plotting
facilities provided in Syne Tune.


Note

This section offers an example of the plotting facilities in Syne Tune. A
more comprehensive tutorial is
here.




A Comparative Study

For the purpose of this tutorial, we ran the setup of
benchmarking/examples/benchmark_hypertune/,
using 15 random repetitions (or seeds). This is the command:

python benchmarking/examples/benchmark_hypertune/launch_remote.py \
  --experiment_tag docs-1 --random_seed 2965402734 --num_seeds 15





Note that we fix the seed here in order to obtain repeatable results. Recall
from here that we compare 7
methods on 12 surrogate benchmarks:


	Since 4 of the 7 methods are “expensive”, the above command launches
3 + 4 * 15 = 63 remote tuning jobs in parallel. Each of these jobs runs
experiments for one method and all 12 benchmarks. For the “expensive” methods,
each job runs a single seed, while for the remaining methods (ASHA, SYNCHB,
BOHB), all seeds are run sequentially in a single job, so that a job for a
“cheap” method runs 12 * 15 = 180 experiments sequentially.


	The total number of experiment runs is 7 * 12 * 15 = 1260


	Results of these experiments are stored to S3, using paths such as
<s3-root>/syne-tune/docs-1/ASHA/docs-1-<datetime>/ for ASHA (all seeds),
or <s3-root>/syne-tune/docs-1/HYPERTUNE-INDEP-5/docs-1-<datetime>/ for
seed 5 of HYPERTUNE-INDEP. Result files are metadata.json,
results.csv.gz, and tuner.dill. The former two are required for plotting
results.




Once all of this has finished, we are left with 3780 result files on S3. We will
now show how these can be downloaded, processed, and visualized.



Visualization of Results

First, we need to download the results from S3 to the local disk. This can be
done by a command which is also printed at the end of launch_remote.py:

aws s3 sync s3://<BUCKET-NAME>/syne-tune/docs-1/ ~/syne-tune/docs-1/ \
  --exclude "*" --include "*metadata.json" --include "*results.csv.zip"





This command can also be run from inside the plotting code. Note that the
tuner.dill result files are not downloaded, since they are not needed for
result visualization.

Here is the code for generating result plots for two of the benchmarks:


benchmarking/examples/benchmark_hypertune/plot_results.py

from typing import Dict, Any, Optional
import logging

from baselines import methods
from benchmark_definitions import benchmark_definitions
from syne_tune.experiments import ComparativeResults, PlotParameters, SubplotParameters


def metadata_to_setup(metadata: Dict[str, Any]) -> Optional[str]:
    # The setup is the algorithm. No filtering
    return metadata["algorithm"]


SETUPS_RIGHT = ("ASHA", "SYNCHB", "BOHB")


def metadata_to_subplot(metadata: Dict[str, Any]) -> Optional[int]:
    return int(metadata["algorithm"] in SETUPS_RIGHT)


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)
    experiment_name = "docs-1"
    experiment_names = (experiment_name,)
    setups = list(methods.keys())
    num_runs = 15
    download_from_s3 = False  # Set ``True`` in order to download files from S3
    # Plot parameters across all benchmarks
    plot_params = PlotParameters(
        xlabel="wall-clock time",
        aggregate_mode="iqm_bootstrap",
        grid=True,
    )
    # We would like two subplots (1 row, 2 columns), with MOBSTER and HYPERTUNE
    # results on the left, and the remaining baselines on the right. Each
    # column gets its own title, and legends are shown in both
    plot_params.subplots = SubplotParameters(
        nrows=1,
        ncols=2,
        kwargs=dict(sharey="all"),
        titles=["Model-based Methods", "Baselines"],
        legend_no=[0, 1],
    )
    # The creation of ``results`` downloads files from S3 (only if
    # ``download_from_s3 == True``), reads the metadata and creates an inverse
    # index. If any result files are missing, or there are too many of them,
    # warning messages are printed
    results = ComparativeResults(
        experiment_names=experiment_names,
        setups=setups,
        num_runs=num_runs,
        metadata_to_setup=metadata_to_setup,
        plot_params=plot_params,
        metadata_to_subplot=metadata_to_subplot,
        download_from_s3=download_from_s3,
    )
    # We can now create plots for the different benchmarks
    # First: nas201-cifar100
    benchmark_name = "nas201-cifar100"
    benchmark = benchmark_definitions[benchmark_name]
    # These parameters overwrite those given at construction
    plot_params = PlotParameters(
        metric=benchmark.metric,
        mode=benchmark.mode,
        ylim=(0.265, 0.31),
    )
    results.plot(
        benchmark_name=benchmark_name,
        plot_params=plot_params,
        file_name=f"./{experiment_name}-{benchmark_name}.png",
    )
    # Next: nas201-ImageNet16-120
    benchmark_name = "nas201-ImageNet16-120"
    benchmark = benchmark_definitions[benchmark_name]
    # These parameters overwrite those given at construction
    plot_params = PlotParameters(
        metric=benchmark.metric,
        mode=benchmark.mode,
        ylim=(0.535, 0.58),
    )
    results.plot(
        benchmark_name=benchmark_name,
        plot_params=plot_params,
        file_name=f"./{experiment_name}-{benchmark_name}.png",
    )







The figure for benchmark nas201-cifar-100 looks as follows:



	[image: Results for nas201-cifar-100]





	Results for NASBench-201 (CIFAR-100)







	There are two subfigures next to each other. Each contains a number of
curves in bold, along with confidence intervals. The horizontal axis
depicts wall-clock time, and on the vertical axis, we show the best
metric value found until this time.


	More general, the data from our 1260 experiments can be grouped w.r.t.
subplot, then setup. Each setup gives rise to one curve (bold, with
confidence band). Subplots are optional, the default is to plot a single
figure.


	The function metadata_to_setup maps the metadata stored for an experiment
to the setup name, or to None if this experiment should be filtered out.
In our basic case, the setup is simply the name of the tuning algorithm.
Our benchmarking framework stores a host of information as metadata, the
most useful keys for grouping are:


	algorithm: Name of method (ASHA, MOBSTER-INDEP, … in our example)


	tag: Experiment tag. This is docs-1 in our example. Becomes useful when
we merge data from different studies in a single figure


	benchmark: Benchmark name (nas201-cifar-100, … in our example)


	n_workers: Number of workers




Other keys may be specific to algorithm.



	Once the data is grouped w.r.t. benchmark, then subplot (optional), then
setup, we should be left with 15 experiments, one for each seed. Each seed
gives rise to a best metric value curve. A metric value metric_val is
converted as metric_multiplier * metric_val if mode == "min",
and as 1 - metric_multiplier * metric_val if mode == "max".
For example, if your metric is accuracy in percent (from 0 to 100), then
mode="max" and metric_multiplier=0.01, and the curve shows error
in [0, 1].
However, if convert_to_min == False, metric_val is always
converted as metric_multiplier * metric_val, so that larger is
better if mode == "max".


	These 15 curves are now interpolated to a common grid, and at each grid
point, the 15 values (one for each seed) are aggregated into 3 values
lower, aggregate, upper. In the figure, aggregate is shown
in bold, and lower, upper in dashed. Different aggregation modes
are supported (selected by plot_params.aggregate_mode):


	mean_and_ci: Mean and 0.95 normal confidence interval


	iqm_bootstrap (default): Interquartile mean and 0.95 confidence
interval based on the bootstrap variance estimate. These statistics are
argued for in Agarwal et.al: Deep Reinforcement Learning at the Edge
of the Statistical Precipice [https://arxiv.org/abs/2108.13264].


	median_percentiles: Median and 25 (lower), 75 (upper) percentiles






	Plotting starts with the creation of a
ComparativeResults object. We need to
pass the experiment names (or tags), the list of all setups, the number of
runs (or seeds), the metadata_to_setup function, as well as default
plot parameters in plot_params. See
PlotParameters for full details about the
latter. In our example, we set xlabel, aggregate_mode (see above),
and enable a grid with grid=True. Note that these parameters can be
extended and overwritten by parameters for each plot.


	In our example, we separate the MOBSTER and HYPERTUNE setups from the
baselines, by using two subfigures. This is done by specifying
plot_params.subplots and metadata_to_subplot. In the former,
plot_params.subplots.nrows and plot_params.subplots.ncols are
mandatory, providing the shape of the subplot arrangement.
In plot_params.subplots.titles, we can provide titles for each column
(which we do here). If given, this overrides plot_params.title.
Also, plot_params.subplots.legend_no=[0, 1] asks for legends in both
subplots (the default is no legend at all). For full details about these
arguments, see SubplotParameters


	The creation of results does a number of things. First, if
download_from_s3=True, result files are downloaded from S3. In our
example, we assume this has already been done. Next, all result files are
iterated over, all metadata.json are read, and an inverse index from
benchmark name to paths, setup_name, and subplot_no is created.
This process also checks that exactly num_runs experiments are present
for every setup. For large studies, it frequently happens that too few
or too many results are found. The warning outputs can be used for
debugging.


	Given results, we can create plots for every benchmark. In our example,
this is done for nas201-cifar100 and nas201-ImageNet16-120, by
calling results.plot(). Apart from the benchmark name, we also pass
plot parameters in plot_params, which extend (and overwrite) those
passed at construction. In particular, we need to pass metric and
mode, which we can obtain from the benchmark description. Moreover,
ylim is a sensible range for the vertical axis, which is different
for every benchmark (this is optional).


	If we pass file_name as argument to results.plot, the figure is
stored in this file.





Note

Apart from plots comparing different setups, aggregated over multiple seeds,
we can also visualize the learning curves per trial for a single
experiment. Details are given in
this tutorial.







            

          

      

      

    

  

    
      
          
            
  
Contributing Your Benchmark

In order to increase its scope and usefulness, Syne Tune greatly welcomes the
contribution of new benchmarks, in particular in areas not yet well covered.
In a nutshell, contributing a benchmark is pretty similar to a code
contribution, but in this section, we provide some extra hints.


Contributing a Real Benchmark

In principle, a real benchmark consists of a Python script which runs
evaluations, adhering to the conventions of Syne Tune. However, in order for
your benchmark to be useful for the community, here are some extra
requirements:


	The benchmark should not be excessively expensive to run


	If your benchmark involves training a machine learning model, the code should
work with the dependencies of a
SageMaker framework [https://sagemaker.readthedocs.io/en/stable/frameworks/index.html].
You can specify extra dependencies, but they should be small. While Syne
Tune (and SageMaker) supports Docker containers, Syne Tune is not hosting
them. At present, we also do not accept Dockerfile script contributions,
since we cannot maintain them.


	If your benchmark depends on data files, these must be hosted for public read
access somewhere. Syne Tune cannot host data files, and will reject
contributions with large files. If downloading and preprocessing the data for
your benchmark takes too long, you may contribute an import script of a
similar type to what is done in our syne_tune.blackbox_repository.




Let us have a look at the resnet_cifar10 benchmark as example of what needs
to be done:


	resnet_cifar10.py:
The training script for your benchmark should be in a subdirectory of
benchmarking/training_scripts/. The same directory can contain a file
requirements.txt with dependencies beyond the SageMaker framework you
specify for your code. You are invited to study the code
resnet_cifar10.py
in detail. Important points are:


	Your script needs to report relevant metrics back to Syne Tune at the end
of each epoch (or only once, at the end, if your script does not support
multi-fidelity tuning), using an instance of Reporter.


	We strongly recommend your script to support checkpointing, and the
resnet_cifar10 script is a good example for how to do this with
PyTorch training scripts. If checkpointing is not supported, all
pause-and-resume schedulers will run substantially slower than they really
have to, because every resume operation requires them to train the model
from scratch.






	benchmarking.benchmark_definitions.resnet_cifar10:
You need to define some meta-data for your benchmark in
benchmarking.benchmark_definitions. This should be a
function returning a
RealBenchmarkDefinition
object. Arguments should be a flag sagemaker_backend (True for
SageMaker backend experiment, False otherwise), and **kwargs
overwriting values in RealBenchmarkDefinition. Hints:


	framework should be one of the
SageMaker frameworks [https://sagemaker.readthedocs.io/en/stable/frameworks/index.html].
You should also specify framework_version and py_version in the
estimator_kwargs dict.


	config_space is the configuration space for your benchmark. Please
make sure to
choose hyperparameter domains wisely.


	instance_type, n_workers: You need to specify a default instance
type and number of workers for experiments running your benchmark. If in
doubt, choose instances with the lowest costs. Currently, most of our GPU
benchmarks use ml.g4dn.xlarge, and CPU benchmarks use ml.c5.4xlarge.
Note that for experiments with the local backend (sagemaker_backend=False),
the instance type must offer at least n_workers GPUs or CPU cores. For
example, ml.g4dn.xlarge only has 1 GPU, while ml.g4dn.12xlarge
provides for n_workers=4.


	max_wallclock_time is a default value for the length of experiments
running your benchmark, a value which depends on instance_type,
n_workers. * metric, mode, max_resource_attr,
resource_attr are required parameters for your benchmark, which are
arguments to schedulers.









Note

If you simply would like to run experiments with your own training code,
it is not necessary for you to the benchmarking module at all. It
just makes comparisons to other built-in benchmarks easier. See
this tutorial for more details.




Role of benchmarking/nursery/

The best place to contribute a new benchmark, along with launcher scripts, is
to create a new package in benchmarking.nursery. This package contains:


	Training script and meta-data definition, as detailed above


	Launcher scripts, as detailed in the remainder of this tutorial


	Optionally, some scripts to visualize results




You are encouraged to run some experiments with your benchmark, involving a
number of baseline HPO methods, and submit results along with your pull
request.

Once your benchmark is in there, it may be used by the community. If others
find it useful, it can be graduated into
benchmarking.benchmark_definitions,
benchmarking.training_scripts, and benchmarking.examples.

We are looking forward to your
pull request [https://github.com/awslabs/syne-tune/blob/main/CONTRIBUTING.md].




Contributing a Tabulated Benchmark

Syne Tune contains a blackbox repository syne_tune.blackbox_repository
for maintaining and serving tabulated and surrogate benchmarks, as well as a
simulator backend (syne_tune.backend.simulator_backend), which
simulates training evaluations from a blackbox. The simulator backend can be
used with any Syne Tune scheduler, and experiment runs are very close to what
would be obtained by running training for real. Since time is simulated as well,
not only are experiments very cheap to run (on basic CPU hardware), they also
finish many times faster than real time. An overview is given
here.

If you have the data for a tabulated benchmark, we strongly encourage you to
contribute an import script to Syne Tune [https://github.com/awslabs/syne-tune/blob/main/CONTRIBUTING.md].
Examples for such scripts are
syne_tune.blackbox_repository.conversion_scripts.scripts.fcnet_import,
syne_tune.blackbox_repository.conversion_scripts.scripts.nasbench201_import,
syne_tune.blackbox_repository.conversion_scripts.scripts.pd1_import,
syne_tune.blackbox_repository.conversion_scripts.scripts.yahpo_import,
syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench.lcbench.
See also
FAQ.





            

          

      

      

    

  

    
      
          
            
  
Visualization of Results

Finding the best model to deploy for a task at hand is a semi-automated
process. The data scientist runs a set of experiments in parallel, visualizes
comparative results, based on which the next set of experiments are planned.
Syne Tune does not only allow you to
run many experiments in parallel, but also
provides tooling to rapidly create customized visualization in order to gain
insights for the next steps, or to present final results to clients. This
tutorial provides an overview of visualization facilities.


Note

In order to run the code in this tutorial, you need to have
installed Syne Tune from source.
Also, make sure to have installed the blackbox-repository
dependencies.





	Visualization Results of a Single Experiment

	Visualization of Results from many Experiments

	Visualizing Learning Curves








            

          

      

      

    

  

    
      
          
            
  
Visualization Results of a Single Experiment

In this section, we describe the setup to be used for this tutorial. Then,
we show how the results of a single experiment can be visualized.


Note

This tutorial shares some content with
this one, but is more
comprehensive in terms of features.




Note

In this tutorial, we will use a surrogate benchmark in order to obtain
realistic results with little computation. To this end, you need
to have the blackbox-repository dependencies installed, as detailed
here.
Note that
the first time you use a surrogate benchmark, its data files are downloaded
and stored to your S3 bucket, this can take a considerable amount of time.
The next time you use the benchmark, it is loaded from your local disk or
your S3 bucket, which is fast.




A Comparative Study

For the purpose of this tutorial, we ran the setup of
benchmarking/examples/benchmark_hypertune/,
using 15 random repetitions (or seeds). This is the command:

python benchmarking/examples/benchmark_hypertune/launch_remote.py \
  --experiment_tag docs-1 --random_seed 2965402734 --num_seeds 15





Note that we fix the seed here in order to obtain repeatable results. Recall
from here that we compare 7
methods on 12 surrogate benchmarks:


	Since 4 of the 7 methods are “expensive”, the above command launches
3 + 4 * 15 = 63 remote tuning jobs in parallel. Each of these jobs runs
experiments for one method and all 12 benchmarks. For the “expensive” methods,
each job runs a single seed, while for the remaining methods (ASHA, SYNCHB,
BOHB), all seeds are run sequentially in a single job, so that a job for a
“cheap” method runs 12 * 15 = 180 experiments sequentially.


	The total number of experiment runs is 7 * 12 * 15 = 1260


	Results of these experiments are stored to S3, using paths such as
<s3-root>/syne-tune/docs-1/ASHA/docs-1-<datetime>/ for ASHA (all seeds),
or <s3-root>/syne-tune/docs-1/HYPERTUNE-INDEP-5/docs-1-<datetime>/ for
seed 5 of HYPERTUNE-INDEP. Result files are metadata.json,
results.csv.gz, and tuner.dill. The former two are required for plotting
results.




Once all of this has finished, we are left with 3780 result files on S3. First,
we need to download the results from S3 to the local disk. This can be done by
a command which is also printed at the end of launch_remote.py:

aws s3 sync s3://<BUCKET-NAME>/syne-tune/docs-1/ ~/syne-tune/docs-1/ \
  --exclude "*" --include "*metadata.json" --include "*results.csv.zip"





This command can also be run from inside the plotting code. Note that the
tuner.dill result files are not downloaded, since they are not needed for
result visualization.



Visualization of a Single Experiment

For a single experiment, we can directly plot the best metric value obtained
as a function of wall-clock time. This can be done directly following the
experiment, as shown in
this example. In
our setup, experiments have been launched remotely, so in order to plot
results for a single experiment, we need to know the full tuner name.
Say, we would like to plot results of MOBSTER-JOINT, seed=0. The
names of single experiments are obtained by:

ls ~/syne-tune/docs-1/MOBSTER-JOINT-0/





There is one experiment per benchmark, starting with docs-1-nas201-ImageNet16-120-0,
docs-1-nas201-cifar100-0, docs-1-nas201-cifar10-0, followed by date-time
strings. Once the tuner name is known, the following scripts plots the
desired curve and also displays the best configuration found:


code/plot_single_experiment_results.py

from syne_tune.experiments import load_experiment


if __name__ == "__main__":
    # Replace with name for your experiment:
    # Run:
    #    ls ~/syne-tune/docs-1/MOBSTER-JOINT-0/
    tuner_name = (
        "docs-1/MOBSTER-JOINT-0/docs-1-nas201-cifar10-0-2023-04-15-11-35-31-201"
    )

    tuning_experiment = load_experiment(tuner_name)
    print(tuning_experiment)

    print(f"best result found: {tuning_experiment.best_config()}")

    tuning_experiment.plot()







In general, you will have run more than one experiment. As in our study above,
you may want to compare different methods, or variations of the tuning problem.
You may want to draw conclusions by running on several benchmarks, and counter
random effects by repeating experiments several times. In the next section, we
show how comparative plots over many experiments can be created.





            

          

      

      

    

  

    
      
          
            
  
Visualization of Results from many Experiments

Apart from troubleshooting, visualizing the results of a single experiment is
of limited use. In this section, we show how to create comparative plots,
using results of many experiment. We will use results from the study
detailed above.


A First Comparative Plot

Here is the code for generating result plots for two of the benchmarks:


benchmarking/examples/benchmark_hypertune/plot_results.py

from typing import Dict, Any, Optional
import logging

from baselines import methods
from benchmark_definitions import benchmark_definitions
from syne_tune.experiments import ComparativeResults, PlotParameters, SubplotParameters


def metadata_to_setup(metadata: Dict[str, Any]) -> Optional[str]:
    # The setup is the algorithm. No filtering
    return metadata["algorithm"]


SETUPS_RIGHT = ("ASHA", "SYNCHB", "BOHB")


def metadata_to_subplot(metadata: Dict[str, Any]) -> Optional[int]:
    return int(metadata["algorithm"] in SETUPS_RIGHT)


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)
    experiment_name = "docs-1"
    experiment_names = (experiment_name,)
    setups = list(methods.keys())
    num_runs = 15
    download_from_s3 = False  # Set ``True`` in order to download files from S3
    # Plot parameters across all benchmarks
    plot_params = PlotParameters(
        xlabel="wall-clock time",
        aggregate_mode="iqm_bootstrap",
        grid=True,
    )
    # We would like two subplots (1 row, 2 columns), with MOBSTER and HYPERTUNE
    # results on the left, and the remaining baselines on the right. Each
    # column gets its own title, and legends are shown in both
    plot_params.subplots = SubplotParameters(
        nrows=1,
        ncols=2,
        kwargs=dict(sharey="all"),
        titles=["Model-based Methods", "Baselines"],
        legend_no=[0, 1],
    )
    # The creation of ``results`` downloads files from S3 (only if
    # ``download_from_s3 == True``), reads the metadata and creates an inverse
    # index. If any result files are missing, or there are too many of them,
    # warning messages are printed
    results = ComparativeResults(
        experiment_names=experiment_names,
        setups=setups,
        num_runs=num_runs,
        metadata_to_setup=metadata_to_setup,
        plot_params=plot_params,
        metadata_to_subplot=metadata_to_subplot,
        download_from_s3=download_from_s3,
    )
    # We can now create plots for the different benchmarks
    # First: nas201-cifar100
    benchmark_name = "nas201-cifar100"
    benchmark = benchmark_definitions[benchmark_name]
    # These parameters overwrite those given at construction
    plot_params = PlotParameters(
        metric=benchmark.metric,
        mode=benchmark.mode,
        ylim=(0.265, 0.31),
    )
    results.plot(
        benchmark_name=benchmark_name,
        plot_params=plot_params,
        file_name=f"./{experiment_name}-{benchmark_name}.png",
    )
    # Next: nas201-ImageNet16-120
    benchmark_name = "nas201-ImageNet16-120"
    benchmark = benchmark_definitions[benchmark_name]
    # These parameters overwrite those given at construction
    plot_params = PlotParameters(
        metric=benchmark.metric,
        mode=benchmark.mode,
        ylim=(0.535, 0.58),
    )
    results.plot(
        benchmark_name=benchmark_name,
        plot_params=plot_params,
        file_name=f"./{experiment_name}-{benchmark_name}.png",
    )







The figure for benchmark nas201-cifar-100 looks as follows:



	[image: Results for nas201-cifar-100]





	Results for NASBench-201 (CIFAR-100)







	There are two subfigures next to each other. Each contains a number of
curves in bold, along with confidence intervals. The horizontal axis
depicts wall-clock time, and on the vertical axis, we show the best
metric value found until this time.


	More general, the data from our 1260 experiments can be grouped w.r.t.
subplot, then setup. Each setup gives rise to one curve (bold, with
confidence band). Subplots are optional, the default is to plot a single
figure.


	The function metadata_to_setup maps the metadata stored for an experiment
to the setup name, or to None if this experiment should be filtered out.
In our basic case, the setup is simply the name of the tuning algorithm.
Our experimentation framework stores a host of information as metadata, the
most useful keys for grouping are:


	algorithm: Name of method (ASHA, MOBSTER-INDEP, … in our example)


	tag: Experiment tag. This is docs-1 in our example. Becomes useful when
we merge data from different studies in a single figure


	benchmark: Benchmark name (nas201-cifar-100, … in our example)


	n_workers: Number of workers




Other keys may be specific to algorithm.



	Once the data is grouped w.r.t. benchmark, then subplot (optional), then
setup, we should be left with 15 experiments, one for each seed. Each seed
gives rise to a best metric value curve. A metric value metric_val is
converted as metric_multiplier * metric_val if mode == "min",
and as 1 - metric_multiplier * metric_val if mode == "max".
For example, if your metric is accuracy in percent (from 0 to 100), then
mode="max" and metric_multiplier=0.01, and the curve shows error
in [0, 1].


	These 15 curves are now interpolated to a common grid, and at each grid
point, the 15 values (one for each seed) are aggregated into 3 values
lower, aggregate, upper. In the figure, aggregate is shown
in bold, and lower, upper in dashed. Different aggregation modes
are supported (selected by plot_params.aggregate_mode):


	mean_and_ci: Mean and 0.95 normal confidence interval


	iqm_bootstrap (default): Interquartile mean and 0.95 confidence
interval based on the bootstrap variance estimate. These statistics are
argued for in Agarwal et.al: Deep Reinforcement Learning at the Edge
of the Statistical Precipice [https://arxiv.org/abs/2108.13264].


	median_percentiles: Median and 25 (lower), 75 (upper) percentiles






	Plotting starts with the creation of a
ComparativeResults object. We need to
pass the experiment names (or tags), the list of all setups, the number of
runs (or seeds), the metadata_to_setup function, as well as default
plot parameters in plot_params. See
PlotParameters for full details about the
latter. In our example, we set xlabel, aggregate_mode (see above),
and enable a grid with grid=True. Note that these parameters can be
extended and overwritten by parameters for each plot.


	In our example, we separate the MOBSTER and HYPERTUNE setups from the
baselines, by using two subfigures. This is done by specifying
plot_params.subplots and metadata_to_subplot. In the former,
plot_params.subplots.nrows and plot_params.subplots.ncols `` are
mandatory, prescribing the shape of the subplot arrangement.
In ``plot_params.subplots.titles, we can provide titles for each column
(which we do here). If given, this overrides plot_params.title.
Also, plot_params.subplots.legend_no=[0, 1] asks for legends in both
subplots (the default is no legend at all). For full details about these
arguments, see SubplotParameters


	The creation of results does a number of things. First, if
download_from_s3=True, result files are downloaded from S3. In our
example, we assume this has already been done. Next, all result files are
iterated over, all metadata.json are read, and an inverse index from
benchmark name to paths, setup_name, and subplot_no is created.
This process also checks that exactly num_runs experiments are present
for every setup. For large studies, it frequently happens that too few
or too many results are found. The warning outputs can be used for
debugging.


	Given results, we can create plots for every benchmark. In our example,
this is done for nas201-cifar100 and nas201-ImageNet16-120, by
calling results.plot(). Apart from the benchmark name, we also pass
plot parameters in plot_params, which extend (and overwrite) those
passed at construction. In particular, we need to pass metric and
mode, which we can obtain from the benchmark description. Moreover,
ylim is a sensible range for the vertical axis, which is different
for every benchmark (this is optional).


	If we pass file_name as argument to results.plot, the figure is
stored in this file.


	results.plot returns a dictionary, whose entries “fig” and “axs” contain
the figure and its axes (subfigures), allowing for further fine-tuning.





Note

If suplots are used, the grouping is w.r.t. (subplot, setup), not
just by setup. This means you can use the same setup name in
different subplots to show different data. For example, your study may
have run a range of methods under different conditions (say, using a
different number of workers). You can then map these conditions to
subplots and show the same setups in each subplot. In any case, the
mapping of setups to colors is fixed and the same in every subplot.




Note

Plotting features presented here can also be used to visualize results
for a single seed. In this case, there are no error bars.





Additional Features

In this section, we discuss additional features, allowing you to customize
your result plots.


Combining Results from Multiple Studies

HPO experiments are expensive to do, so you want to avoid re-running them
for baselines over and over. Our plotting tools allow you to easily combine
results across multiple studies.

As an example, say we would like to relate our docs-1 results to what
random search and Bayesian optimization do on the same benchmarks. These
baseline results were already obtained as part of an earlier study
baselines-1, in which a number of methods were compared, among them RS
and BO. As an additional complication, the earlier study used 30
repetitions (or seeds), while docs-1 uses 15. Here is the modification of
the code above in order to include these additional baseline results in the
plot on the right side. First, we need to replace metadata_to_setup and
SETUPS_RIGHT:

def metadata_to_setup(metadata: Dict[str, Any]) -> Optional[str]:
    algorithm = metadata["algorithm"]
    tag = metadata["tag"]
    seed = int(metadata["seed"])
    # Filter out experiments from "baselines-1" we don't want to compare
    # against
    if tag == "baselines-1" and (seed >= 15 or algorithm not in ("RS", "BO")):
        return None
    else:
        return algorithm


SETUPS_RIGHT = ("ASHA", "SYNCHB", "BOHB", "RS", "BO")





There are now two more setups, “RS” and “BO”, whose results come from the
earlier baselines-1 study. Now, ComparativeResults has to be created
differently:

experiment_names = experiment_names + ("baselines-1",)
setups = setups + ["RS", "BO"]
results = ComparativeResults(
    experiment_names=experiment_names,
    setups=setups,
    num_runs=num_runs,
    metadata_to_setup=metadata_to_setup,
    plot_params=plot_params,
    metadata_to_subplot=metadata_to_subplot,
    download_from_s3=download_from_s3,
)






Note

If you intend to combine results from several different studies, it is
recommended to use the same random seed (specified as --random_seed),
which ensures that the same sequence of random numbers is used in each
experiment. This results in a so-called paired comparison, lowering the
random variations across setups. In our example, we would look up the
master random seed of the baselines-1 study and use this for docs-1
as well.





Add Performance of Initial Trials

When using HPO, you often have an idea about one or several default
configurations that should be tried first. In Syne Tune, such initial
configurations can be specified by points_to_evaluate (see
here for details).
An obvious question to ask is how long it takes for a HPO method to find a
configuration which works significantly better than these initial ones.

We can visualize the performance of initial trials by specifying
plot_params.show_init_trials of type
ShowTrialParameters. In our docs-1 study,
points_to_evaluate is not explicitly used, but the configuration of the
first trial is selected by a mid-point heuristic. Our plotting script from
above needs to be modified:

plot_params.show_init_trials = ShowTrialParameters(
    setup_name="ASHA",
    trial_id=0,
    new_setup_name="default"
)
results = ComparativeResults(
    experiment_names=experiment_names,
    setups=setups,
    num_runs=num_runs,
    metadata_to_setup=metadata_to_setup,
    plot_params=plot_params,
    metadata_to_subplot=metadata_to_subplot,
    download_from_s3=download_from_s3,
)





Since the ASHA curve is plotted on the right side, this will add another
curve there with label default. This curve shows the best metric value,
using data from the first trial only (trial_id == 0). It is extended as a
flat constant line to the end of the horizontal range.

If you specify a number of initial configurations with points_to_evaluate,
set ShowTrialParameters.trial_id to their number minus 1. The initial trials
curve will use data from trials with ID less or equal this number.



Controlling Subplots

Our example above already creates two subplots, horizontally arranged, and we
discussed the role of metadata_to_subplot. Here, we provide extra details
about fields in SubplotParameters, the type
for plot_params.subplots:


	nrows, ncols: Shape of subplot matrix. The total number of subplots
is <= ncols * nrows. kwargs contains further arguments to
matplotlib.pyplot.subplots. For example, if sharey="all", the y tick
labels are only created for the first column. If you use nrows > 1,
you may want to share x tick labels as well, with sharex="all".


	titles: If title_each_figure == False, this is a list of titles,
one for each column. If title_each_figure == True, then titles
contains a title for each subplot. If titles is not given, the
global title plot_params.title is printed on top of the left-most
column.


	legend_no: List of subfigures in which the legend is shown. The default
is not to show legends. In our example, there are different setups in each
subplot, so we want a legend in each. If your subplots show the same setups
under different conditions, you may want to show the legend in one of the
subplots only, in which case legend_no contains a single number.


	xlims: Use this if your subfigures have x axis ranges. The global
xlim is overwritten by (0, xlims[subplot_no]).


	subplot_indices: Any given plot produced by
plot() does not have to
contain all subfigures. For example, you may want to group your results
into 4 or 8 bins, then create a sequence of plots comparing pairs of them.
If subplot_indices is given, it contains the subplot indices to be shown,
and this order. Otherwise, this is \(0, 1, 2, \dots\). If this is given,
then titles and xlims is relative to this list (in that
xlims[i] corresponds to subfigure subplot_indices[i]), but
legend_no is not.






Plotting Derived Metrics

You can also plot metrics which are not directly contained in the results data
(as a column), but which can be computed from the results. To this end, you
can pass a dataframe column generator as dataframe_column_generator to
plot(). For example, assume
we run multi-objective HPO methods on a benchmark involving metrics cost
and latency (mode="min" for both of them). The final plot command
would look like this:

from syne_tune.experiments.multiobjective import (
    hypervolume_indicator_column_generator,
)

# ...

dataframe_column_generator = hypervolume_indicator_column_generator(
    metrics_and_modes = [("cost", "min"), ("latency", "min")]
)
plot_params = PlotParameters(
    metric="hypervolume_indicator",
    mode="max",
)
results.plot(
    benchmark_name=benchmark_name,
    plot_params=plot_params,
    dataframe_column_generator=dataframe_column_generator,
    one_result_per_trial=True,
)






	The mapping returned by
hypervolume_indicator_column_generator()
maps a results dataframe to a new column containing the best hypervolume
indicator as function of wall-clock time for the metrics cost and
latency, which must be contained in the results dataframe.


	The option one_result_per_trial=True of results.plot ensures that the
result data is filtered, so that for each experiment, one the final row for
each trial remains. This option is useful if the methods are single-fidelity,
but results are reported after each epoch. The filtering makes sure that only
results for the largest epoch are used for each trial. Since this is done
before the best hypervolume indicator is computed, it can speed up the
computation dramatically.






Filtering Experiments by DateTime Bounds

Results can be filtered out by having metadata_to_setup or
metadata_to_subplot return None. This is particularly useful if results
from several studies are to be combined. Another way to filter experiments is
using the datetime_bounds argument of
ComparativeResults. A common use case is that
experiments for a large study have been launched in several stages, and those
of an early stage failed. If the corresponding result files are not removed on S3,
the creation of ComparativeResults will complain about too many results
being found. datetime_bounds is specified in terms of date-time strings of
the format ST_DATETIME_FORMAT, which currently is
“YYYY-MM-DD-HH-MM-SS”. For example, if results are valid from
“2023-03-19-22-01-57” onwards, but invalid before, we can use
datetime_bounds=("2023-03-19-22-01-57", None). datetime_bounds can also
be a dictionary with keys from experiment_names, in which case bounds are
specific to different experiment prefixes.



Extract Meta-Data Values

Apart from plotting results, we can also retrieve meta-data values. This is
done by passing a list of meta-data key names via metadata_keys when
creating ComparativeResults. Afterwards, the
corresponding meta-data values can be queried by calling
results.metadata_values(benchmark_name). The result is a nested dictionary
result, so that result[key][setup_name] is a list of values, where
key is the meta-data key from metadata_keys, setup_name is a setup
name. The list contains values from all experiments mapped to this
setup_name. If you use the same setup names across different subplots,
set metadata_subplot_level=True, in which case
results.metadata_values(benchmark_name) returns
result[key][setup_name][subplot_no], so the grouping w.r.t. setup names
and subplots is used.



Extract Final Values for Extra Results

Syne Tune allows extra results to be stored alongside the usual metrics data,
as shown in
examples/launch_height_extra_results.py.
These are simply additional columns in the result dataframe. In order to plot
them over time, you currently need to write your own plotting scripts. If the
best value over time approach of Syne Tune’s plotting tools makes sense for
any single column, you can just specify their name for plot_params.metric
and set plot_params.mode accordingly.

However, in many cases it is sufficient to know final values for extra results,
grouped in the same way as everything else. For example, extra results may be
used to monitor some internals of the HPO method being used, in which case we
may be satisfied to see these statistics at the end of experiments. If
extra_results_keys is used in
plot(), the method returns
a nested dictionary extra_results under key “extra_results”, so that
extra_results[setup_name][key] contains a list of values (one for each
seed) for setup setup_name and key an extra result name from
extra_results_keys. As above, if
metadata_subplot_level=True at construction of
ComparativeResults, the structure of the
dictionary is extra_results[setup_name][subplot_no][key].






            

          

      

      

    

  

    
      
          
            
  
Visualizing Learning Curves

We have seen how results from many experiments can be visualized jointly in
order to compare different HPO methods, different variations of the benchmark
(e.g., different configuration spaces), or both. In order to understand
differences between two setups in a more fine-grained fashion, it can be useful
to look at learning curve plots. In this section, we demonstrate Syne Tune
tooling along this direction.


Why Hyper-Tune Does Outperform ASHA?

In our docs-1 study, HYPERTUNE-INDEP significantly outperforms ASHA.
The best metric value curve descends much faster initially, and also the final
performance at max_wallclock_time is significantly better.

How can this difference be explained? Both methods use the same scheduling logic,
so differences are mostly due to how configurations of new trials are suggested.
In ASHA, this is done by random sampling. In HYPERTUNE-INDEP, independent
Gaussian process surrogate models are fitted on observations at each rung level,
and decisions are made based on an acquisition function which carefully weights
the input from each of these models (details are given
here). But how exactly does
this difference matter? We can find out by plotting learning curves of trials
for two experiments next to each other, ASHA on the left, HYPERTUNE-INDEP`
on the right. Here is the code for doing this:

Here is the code for generating result plots for two of the benchmarks:


code/plot_learning_curves.py

from typing import Dict, Any, Optional

from syne_tune.experiments import (
    TrialsOfExperimentResults,
    PlotParameters,
    MultiFidelityParameters,
)
from benchmarking.examples.benchmark_hypertune.benchmark_definitions import (
    benchmark_definitions,
)


SETUPS_TO_COMPARE = ("ASHA", "HYPERTUNE-INDEP")


def metadata_to_setup(metadata: Dict[str, Any]) -> Optional[str]:
    algorithm = metadata["algorithm"]
    return algorithm if algorithm in SETUPS_TO_COMPARE else None


if __name__ == "__main__":
    experiment_name = "docs-1"
    benchmark_name_to_plot = "nas201-cifar100"
    seed_to_plot = 7
    download_from_s3 = False  # Set ``True`` in order to download files from S3

    experiment_names = (experiment_name,)
    # Plot parameters across all benchmarks
    plot_params = PlotParameters(
        xlabel="wall-clock time",
        grid=True,
    )
    # We need to provide details about rung levels of the multi-fidelity methods.
    # Also, all methods compared are pause-and-resume
    multi_fidelity_params = MultiFidelityParameters(
        rung_levels=[1, 3, 9, 27, 81, 200],
        multifidelity_setups={name: True for name in SETUPS_TO_COMPARE},
    )
    # The creation of ``results`` downloads files from S3 (only if
    # ``download_from_s3 == True``), reads the metadata and creates an inverse
    # index. If any result files are missing, or there are too many of them,
    # warning messages are printed
    results = TrialsOfExperimentResults(
        experiment_names=experiment_names,
        setups=SETUPS_TO_COMPARE,
        metadata_to_setup=metadata_to_setup,
        plot_params=plot_params,
        multi_fidelity_params=multi_fidelity_params,
        download_from_s3=download_from_s3,
    )

    # Create plot for certain benchmark and seed
    benchmark = benchmark_definitions[benchmark_name_to_plot]
    # These parameters overwrite those given at construction
    plot_params = PlotParameters(
        metric=benchmark.metric,
        mode=benchmark.mode,
    )
    results.plot(
        benchmark_name=benchmark_name_to_plot,
        seed=seed_to_plot,
        plot_params=plot_params,
        file_name=f"./learncurves-{experiment_name}-{benchmark_name_to_plot}.png",
    )







The figure for benchmark nas201-cifar-100 and seed=7 looks as follows:



	[image: Learning curves for nas201-cifar-100]





	Learning curves for NASBench-201 (CIFAR-100), seed=7






The class for creating learning curve plots is
TrialsOfExperimentResults. It is quite similar
to ComparativeResults, but there are differences:


	For learning curve plots, each setup occupies its own subfigure. Also, the seed
for each plot is fixed, so each subfigure is based on the results for a single
experiment.


	metadata_to_setup is used to filter out the experiments we want to compare.
In this case, this is ASHA and HYPERTUNE-INDEP.


	The default for plot_params.subplots is a single row of subfigures, one for
each setup, and titles correspond to setup names. In our example, we use this
default. If you want to compare many setups, you can use an arrangement with
multiple rows as well.


	In learning curve plots, the trajectory of metric values for a trial is
plotted in a different color per trial (more precisely, we circle through a
palette, so that eventually colors are repeated). The final metric value of
a trial is marked with a diamond.


	If comparing multi-fidelity methods (like ASHA, Hyper-Tune, MOBSTER), you
should also specify multi_fidelity_params, passing the rung levels. In
this case, metric values at rung levels are marked by a circle, or by a
diamond if this is the final value for a trial.


	If some of your multi-fidelity setups are of the pause-and-resume type
(i.e., the evaluation of a trial can be paused and possibly resumed later
on), list them in multi_fidelity_params.pause_resume_setups. Trajectories
of pause-and-resume methods need to be plotted differently: there has to be
a gap between the value at a rung level and the next one, instead of a line
connecting them. In our example, all setups are pause-and-resume, and these
gaps are clearly visible.




What do these plots tell us about the differences between ASHA and
HYPERTUNE-INDEP? First of all, HYPERTUNE-INDEP has many less isolated
diamonds than ASHA. These correspond to trials which are paused after one
epoch and never resumed. For ASHA, both the rate of single diamonds and
their metric distribution remains stationary over time, while for
HYPERTUNE-INDEP, the rate rapidly diminishes, and also the metric values
for single diamonds improve. This is what we would expect. ASHA does not
learn anything from the past, and simply continues to suggest configurations
at random, while HYPERTUNE-INDEP rapidly learns what part of the
configuration to avoid and does not repeat basic mistakes moving forward. This
means that overall, ASHA wastes resources on starting poorly performing
trials over and over, while HYPERTUNE-INDEP uses these resources in order
to resume training for more trials, thereby reaching better performances over
the same time horizon. These results were obtained in the context of simulated
experimentation, without delays for starting, pausing, or resuming trials. In
the presence of such delays, the advantage of model-based methods over ASHA
becomes more pronounced.

With specific visualizations, we can drill deeper to figure out what
HYPERTUNE-INDEP learns about the configuration space. For example, the
configurations of all trials are stored in the results as well. Doing so, we
can confirm that HYPERTUNE-INDEP rapidly learns about basic properties of
the NASBench-201 configuration space, where certain connections are mandatory
for good results, and consistenty chooses them after a short initial phase.





            

          

      

      

    

  

    
      
          
            
  
Rapid Experimentation with Syne Tune

The main goal of automated tuning is to help the user to find and adjust the
best machine learning model as quickly as possible, given some computing
resources controlled by the user. Syne Tune contains some tooling which can
speed up this interactive process substantially. The user can launch many
experiments in parallel, slicing the complete model selection and tuning
problems into smaller parts. Comparative plots can be created from past
experimental data and easily customized to specific needs.

Syne Tune’s tooling for rapid experimentation is part of the benchmarking
framework, which is covered in detail in
this tutorial. However, as demonstrated here,
this framework is useful for experimentation beyond the comparison of different
HPO algorithm. The tutorial here is self-contained, but the reader may want
to consult the benchmarking tutorial for background information.


Note

The code used in this tutorial is contained in the
Syne Tune sources, it is not
installed by pip. You can obtain this code by installing Syne Tune from
source, but the only code that is needed is in
benchmarking.examples.demo_experiment. The final section also needs
code from benchmarking.nursery.odsc_tutorial.

Also, make sure to have installed the blackbox-repository
dependencies.





	Setting up an Experimental Study

	Visualization of Results

	My Code Contains Packages








            

          

      

      

    

  

    
      
          
            
  
Setting up an Experimental Study

Any statistical analysis consists of a sequence of experiments, where later
ones are planned given outcomes of earlier ones. Parallelization can be used
to speed up this process:


	If outcomes or decision-making are randomized (e.g., training neural networks
starts from random initial weights; HPO may suggest configurations drawn at
random), it is important to repeat experiments several times in order to
gain robust outcomes.


	If a search problem becomes too big, it can be broken down into several parts,
which can be worked on independently.




In this section, we describe the setup for a simple study, which can be used
to showcase tooling in Syne Tune for splitting up a large problem into pieces,
running random repetitions, writing out extra information, and creating
customized comparative plots.

For simplicity, we use surrogate benchmarks from the fcnet family, whereby
tuning is simulated. This is the
default configuration space for these benchmarks:


syne_tune/blackbox_repository/conversion_scripts/scripts/fcnet_import.py

CONFIGURATION_SPACE = {
    "hp_activation_fn_1": choice(["tanh", "relu"]),
    "hp_activation_fn_2": choice(["tanh", "relu"]),
    "hp_batch_size": logfinrange(8, 64, 4, cast_int=True),
    "hp_dropout_1": finrange(0.0, 0.6, 3),
    "hp_dropout_2": finrange(0.0, 0.6, 3),
    "hp_init_lr": choice([0.0005, 0.001, 0.005, 0.01, 0.05, 0.1]),
    "hp_lr_schedule": choice(["cosine", "const"]),
    NUM_UNITS_1: logfinrange(16, 512, 6, cast_int=True),
    NUM_UNITS_2: logfinrange(16, 512, 6, cast_int=True),
}










Note

In the Syne Tune experimentation framework, a tuning problem (i.e., training and
evaluation script or blackbox, together with defaults) is called a benchmark.
This terminology is used even if the goal of experimentation is not benchmarking
(i.e., comparing different HPO methods), as is the case in this tutorial here.




Note

The code used in this tutorial is contained in the
Syne Tune source, it is not
installed by pip. You can obtain this code by installing Syne Tune from
source, but the only code that is needed is in
benchmarking.examples.demo_experiment, so if you copy that out of the
repository, you do not need all the remaining source code.




Note

In order to use surrogate benchmarks and the simulator backend, you need
to have the blackbox-repository dependencies installed, as detailed
here.
Note that the first time you use a surrogate benchmark, its data files are
downloaded and stored to your S3 bucket, this can take a considerable amount
of time. The next time you use the benchmark, it is loaded from your local
disk or your S3 bucket, which is fast.




Modifying the Configuration Space

The hyperparameters hp_activation_fn_1 and hp_activation_fn_2 prescribe
the type of activation function in hidden layers 1 and 2. We can split the
overall tuning problem into smaller pieces by fixing these parameters to
fixed values, considering relu and tanh networks independently. In our
study, we will compare the following methods:


	ASHA-TANH, MOBSTER-TANH: Runs ASHA and MOBSTER on the
simplified configuration space, where
hp_activation_fn_1 = hp_activation_fn_2 = "tanh"


	ASHA-RELU, MOBSTER-RELU: Runs ASHA and MOBSTER on the
simplified configuration space, where
hp_activation_fn_1 = hp_activation_fn_2 = "relu"


	ASHA, MOBSTER: Runs ASHA and MOBSTER on the original
configuration space


	RS, BO: Runs baselines random search and Bayesian optimization on
the original configuration space




Here is the script defining these alternatives:


benchmarking/examples/demo_experiment/baselines.py

import copy

from syne_tune.experiments.default_baselines import (
    RandomSearch,
    BayesianOptimization,
    ASHA,
    MOBSTER,
)
from syne_tune.experiments.baselines import MethodArguments


class Methods:
    RS = "RS"
    BO = "BO"
    ASHA = "ASHA"
    MOBSTER = "MOBSTER"
    ASHA_TANH = "ASHA-TANH"
    MOBSTER_TANH = "MOBSTER-TANH"
    ASHA_RELU = "ASHA-RELU"
    MOBSTER_RELU = "MOBSTER-RELU"


def _modify_config_space(
    method_arguments: MethodArguments, value: str
) -> MethodArguments:
    result = copy.copy(method_arguments)
    result.config_space = dict(
        method_arguments.config_space,
        hp_activation_fn_1=value,
        hp_activation_fn_2=value,
    )
    return result


methods = {
    Methods.RS: lambda method_arguments: RandomSearch(method_arguments),
    Methods.BO: lambda method_arguments: BayesianOptimization(method_arguments),
    Methods.ASHA: lambda method_arguments: ASHA(
        method_arguments,
        type="promotion",
    ),
    Methods.MOBSTER: lambda method_arguments: MOBSTER(
        method_arguments,
        type="promotion",
    ),
    # Fix activations to "tanh"
    Methods.ASHA_TANH: lambda method_arguments: ASHA(
        _modify_config_space(method_arguments, value="tanh"),
        type="promotion",
    ),
    Methods.MOBSTER_TANH: lambda method_arguments: MOBSTER(
        _modify_config_space(method_arguments, value="tanh"),
        type="promotion",
    ),
    # Fix activations to "relu"
    Methods.ASHA_RELU: lambda method_arguments: ASHA(
        _modify_config_space(method_arguments, value="relu"),
        type="promotion",
    ),
    Methods.MOBSTER_RELU: lambda method_arguments: MOBSTER(
        _modify_config_space(method_arguments, value="relu"),
        type="promotion",
    ),
}








	Different methods are defined in dictionary methods, as functions
mapping method_arguments of type
MethodArguments to a scheduler
object. Here, method_arguments.config_space contains the default
configuration space for the benchmark, where both
hp_activation_fn_1 and hp_activation_fn_2 are hyperparameters
of type choice(["tanh", "relu"]).


	For ASHA-TANH, MOBSTER-TANH, ASHA-RELU, MOBSTER-RELU, we fix
these parameters. This is done in _modify_config_space, where
method_arguments.config_space is replaced by a configuration space where
the two hyperparameters are fixed (so methods do not search over them
anymore).


	Another way to modify method_arguments just before a method is created,
is to use the map_extra_args argument of
main(), as detailed
here. This
allows the modification to depend on extra command line arguments.




Next, we define the benchmarks our study should run over. For our simple
example, we use the fcnet benchmarks:


benchmarking/examples/demo_experiment/benchmark_definitions.py

from syne_tune.experiments.benchmark_definitions import fcnet_benchmark_definitions


benchmark_definitions = fcnet_benchmark_definitions.copy()







This is where you would have to plug in your own benchmarks, namely your training
script with a bit of metadata. Examples are provided
here and
here.



Recording Extra Results

Next, we need to write the hpo_main.py script which runs a single experiment.
As shown here,
this is mostly about selecting the correct main function among
syne_tune.experiments.launchers.hpo_main_simulator.main(),
syne_tune.experiments.launchers.hpo_main_local.main(),
syne_tune.experiments.launchers.hpo_main_sagemaker.main(), depending on the trial
backend we want to use. In our case, we also would like to record extra
information about the experiment. Here is the script:


benchmarking/examples/demo_experiment/hpo_main.py

from typing import Optional, Dict, Any, List

from baselines import methods
from benchmark_definitions import benchmark_definitions
from syne_tune import Tuner
from syne_tune.experiments.launchers.hpo_main_simulator import main
from syne_tune.optimizer.schedulers import HyperbandScheduler
from syne_tune.results_callback import ExtraResultsComposer


RESOURCE_LEVELS = [1, 3, 9, 27, 81]


class RungLevelsExtraResults(ExtraResultsComposer):
    """
    We would like to monitor the sizes of rung levels over time. This is an extra
    information normally not recorded and stored.
    """

    def __call__(self, tuner: Tuner) -> Optional[Dict[str, Any]]:
        if not isinstance(tuner.scheduler, HyperbandScheduler):
            return None
        rung_information = tuner.scheduler.terminator.information_for_rungs()
        return {
            f"num_at_level{resource}": num_entries
            for resource, num_entries, _ in rung_information
            if resource in RESOURCE_LEVELS
        }

    def keys(self) -> List[str]:
        return [f"num_at_level{r}" for r in RESOURCE_LEVELS]


if __name__ == "__main__":
    extra_results = RungLevelsExtraResults()
    main(methods, benchmark_definitions, extra_results=extra_results)








	As usual, we import syne_tune.experiments.launchers.hpo_main_simulator.main()
(we use the simulator backend) and call it, passing our methods and
benchmark_definitions. We also pass extra_results, since we would
like to record extra results.


	Note that apart from syne_tune imports, this script is only doing local
imports. No other code from benchmarking is required.


	A certain number of time-stamped results are recorded by default in
results.csv.zip, details are
here. In
particular, all metric values reported for all trials are recorded.


	In our example, we would also like to record information about the
multi-fidelity schedulers ASHA and MOBSTER. As detailed in
this tutorial, they record metric
values for trials at different rung levels these trials reached (e.g.,
number of epochs trained), and decisions on which paused trial to
promote to the next rung level are made by comparing its performance with
all others in the same rung. The rung levels are growing over time, and
we would like to record their respective sizes as a function of wall-clock
time.


	To this end, we create a subclass of
ExtraResultsComposer, whose
__call__ method extracts the desired information from the current
Tuner object. In our example, we first test whether
the current scheduler is ASHA or MOBSTER (recall that we also run
RS and BO as baselines). If so, we extract the desired information
and return it as a dictionary.


	Finally, we create extra_results and pass it to the main function.




The outcome is that a number of additional columns are appended to the dataframe
stored in results.csv.zip, at least for experiments with ASHA or
MOBSTER schedulers. Running this script launches an experiment locally (if you
installed Syne Tune from source, you need to start the script from the
benchmarking/examples directory):

python demo_experiment/hpo_main.py --experiment_tag docs-2-debug







Running Experiments in Parallel

Running our hpo_main.py script launches a single experiment on the local
machine, writing results to a local directory. This is nice for debugging, but
slow and cumbersome once we convinced ourselves that the setup is working. We
will want to launch many experiments in parallel on AWS, and use our local
machine for other work.


	Experiments with our setups RS, BO, ASHA-TANH, MOBSTER-TANH,
ASHA-RELU, MOBSTER-RELU, ASHA, MOBSTER are independent and
can be run in parallel.


	We repeat each experiment 20 times, in order to quantify the random
fluctuation in the results. These seeds are independent and can be run
in parallel.


	We could also run experiments with different benchmarks (i.e., datasets in
fcnet) in parallel. But since a single simulated experiment is fast to
do, we are not doing this here.




Running experiments in parallel requires a remote launcher script:


benchmarking/examples/demo_experiment/launch_remote.py

from pathlib import Path

from benchmark_definitions import benchmark_definitions
from baselines import methods
from syne_tune.experiments.launchers.launch_remote_simulator import launch_remote


if __name__ == "__main__":

    def _is_expensive_method(method: str) -> bool:
        return method.startswith("MOBSTER") or method == "BO"

    entry_point = Path(__file__).parent / "hpo_main.py"
    launch_remote(
        entry_point=entry_point,
        methods=methods,
        benchmark_definitions=benchmark_definitions,
        is_expensive_method=_is_expensive_method,
    )








	Again, we simply choose the correct launch_remote function among
launch_remote(),
launch_remote(),
launch_remote(),
depending on the trial backend.


	Note that apart from syne_tune imports, this script is only doing local
imports. No other code from benchmarking is required.


	In is_expensive_method, we pass a predicate from method name. If
is_expensive_method(method) is True, the 20 different seeds are
run in parallel. Otherwise, they are run sequentially.


	In our example, we know that BO and MOBSTER run quite a bit slower
in the simulator than RS and ASHA, so we label the former as expensive.
This means we have 4 expensive methods and 4 cheap ones, and our complete
study will launch 4 + 4 * 20 = 84 SageMaker training jobs. Since
fcnet contains four benchmarks, we run 8 * 20 * 4 = 640 experiments
in total.




All of these experiments can be launched with a single command (if you
installed Syne Tune from source, you need to start the script from the
benchmarking/examples directory):

python demo_experiment/launch_remote.py \
  --experiment_tag docs-2 --random_seed 2465497701 --num_seeds 20





If --random_seed is not given, a master random seed is drawn at random,
printed and also stored in the metadata. If a study consists of launching
experiments in several steps, it is good practice to pass the same random seed
for each launch command. For example, you can run the first launch command
without passing a seed, then note the seed from the output and use it for
further launches.


Avoiding Costly Failures

In practice, with a new experimental setup, it is not a good idea to launch
all experiments in one go. We recommend to move in stages.

First, if our benchmarks run locally as well, we should start with some local
tests. For example:

python demo_experiment/hpo_main.py \
  --experiment_tag docs-2-debug --random_seed 2465497701 \
  --method ASHA-RELU --verbose 1





We can cycle through several methods and check whether anything breaks. Note that
--verbose 1 generates useful output about the progress of the method, which
can be used to check whether properties are the way we expect (for example,
"relu" is chosen for the fixed hyperparameters). Results are stored locally
under ~/syne_tune/docs-2-debug/.

Next, we launch the setup remotely, but for a single seed:

python demo_experiment/launch_remote.py \
  --experiment_tag docs-2 --random_seed 2465497701 --num_seeds 1





This will start 8 SageMaker training jobs, one for each method, and with
seed=0. Some of them, like RS, ASHA, ASHA-* will finish very
rapidly, and it makes sense to quickly browse their logs, to check whether
desired properties are met.

Finally, if this looks good, we can launch all the rest:

python demo_experiment/launch_remote.py \
  --experiment_tag docs-2 --random_seed 2465497701 --num_seeds 20 \
  --start_seed 1





This is launching all remaining experiments with seed from 1 to 19.


Note

If something breaks when remotely launching for seed=0, it may be that
results have already been written to S3. This is because results are written
out periodically. If you use the same tag docs-2 for initial debugging,
you will have to remove these results on S3, or otherwise be careful filtering
them out later on (this is discussed below).



In a large study consisting of many experiments, it can happen that some
experiments fail for reasons which do not invalidate results of the other ones.
If this happens, it is not a good idea, both time and cost wise, to start the
whole study from scratch. Instead, we recommend to clean up and restart only
the experiments which failed. For example, assume that in our study above,
the MOBSTER-TANH experiments of seed == 13 failed:


	We need to remove incomplete results of these experiments, which can corrupt
final aggregate results otherwise. This can either be done by removing them
on S3, or by advanced filtering (discussed below). In general, we recommend
the former. For our example, the results to be removed are in
s3://{sagemaker-default-bucket}/syne-tune/docs-2/MOBSTER-TANH-13/. Namely,
since MOBSTER-TANH is an “expensive” method, results for different seeds
are written to different subdirectories.


	Next, we need to start the failed experiments again:




python demo_experiment/launch_remote.py \
  --experiment_tag docs-2 --random_seed 2465497701 --num_seeds 14 \
  --start_seed 13 --method MOBSTER-TANH





Instead, assume that the ASHA experiments for seed == 13 failed. This is
a “cheap” method, so results for all seeds are written to
s3://{sagemaker-default-bucket}/syne-tune/docs-2/ASHA/, into subdirectories
of the form docs-2-<benchmark>-<seed>-<datetime>. Since this method is cheap,
we can rerun all its experiments, by first removing everything under
s3://{sagemaker-default-bucket}/syne-tune/docs-2/ASHA/, then:

python demo_experiment/launch_remote.py \
  --experiment_tag docs-2 --random_seed 2465497701 --num_seeds 20 \
  --method ASHA






Note

Don’t worry if you restart failed experiments without first removing its
incomplete results on S3. Due to the <datetime> postfix of directory
names, results of a restart never conflict with older ones. However, once
you plot aggregate results, you will get a warning that too many results
have been found, along with where these results are located. At this point,
you can still remove the incomplete ones.








            

          

      

      

    

  

    
      
          
            
  
Visualization of Results

Once all results are obtained, we would rapidly like to create comparative plots.
In Syne Tune, each experiment stores two files, metadata.json with metadata,
and results.csv.zip containing time-stamped results. The
Tuner object at the end of the experiment is also serialized
to tuner.dill, but this is not needed here.


Note

This section offers an example of the plotting facilities in Syne Tune. More
details are provided in this tutorial.



First, we need to download the results from S3 to the local disk. This can be
done by a command which is also printed at the end of launch_remote.py:

aws s3 sync s3://<BUCKET-NAME>/syne-tune/docs-2/ ~/syne-tune/docs-2/ \
  --exclude "*" --include "*metadata.json" --include "*results.csv.zip"





This command can also be run from inside the plotting code. Note that the
tuner.dill result files are not downloaded, since they are not needed for
result visualization.

Here is the code for generating result plots for two of the benchmarks:


benchmarking/examples/demo_experiment/plot_results.py

from typing import Dict, Any, Optional, List, Set
import logging

from baselines import methods
from benchmark_definitions import benchmark_definitions
from hpo_main import RungLevelsExtraResults
from syne_tune.experiments import ComparativeResults, PlotParameters, SubplotParameters


def metadata_to_setup(metadata: Dict[str, Any]) -> Optional[str]:
    # The setup is the algorithm. No filtering
    return metadata["algorithm"]


SETUP_TO_SUBPLOT = {
    "ASHA": 0,
    "MOBSTER": 0,
    "ASHA-TANH": 1,
    "MOBSTER-TANH": 1,
    "ASHA-RELU": 2,
    "MOBSTER-RELU": 2,
    "RS": 3,
    "BO": 3,
}


def metadata_to_subplot(metadata: Dict[str, Any]) -> Optional[int]:
    return SETUP_TO_SUBPLOT[metadata["algorithm"]]


def _print_extra_results(
    extra_results: Dict[str, Dict[str, List[float]]],
    keys: List[str],
    skip_setups: Set[str],
):
    for setup_name, results_for_setup in extra_results.items():
        if setup_name not in skip_setups:
            print(f"[{setup_name}]:")
            for key in keys:
                values = results_for_setup[key]
                print(f"  {key}: {[int(x) for x in values]}")


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)
    experiment_name = "docs-2"
    experiment_names = (experiment_name,)
    setups = list(methods.keys())
    num_runs = 20
    download_from_s3 = False  # Set ``True`` in order to download files from S3
    # Plot parameters across all benchmarks
    plot_params = PlotParameters(
        xlabel="wall-clock time",
        aggregate_mode="iqm_bootstrap",
        grid=True,
    )
    # We would like four subplots (2 row, 2 columns), each showing two setups.
    # Each subplot gets its own title, and legends are shown in each,
    plot_params.subplots = SubplotParameters(
        nrows=2,
        ncols=2,
        kwargs=dict(sharex="all", sharey="all"),
        titles=[
            "activations tuned",
            "activations = tanh",
            "activations = relu",
            "single fidelity",
        ],
        title_each_figure=True,
        legend_no=[0, 1, 2, 3],
    )

    # The creation of ``results`` downloads files from S3 (only if
    # ``download_from_s3 == True``), reads the metadata and creates an inverse
    # index. If any result files are missing, or there are too many of them,
    # warning messages are printed
    results = ComparativeResults(
        experiment_names=experiment_names,
        setups=setups,
        num_runs=num_runs,
        metadata_to_setup=metadata_to_setup,
        plot_params=plot_params,
        metadata_to_subplot=metadata_to_subplot,
        download_from_s3=download_from_s3,
    )

    # We can now create plots for the different benchmarks:
    # - We store the figures as PNG files
    # - We also load the extra results collected during the experiments
    #   (recall that we monitored sizes of rungs for ASHA and MOBSTER).
    #   Instead of plotting their values over time, we print out their
    #   values at the end of each experiment
    extra_results_keys = RungLevelsExtraResults().keys()
    skip_setups = {"RS", "BO"}
    # First: fcnet-protein
    benchmark_name = "fcnet-protein"
    benchmark = benchmark_definitions[benchmark_name]
    # These parameters overwrite those given at construction
    plot_params = PlotParameters(
        metric=benchmark.metric,
        mode=benchmark.mode,
        ylim=(0.22, 0.30),
    )
    extra_results = results.plot(
        benchmark_name=benchmark_name,
        plot_params=plot_params,
        file_name=f"./{experiment_name}-{benchmark_name}.png",
        extra_results_keys=extra_results_keys,
    )["extra_results"]
    _print_extra_results(extra_results, extra_results_keys, skip_setups=skip_setups)
    # Next: fcnet-slice
    benchmark_name = "fcnet-slice"
    benchmark = benchmark_definitions[benchmark_name]
    # These parameters overwrite those given at construction
    plot_params = PlotParameters(
        metric=benchmark.metric,
        mode=benchmark.mode,
        ylim=(0.00025, 0.0012),
    )
    results.plot(
        benchmark_name=benchmark_name,
        plot_params=plot_params,
        file_name=f"./{experiment_name}-{benchmark_name}.png",
        extra_results_keys=extra_results_keys,
    )
    _print_extra_results(extra_results, extra_results_keys, skip_setups=skip_setups)







The figure for benchmark fcnet-protein looks as follows:



	[image: Results for fcnet-protein]





	Results for FCNet (protein dataset)






Moreover, we obtain an output for extra results, as follows:

[ASHA]:
  num_at_level1: [607, 630, 802, 728, 669, 689, 740, 610, 566, 724, 691, 812, 837, 786, 501, 642, 554, 625, 531, 672]
  num_at_level3: [234, 224, 273, 257, 247, 238, 271, 222, 191, 256, 240, 273, 287, 272, 185, 227, 195, 216, 197, 241]
  num_at_level9: [97, 81, 99, 95, 99, 99, 106, 92, 73, 98, 90, 95, 99, 98, 74, 86, 78, 82, 85, 101]
  num_at_level27: [49, 36, 37, 36, 41, 47, 37, 43, 36, 35, 34, 37, 39, 39, 39, 44, 41, 30, 45, 49]
  num_at_level81: [22, 17, 18, 15, 21, 22, 19, 26, 20, 15, 16, 13, 13, 23, 27, 29, 20, 17, 20, 26]
[MOBSTER]:
  num_at_level1: [217, 311, 310, 353, 197, 96, 377, 135, 364, 336, 433, 374, 247, 282, 175, 302, 187, 225, 182, 240]
  num_at_level3: [107, 133, 124, 138, 104, 64, 163, 72, 157, 132, 146, 140, 123, 112, 110, 129, 90, 100, 86, 126]
  num_at_level9: [53, 62, 55, 59, 66, 51, 83, 47, 72, 55, 54, 59, 54, 51, 72, 65, 60, 49, 55, 70]
  num_at_level27: [29, 34, 30, 26, 50, 37, 49, 31, 27, 25, 23, 28, 27, 28, 49, 33, 42, 27, 34, 45]
  num_at_level81: [18, 20, 16, 14, 33, 25, 37, 24, 13, 17, 10, 14, 17, 20, 32, 24, 29, 15, 26, 31]
[ASHA-TANH]:
  num_at_level1: [668, 861, 755, 775, 644, 916, 819, 710, 694, 870, 764, 786, 769, 710, 862, 807, 859, 699, 757, 794]
  num_at_level3: [237, 295, 265, 272, 221, 311, 302, 246, 246, 294, 278, 280, 276, 240, 297, 290, 304, 258, 270, 279]
  num_at_level9: [86, 112, 101, 97, 91, 104, 119, 90, 92, 104, 98, 96, 98, 90, 108, 120, 105, 109, 105, 102]
  num_at_level27: [37, 47, 39, 39, 40, 39, 45, 44, 39, 41, 41, 44, 44, 40, 45, 43, 38, 53, 49, 39]
  num_at_level81: [21, 16, 16, 16, 20, 16, 17, 18, 17, 14, 18, 21, 21, 20, 17, 19, 16, 19, 23, 20]
[MOBSTER-TANH]:
  num_at_level1: [438, 594, 462, 354, 307, 324, 317, 359, 483, 523, 569, 492, 516, 391, 408, 565, 492, 322, 350, 479]
  num_at_level3: [166, 206, 156, 135, 133, 127, 129, 131, 175, 211, 191, 165, 178, 169, 151, 204, 164, 122, 132, 205]
  num_at_level9: [69, 75, 56, 54, 78, 60, 57, 60, 76, 80, 72, 56, 72, 103, 67, 77, 63, 48, 59, 92]
  num_at_level27: [36, 35, 25, 28, 45, 37, 27, 36, 46, 27, 37, 26, 37, 58, 31, 36, 26, 28, 33, 39]
  num_at_level81: [20, 13, 12, 11, 23, 20, 13, 20, 23, 10, 13, 9, 18, 31, 16, 18, 11, 16, 19, 21]
[ASHA-RELU]:
  num_at_level1: [599, 670, 682, 817, 608, 585, 770, 397, 613, 721, 599, 601, 618, 718, 613, 674, 715, 638, 598, 652]
  num_at_level3: [201, 246, 242, 277, 225, 209, 282, 140, 212, 245, 202, 205, 215, 245, 207, 239, 238, 224, 221, 234]
  num_at_level9: [75, 94, 94, 100, 89, 92, 101, 60, 78, 89, 76, 82, 80, 98, 86, 96, 83, 84, 90, 91]
  num_at_level27: [37, 43, 36, 34, 40, 45, 39, 35, 34, 31, 40, 40, 38, 39, 35, 34, 29, 34, 41, 35]
  num_at_level81: [23, 19, 14, 13, 19, 21, 15, 24, 17, 13, 20, 18, 19, 18, 20, 16, 13, 15, 22, 17]
[MOBSTER-RELU]:
  num_at_level1: [241, 319, 352, 438, 354, 386, 197, 262, 203, 387, 320, 139, 359, 401, 334, 294, 361, 403, 178, 141]
  num_at_level3: [110, 156, 135, 166, 138, 143, 104, 124, 95, 136, 133, 71, 133, 151, 130, 122, 134, 151, 92, 74]
  num_at_level9: [50, 83, 59, 75, 59, 55, 57, 72, 53, 53, 58, 40, 62, 63, 61, 54, 52, 65, 48, 47]
  num_at_level27: [31, 51, 29, 31, 29, 23, 39, 38, 36, 20, 29, 36, 32, 29, 32, 29, 24, 27, 31, 34]
  num_at_level81: [20, 35, 12, 11, 12, 15, 22, 18, 26, 12, 16, 27, 16, 15, 20, 15, 15, 13, 18, 22]






	There are four subfigures arranged as two-by-two matrix. Each contains two
curves in bold, along with confidence intervals. The horizontal axis
depicts wall-clock time, and on the vertical axis, we show the best
metric value found until this time.


	More general, the data from our 640 experiments can be grouped w.r.t.
subplot, then setup. Each setup gives rise to one curve (bold, with
confidence band). Subplots are optional, the default is to plot a single
figure.


	The function metadata_to_setup maps the metadata stored for an experiment
to the setup name. In our basic case, the setup is simply the name of the
method.


	The function metadata_to_subplot maps the metadata to the subplot
index (0, 1, 2, 3). We group setups with the same configuration space,
but also split multi-fidelity and single-fidelity methods.


	Once the data is grouped w.r.t. benchmark, then subplot (optional), then
setup, we should be left with 20 experiments, one for each seed. These 20
curves are now interpolated to a common grid, and at each grid point, the
20 values are aggregated into lower, aggregate, upper. In the
figure, aggregate is shown in bold, and lower, upper in dashed.
Different aggregation modes are supported (selected by
plot_params.aggregate_mode).


	We pass extra_results_keys to the
plot() method in order to
also retrieve extra results. This method returns a dictionary, whose
“extra_results” entry is what we need.





Advanced Experimenting

Once you start to run many experiments, you will get better at avoiding
wasteful repetitions. Here are some ways in which Syne Tune can support you.


	Combining results from several studies: It often happens that results for
a new idea need to be compared to baselines on a common set of benchmarks.
You do not have to re-run baselines, but can easily combine older results
with more recent ones. This is explained
here.


	When running many experiments, some may fail. Syne Tune supports you in not
having to re-run everything from scratch. As already noted above, when
creating aggregate plots, it is important not to use incomplete results
stored for failed experiments. The cleanest way to do so is to remove these
results on S3. Another option is to filter out corrupt results:


	If you forget about removing such corrupt results, you will get a reminder
when creating ComparativeResults. Since you
pass the list of setup names and the number of seeds (in num_runs), you
get a warning when too many experiments have been found, along with the
path names.


	Results are stored on S3, using object name prefixes of the form
<s3-bucket>/syne-tune/docs-2/ASHA/docs-2-fcnet-protein-7-2023-04-20-15-20-18-456/
or
<s3-bucket>/syne-tune/docs-2/MOBSTER-7/docs-2-fcnet-protein-7-2023-04-20-15-20-00-677/.
The pattern is <tag>/<method>/<tag>-<benchmark>-<seed>-<datetime>/ for cheap
methods, and
<tag>/<method>-<seed>/<tag>-<benchmark>-<seed>-<datetime>/ for expensive
methods.


	Instead of removing corrupt results on S3, you can also
filter them by datetime, using the datetime_bounds argument of
ComparativeResults. This allows you define an
open or closed datetime range for results you want to keep. If your failed
attempts preceed the ones that finally worked out, this type of filtering can
save you the head-ache of removing files on S3.


	Warning: When you remove objects on S3 for some experiment tag, it is
strongly recommended to remove all result files locally (so everything at
~/syne-tune/<tag>/) and sync them back from S3, using the command at
the start of this section. aws s3 sync is prone to make mistakes
otherwise, which are very hard to track down.












            

          

      

      

    

  

    
      
          
            
  
My Code Contains Packages

All code in benchmarking.examples.demo_experiment is contained in a single
directory. If your code for launching experiments and defining benchmarks is
structured into packages, you need to follow some extra steps.

There are two choices you have:


	Either, you
install Syne Tune from source.
In this case, you can just keep your launcher scripts and benchmark
definitions in there, and use absolute imports from benchmarking.
One advantage of this is that you can use all benchmarks currently included
in benchmarking.benchmark_definitions.


	Or you do not install Syne Tune from source, in which case this section is for
you.




We will use the example in benchmarking.nursery.odsc_tutorial. More
details about this example are found in
this tutorial. We will not assume that Syne
Tune is installed from source, but just that the code from
benchmarking.nursery.odsc_tutorial is present at <abspath>/odsc_tutorial/.

The root package for this example is transformer_wikitext2, in that all
imports start from there, for example:


transformer_wikitext2/local/hpo_main.py

from transformer_wikitext2.baselines import methods
from transformer_wikitext2.benchmark_definitions import benchmark_definitions
from syne_tune.experiments.launchers.hpo_main_local import main


if __name__ == "__main__":
    main(methods, benchmark_definitions)







The code has the following structure:

tree transformer_wikitext2/
transformer_wikitext2
├── __init__.py
├── baselines.py
├── benchmark_definitions.py
├── code
│   ├── __init__.py
│   ├── requirements.txt
│   ├── training_script.py
│   ├── training_script_no_checkpoints.py
│   ├── training_script_report_end.py
│   └── transformer_wikitext2_definition.py
├── local
│   ├── __init__.py
│   ├── hpo_main.py
│   ├── launch_remote.py
│   ├── plot_learning_curve_pairs.py
│   ├── plot_learning_curves.py
│   ├── plot_results.py
│   └── requirements-synetune.txt
└── sagemaker
    ├── __init__.py
    ├── hpo_main.py
    ├── launch_remote.py
    ├── plot_results.py
    └── requirements.txt





Training code and benchmark definition are in code, launcher and plotting
scripts for the local backend in local, and ditto for the SageMaker backend
in sagemaker.

In order to run any of the scripts, the PYTHONPATH environment variable needs
to be appended to as follows:

export PYTHONPATH="${PYTHONPATH}:<abspath>/odsc_tutorial/"





Here, you need to replace <abspath> with the absolute path to odsc_tutorial.
Once this is done, the following should work:

python transformer_wikitext2/local/hpo_main.py \
  --experiment_tag mydebug --benchmark transformer_wikitext2 --num_seeds 1





Of course, this script needs all training script dependencies to be installed
locally. If you work with SageMaker, it is much simpler to launch experiments
remotely. The launcher script is as follows:


transformer_wikitext2/local/launch_remote.py

from pathlib import Path

from transformer_wikitext2.baselines import methods
from transformer_wikitext2.benchmark_definitions import benchmark_definitions
from syne_tune.experiments.launchers.launch_remote_local import launch_remote


if __name__ == "__main__":
    entry_point = Path(__file__).parent / "hpo_main.py"
    source_dependencies = [str(Path(__file__).parent.parent)]
    launch_remote(
        entry_point=entry_point,
        methods=methods,
        benchmark_definitions=benchmark_definitions,
        source_dependencies=source_dependencies,
    )







Importantly, you need to set source_dependencies in this script. Here,
source_dependencies = [str(Path(__file__).parent.parent)] translates
to ["<abspath>/odsc_tutorial/transformer_wikitext2"]. If you have
multiple root packages you want to import from, source_dependencies must
contain all of them.

The following command should work now:

python transformer_wikitext2/local/launch_remote.py \
  --experiment_tag mydebug --benchmark transformer_wikitext2 --num_seeds 1 \
  --method BO





This should launch one SageMaker training job, which runs Bayesian optimization
with 4 workers. You can also test remote launching with the SageMaker backend:

python transformer_wikitext2/sagemaker/launch_remote.py \
  --experiment_tag mydebug --benchmark transformer_wikitext2 --num_seeds 1 \
  --method BO --n_workers 2





This command should launch one SageMaker training job running Bayesian
optimization with the SageMaker backend, meaning that at any given time,
two worker training jobs are running.




            

          

      

      

    

  

    
      
          
            
  
How to Contribute a New Scheduler

This tutorial guides developers and researchers to contribute a new scheduler
to Syne Tune, or to modify and extend an existing one.

We hope this information inspires you to give it a try. Please do consider
contributing your efforts to Syne Tune [https://github.com/awslabs/syne-tune/blob/main/CONTRIBUTING.md]:


	Reproducible research: Syne Tune contains careful implementations of many
baselines and SotA algorithms. Once your new method is in there, you can
compare apples against apples (same backend, same benchmarks, same stopping
rules) instead of apples against oranges.


	Faster and cheaper: You have a great idea for a new scheduler? Test it right
away on a large range of benchmarks. Use Syne Tune’s
blackbox repository and simulator backend
in order to dramatically cut compute costs and waiting time.


	Impact: If you compared your method to a range of others, you know how hard
it is to get full-fledged HPO code of others running. Why would it be any
different for yours? We did a lot of the hard work already, why not benefit
from that?


	Your code is more awesome than ours? Great! Why not contribute your backend
or your benchmarks to Syne Tune as well?





Note

In order to develop new methodology in Syne Tune, make sure to use an
installation from source.
In particular, you need to have installed the dev dependencies.





	A First Example

	Random Search

	The TrialScheduler API

	Wrapping External Scheduler Code

	Extending Asynchronous Hyperband

	Extending Synchronous Hyperband

	Linking in a New Searcher

	Extending the Documentation








            

          

      

      

    

  

    
      
          
            
  
A First Example

In this section, we start with a simple example and clarify some basic concepts.

If you have not done so, we recommend you have a look at Basics of Syne Tune in order to get familiar with basic concepts of Syne
Tune.


First Example

A simple example for a new scheduler (called SimpleScheduler) is given by
the script
examples/launch_height_standalone_scheduler.py.
All schedulers are subclasses of
TrialScheduler. Important methods
include:


	Constructor: Needs to be passed the configuration space. Most schedulers also
have metric (name of metric to be optimized) and mode (whether metric
is to be minimized or maximized; default is "min").


	_suggest (internal version of suggest): Called by the
Tuner whenever a worker is available. Returns trial to
execute next, which in most cases will start a new configuration using
trial ID trial_id (as
start_suggestion).
Some schedulers may also suggest to resume a paused trial (as
resume_suggestion).
Our SimpleScheduler simply draws a new configuration at random from the
configuration space.


	on_trial_result: Called by the Tuner whenever a new
result reported
by a running trial has been received. Here, trial provides information
about the trial (most important is trial.trial_id), and result
contains the arguments passed to Reporter by the
underlying training script. All but the simplest schedulers maintain a
state which is modified based on this information. The scheduler also
decides what to do with this trial, returning a
SchedulerDecision to the
Tuner, which in turn relays this decision to the backend.
Our SimpleScheduler maintains a sorted list of all metric values
reported in self.sorted_results. Whenever a trial reports a metric
value which is worse than 4/5 of all previous reports (across all trials),
the trial is stopped, otherwise it may continue. This is an example for a
multi-fidelity scheduler, in that a trial reports results multiple times
(for example, a
script training a neural network may report validation errors at the end of
each epoch). Even if your scheduler does not support a multi-fidelity setup,
in that it does not make use of intermediate results, it should work properly
with training scripts which report such results (e.g., after every epoch).


	metric_names: Returns names of metrics which are relevant to this
scheduler. These names appear as keys in the result dictionary passed to
on_trial_result.




There are further methods in
TrialScheduler, which will be discussed
in detail below. This simple scheduler is also
missing the points_to_evaluate argument, which we recommend every new
scheduler to support, and which is discussed in more detail
here.



Basic Concepts

Recall from Basics of Syne Tune that an HPO
experiment is run as interplay between a backend and a scheduler, which is
orchestrated by the Tuner. The backend starts, stops,
pauses, or resumes training jobs and relays their reports. A trial abstracts
the evaluation of a hyperparameter configuration. There is a diverse range of
schedulers which can be implemented in Syne Tune, some examples are:


	Simple “full evaluation” schedulers. These suggest configurations for new
trials, but do not try to interact with running trials, even if the latter
post intermediate results. A basic example is
FIFOScheduler, to be discussed
below.


	Early-stopping schedulers. These require trials to post intermediate results
(e.g., validation errors after every epoch), and their on_trial_result
may stop underperforming trials early. An example is
HyperbandScheduler with
type="stopping".


	Pause-and-resume schedulers. These require trials to post intermediate
results (e.g., validation errors after every epoch). Their on_trial_result
may pause trials at certain points in time, and their _suggest may decide
to resume a paused trial instead of starting a new one. An example is
HyperbandScheduler with
type="promotion".





Note

The method on_trial_result()
returns a SchedulerDecision,
signaling the tuner to continue, stop, or pause the reporting trial.
The difference between pause and stop is important. If a trial is stopped,
it cannot be resumed later on. In particular, its checkpoints may be removed
(if the backend is created with delete_checkpoints=True). On the other
hand, if a trial is paused, it may be resumed in the future, and its most
recent checkpoint is retained (more details are given
here).




Asynchronous Job Execution

One important constraint on any scheduler to be run in Syne Tune is that calls
to both suggest and on_trial_report have to be non-blocking: they need
to return instantaneously, i.e. must not wait for some future events to happen.
This is to ensure that in the presence of several workers (i.e., parallel
execution resources), idle time is avoided: Syne Tune is always executing
parallel jobs asynchronously.

Unfortunately, many HPO algorithms proposed in the literature assume a
synchronous job execution setup, often for conceptual simplicity (examples
include successive halving and Hyperband, as well as batch suggestions for
Bayesian optimization). In general, it just takes a little extra effort to
implement non-blocking versions of these, and Syne Tune provides ample support
code for doing so, as will be demonstrated in detail.



Searchers and Schedulers

Many HPO algorithms have a modular structure. They need to make decisions about
how to keep workers busy in order to obtain new information (suggest), and
they need to react to new results posted by trials (on_trial_result). Most
schedulers make these decisions following a general principle, such as:


	Random search: New configurations are sampled at random.


	Bayesian optimization: Surrogate models representing metrics are fit to
result data, and they are used to make decisions (mostly suggest).
Examples include Gaussian process based BO or TPE (Tree Parzen Estimator).


	Evolutionary search: New configurations are obtained by mutating
well-performing members of a population.




Once such internal structure is recognized, we can use it to expand the range
of methods while maintaining simple, modular implementations. In Syne Tune,
this is done by configuring generic schedulers with internal searchers. A
basic example is given
below, more advanced
examples follow further below.

If you are familiar with Ray Tune [https://docs.ray.io/en/latest/tune/index.html],
please note a difference in terminology. In Ray Tune, searcher and scheduler
are two independent concepts, mapping to different decisions to be made by an
HPO algorithm. In Syne Tune, the HPO algorithm is represented by the scheduler,
which may have a searcher as component. We found that once model-based HPO is
embraced (e.g., Bayesian optimization), this creates strong dependencies
between suggest and stop or resume decisions, so that the supposed modularity
does not really exist.

Maybe the most important recommendation for implementing a new scheduler in
Syne Tune is this: be lazy!


	Can your idea be implemented as a new searcher, to be plugged into an
existing generic scheduler? Detailed examples are given
here,
here, and here.


	Does your idea involve changing the stop/continue or pause/resume decisions
in asynchronous successive halving or Hyperband? All you need to do is to
implement a new
RungSystem.
Examples:
StoppingRungSystem,
PromotionRungSystem,
RUSHStoppingRungSystem,
PASHARungSystem,
CostPromotionRungSystem.









            

          

      

      

    

  

    
      
          
            
  
Random Search

Random search is arguably the simplest HPO baseline. In a nutshell, _suggest
samples a new configuration at random from the configuration space, much like
our SimpleScheduler above, and on_trial_result does nothing except
returning SchedulerDecision.CONTINUE. A slightly more advanced version
would make sure that the same configuration is not suggested twice.

In this section, we walk through the Syne Tune implementation of random search,
thereby discussing some additional concepts. This will also be a first example
of the modular concept just described: random search is implemented as generic
FIFOScheduler configured by a
RandomSearcher.
A self-contained implementation of random search would be shorter. On the other
hand, as seen in
syne_tune.optimizer.baselines, FIFOScheduler also powers GP-based
Bayesian optimization, grid search, BORE, regularized evolution and constrained
BO simply by specifying different searchers. A number of concepts, to be
discussed here, have to be implemented once only and can be maintained much more
easily.


FIFOScheduler and RandomSearcher

We will have a close look at
FIFOScheduler and
RandomSearcher. Let us first
consider the arguments of FIFOScheduler:


	searcher, search_options: These are used to configure the scheduler
with a searcher. For ease of use, searcher can be a name, and additional
arguments can be passed via search_options. In this case, the searcher is
created by a factory, as detailed below. Alternatively,
searcher can also be a
BaseSearcher object.


	metric, mode: As discussed above
in SimpleScheduler.


	random_seed: Several pseudo-random number generators may be used in
scheduler and searcher. Seeds for these are drawn from a random seed generator
maintained in FIFOScheduler, whose
seed can be passed here. As a general rule, all schedulers and searchers
implemented in Syne Tune carefully manage such generators (and contributed
schedulers are strongly encourage to adopt this pattern).


	points_to_evaluate: A list of configurations (possibly partially specified)
to be suggested first. This allows the user to initialize the search by
default configurations, thereby injecting knowledge about the task. We
strongly recommend every scheduler to support this mechanism. More details
are given below.


	max_resource_attr, max_t: These arguments are relevant for
multi-fidelity schedulers. Only one of them needs to be given. We recommend
to use max_resource_attr. More details are given
below.




The most important use case is to configure FIFOScheduler with a new
searcher, and we will concentrate on this one. First, the base class of all
searchers is BaseSearcher:


	points_to_evaluate: A list of configurations to be suggested first. This
is initialized and (possibly) imputed in the base class, but needs to be used
in child classes. Configurations in points_to_evaluate can be partially
specified. Any hyperparameter missing in a configuration is imputed using a
“midpoint” rule. For a numerical parameter, this is the middle of the range
(in linear or log scale). For a categorical parameter, the first value is
chosen. If points_evaluate is not given, the default is [dict()]: a
single initial configuration is determined fully by the midpoint rule. In
order not to use initial configurations at all, the user has to pass
points_to_evaluate=[]. The imputation of configurations is done in the
base class.


	configure_scheduler: Callback function, allows the searcher to configure
itself depending on the scheduler. It also allows the searcher to reject
schedulers it is not compatible with. This method is called automatically at
the beginning of an experiment.


	get_config: This method is called by the scheduler in _suggest, it
delegates the suggestion of a configuration for a new trial to the searcher.


	on_trial_result: This is called by the scheduler in its own
on_trial_result, also passing the configuration of the current trial. If
the searcher maintains a surrogate model (for example, based on a Gaussian
process), it should update its model with result data iff update=True.
This is discussed in more detail below. Note that
on_trial_result does not return anything: decisions on how to proceed
with the trial are not done in the searcher.


	register_pending: Registers one (or more) pending evaluations, which are
signals to the searcher that a trial has been started and will return an
observation in the future. This is important in order to avoid redundant
suggestions in model-based HPO.


	evaluation_failed: Called by the scheduler if a trial failed. Default
searcher reactions are to remove pending evaluations and not to suggest the
corresponding configuration again. More advanced constrained searchers may
also try to avoid nearby configurations in the future.


	cleanup_pending: Removes all pending evaluations for a trial. This is
called by the scheduler when a trial terminates.


	get_state, clone_from_state: Used in order to serialize and
de-serialize the searcher


	debug_log: There is some built-in support for a detailed log, embedded in
FIFOScheduler and the Syne Tune searchers.




Below BaseSearcher, there is
StochasticSearcher, which
should be used by all searchers which make random decisions. It maintains a PRN
generator and provides methods to serialize and de-serialize its state.

StochasticAndFilterDuplicatesSearcher
extends StochasticSearcher. It supports a number of features which are
desirable for most searchers:


	Seed management for random decisions.


	Avoid suggesting the same configuration more than once. While we in general
recommend to use the default allow_duplicates == False, allowing for
duplicates can be useful when dealing with configuration spaces of small
finite size.


	Restrict configurations which can be suggested to a finite set. This can be
very useful when
using tabulated blackboxes.
It does not make sense for every scheduler though, as some rely on a
continuous search over the configuration space. You can inherit from
StochasticAndFilterDuplicatesSearcher
and still not support this feature, by insisting on
restrict_configurations == None.




All built-in Syne Tune searchers either inherit from this class, or avoid
duplicate suggestions in a different way. Finally, let us walk through
RandomSearcher:


	There are a few features beyond SimpleScheduler above. The searcher does
not suggest the same configuration twice (if allow_duplicates == False),
and also warns if a finite configuration space has been exhausted. It also uses
HyperparameterRanges
for random sampling and comparing configurations (to spot duplicates). This
is a useful helper class, also for encoding configurations as vectors. The
logic of detecting duplicates is implemented in the base class
StochasticAndFilterDuplicatesSearcher.
Finally, debug_log is used for diagnostic logs.


	get_config first asks for another entry from points_to_evaluate by
way of _next_initial_config. It then samples a new configuration at
random. This is done without replacement if allow_duplicates == False,
and with replacement otherwise. If successful, it also feeds debug_log.


	_update: This is not needed for random search, but is used here in order
to feed debug_log.








            

          

      

      

    

  

    
      
          
            
  
The TrialScheduler API

In this section, we have a closer look at the
TrialScheduler API, and how a scheduler
interacts with the trial backend.


Interaction between TrialScheduler and TrialBackend

Syne Tune supports a multitude of automatic tuning scenarios which embrace
asynchronous job execution. The goal of automatic tuning is to find a
configuration whose evaluation results in a sufficiently small (or large, if
mode="max") metric value, and to do so as fast as possible. This is done
by starting trials with promising configurations (suggest), and
(optionally) by stopping or pausing trials which underperform. A certain
number of such evaluation (or training) jobs can be executed in parallel, on
separate workers (which can be different GPUs or CPU cores on the same
instance, or different instances).

In Syne Tune, this process is split between two entities: the trial backend
and the trial scheduler. The backend wraps the
training code to be executed for different configurations and is responsible to
start jobs, as well as stop, pause or resume them. It also collects results
reported by the training jobs and relays them to the scheduler. In Syne Tune,
pause-and-resume scheduling is done via
checkpointing. While
code to write and load checkpoints locally must be provided by the training
script, the backend makes them available when needed. There are two basic
events which happen repeatedly during an HPO experiment, as orchestrated by the
Tuner:


	The Tuner polls the backend, which signals that one or more workers are
available. For each free worker, it calls
suggest(), asking for
what to do next. As already seen in our
first example, the scheduler will
typically suggest a configuration for a new trial to be started. On the
other hand, a pause-and-resume scheduler may also suggest to resume a
trial which is currently paused (having been started, and then paused,
in the past). Based on the scheduler response, the Tuner asks the
backend to start a new trial, or to resume an existing one.


	The Tuner polls the backend for new results, having been reported since
the last recent poll. For each such result,
on_trial_result()
is called. The scheduler makes a decision of what to do with the reporting
trial. Based on this decision, the Tuner asks the backend to stop or
pause the trial (or does nothing, in case the trial is to continue).




The processing of these events is non-blocking and full asynchronous, without
any synchronization points. Depending on the backend, there can be substantial
delays between a trial reporting a result and a stop or pause decision being
executed. During this time, the training code simply continues, it may even
report further results. Moreover, a worker may be idle between finishing an
evaluation and starting or resuming another one, due to delays in the backend
or even compute time for decisions in the scheduler. However, it will never be
idle having to wait for results from other trials.



TrialScheduler API

We now discuss additional aspects of the
TrialScheduler API, beyond what has
already been covered here:


	suggest returns a
TrialSuggestion object with fields
spawn_new_trial_id, checkpoint_trial_id, config. Here,
start_suggestion() has
spawn_new_trial_id=True and requires config. A new trial is to be
started with configuration config. Typically, this trial starts training
from scratch. However, some specific schedulers allow the trial to warm-start
from a checkpoint written for a different trial (an example is
PopulationBasedTraining).
A pause-and-resume scheduler may also return
resume_suggestion(),
where spawn_new_trial_id=False and checkpoint_trial_id is mandatory.
In this case, a currently paused trial with ID checkpoint_trial_id is to
be resumed. Typically, the configuration of the trial does not change, but if
config is used, the resumed trial is assigned a new configuration.
However, for all schedulers currently implemented in Syne Tune, a trial’s
configuration never changes.


	The only reason for suggest to return None is if no further
suggestion can be made. This can happen if the configuration space has been
exhausted. As discussed
here, the scheduler
cannot delay a suggest decision to a later point in time.


	The helper methods _preprocess_config and _postprocess_config are
used when interfacing with a searcher. Namely, the configuration space
(member config_space) may contain any number of fixed attributes
alongside the hyperparameters to be tuned (the latter have values of type
Domain), and each hyperparameter has a
specific value_type (mostly float, int or str). Searchers
require clean configurations, containing only hyperparameters with the
correct value types, which is ensured by _preprocess_config. Also,
_postprocess_config adds back the fixed attributes from config_space,
unless they have already been set.


	on_trial_add: This method is called by Tuner once a new trial has
been scheduled to be started. In general, a scheduler may assume that if
suggest returns
start_suggestion(), the
corresponding trial is going to be started, so on_trial_add is not
mandatory.


	on_trial_error: This method is called by Tuner if the backend
reports a trial’s evaluation to have failed. A useful reaction for the
scheduler is to not propose this configuration again, and also to remove
pending evaluations associated with this trial.


	on_trial_complete: This method is called once a trial’s evaluation is
complete, without having been stopped early. The final reported result is
passed here. Schedulers who ignore intermediate reports from trials, may just
implement this method and have on_trial_result return
SchedulerDecision.CONTINUE. Multi-fidelity schedulers may ignore this
method, since any reported result is transmitted via on_trial_result (the
final result is transmitted twice, first via on_trial_result, then via
on_trial_complete).


	on_trial_remove is called when a trial gets stopped or paused, so is not
running anymore, but also did not finish naturally. Once more, this method
is not mandatory.








            

          

      

      

    

  

    
      
          
            
  
Wrapping External Scheduler Code

One of the most common instances of extending Syne Tune is wrapping external
code. While there are comprehensive open source frameworks for HPO, many
recent advanced algorithms are only available as research codes, typically
ignoring systems aspects such as distributed scheduling, or maintaining results
in an interchangeable format. Due to the modular, backend-agnostic design of
Syne Tune, external scheduler code is easily integrated, and can then be
compared “apples to apples” against a host of baselines, be it by fast simulation
on surrogate benchmarks, or distributed across several machines.

In this chapter, we will walk through an example of how to wrap Gaussian
process based Bayesian optimization from
BoTorch [https://botorch.org/docs/introduction].


BoTorchSearcher

While Syne Tune supports Gaussian process based Bayesian optimization natively
via GPFIFOSearcher, with
searcher="bayesopt" in FIFOScheduler,
you can also use BoTorch [https://botorch.org/docs/introduction] via
BoTorchSearcher,
with searcher="botorch" in
FIFOScheduler.

Before we look into the code, note that even though we wrap external HPO code,
we still need to implement some details on our side:


	We need to maintain the trials which have resulted in observations, as well
as those which are pending (e.g., have been started, but have not yet returned
an observation).


	We need to provide the code for suggesting initial configurations, either
drawing from points_to_evaluate, or sampling at random.


	We need to avoid duplicate suggestions if allow_duplicates == False.


	BoTorch requires configurations to be encoded as vectors with values in
\([0, 1]\). We need to provide this encoding and decoding as well.




Such details are often ignored in research code (in fact, most HPO code just
implements the equivalent of
get_config(),
given all previous data), but has robust and easy to use solutions in Syne Tune,
as we demonstrate here. Here is
_get_config():


syne_tune/optimizer/schedulers/searchers/botorch/botorch_searcher.py

    def _get_config(self, trial_id: str, **kwargs) -> Optional[dict]:
        trial_id = int(trial_id)
        config_suggested = self._next_initial_config()

        if config_suggested is None:
            if len(self.objectives()) < self.num_minimum_observations:
                config_suggested = self._get_random_config()
            else:
                config_suggested = self._sample_next_candidate()

        if config_suggested is not None:
            self.trial_configs[trial_id] = config_suggested

        return config_suggested









	First, self._next_initial_config() is called, which returns a
configuration from points_to_evaluate if there is still one not yet
returned, otherwise None.


	Otherwise, if there are less than self.num_minimum_observations trials
which have returned observation, we return a randomly sampled configuration
(self._get_random_config()), otherwise one suggested by BoTorch
(self._sample_next_candidate()).


	Here, self._get_random_config() is implemented in the base class
StochasticAndFilterDuplicatesSearcher
and calls the same code as all other schedulers employing random suggestions
in Syne Tune. In particular, this function allows to pass an exclusion list
of configurations to avoid.


	The exclusion list self._excl_list is maintained in the base class
StochasticAndFilterDuplicatesSearcher.
If allow_duplicates == False, it contains all configurations suggested
previously. Otherwise, it contains configurations of failed or pending trials,
which we want to avoid in any case. The exclusion list is implemented as
ExclusionList.
Configurations are represented by hash strings which are independent of details
such as floating point resolution.


	If allow_duplicates == False and the configuration space is finite, it can
happen that all configurations have already been suggested, in which case
get_config returns None.


	Finally, _get_config is called in
get_config(),
where if allow_duplicates == False, the new configuration is added to the
exclusion list.


	In _sample_next_candidate(),
the usage of self._restrict_configurations is of interest. It relates to
the restrict_configurations argument. If this is not
None, configurations are suggested from a finite set, namely those in
self._restrict_configurations. If allows_duplicates == False,
entries are removed from there once suggested. For our example, we need to avoid
doing a local optimization of the acquisition function (via optimize_acqf)
in this case, but use
_sample_and_pick_acq_best()
instead. Since the latter uses self._get_random_config(), we are all set,
since this makes use of self._restrict_configurations already.




Other methods are straightforward:


	We also take care of pending evaluations (i.e. trials whose observations have
not been reported yet). In
register_pending(),
the trial ID is added to self.pending_trials.


	_update()
stores the metric value from result[self._metric], where
self._metric is the name of the primary metric. Also, the trial is
removed from self.pending_trials, so it ceases to be pending.


	By implementing
evaluation_failed()
and
cleanup_pending(),
we make sure that failed trials do not remain pending.


	configure_scheduler()
is a callback which allows the searcher to depend on its scheduler. In
particular, the searcher should reject non-supported scheduler types. The base
class implementation
configure_scheduler()
sets self._metric and self._mode from the corresponding attributes
of the scheduler, so they do not have to be set at construction of the
searcher.




Finally, all the code specific to BoTorch is located in
_sample_next_candidate()
and other internal methods. Importantly, BoTorch requires configurations to be
encoded as vectors with values in \([0, 1]\), which is done using the
self._hp_ranges member, as is detailed below.


Note

When implementing a new searcher, whether from scratch or wrapping external
code, we recommend you use the base class
StochasticAndFilterDuplicatesSearcher
and implement the allow_duplicates argument. This will also give you
proper random seed management and points_to_evaluate. Instead of
get_config, you implement the internal method _get_config. If you need
to draw configurations at random, use the method _get_random_config which
uses the built-in exclusion list, properly deals with configuration spaces
of finite size, and uses the random generator seeded in a consistent and
reproducible way.

We also recommend that you implement the restrict_configurations argument,
unless this is hard to do for your scheduler. Often, a scheduler can be made
to score a certain number of configurations and return the best. If so, you
use self._get_random_config() to select the configurations to score, which
take care of restrict_configurations.





HyperparameterRanges

Most model-based HPO algorithms require configurations to be encoded as vectors
with values in \([0, 1]\). If \(\mathbf{u} = e(\mathbf{x})\) and
\(\mathbf{x} = d(\mathbf{u})\) denote encoding and decoding map, where
\(\mathbf{x}\in \mathcal{X}\) is a configuration and
\(\mathbf{u} \in [0,1]^k\), then \(d(e(\mathbf{x})) = \mathbf{x}\) for
every configuration \(\mathbf{x}\), and a random sample \(d(\mathbf{u})\),
where the components of \(\mathbf{u}\) are sampled uniformly at random, is
equivalent to a random sample from the configuration space, as defined by the
hyperparameter domains.

With HyperparameterRanges,
Syne Tune provides encoding and decoding for all domains in
syne_tune.config_space (see this tutorial for
a summary). In fact, this API can be implemented in different ways, and the
factory function
make_hyperparameter_ranges()
can be used to create a HyperparameterRanges object from a configuration
space.


	to_ndarray()
provides the encoding map \(e(\mathbf{x})\), and
to_ndarray_matrix()
encodes a list of configurations into a matrix.


	from_ndarray()
provides the decoding map \(d(\mathbf{u})\).


	config_to_match_string()
maps a configuration to a hash string which can be used to test for (approximate)
equality (see allow_duplicates discussion above).




Apart from encoding and decoding, HyperparameterRanges provides further
functionalities, such as support for a resource attribute in model-based
multi-fidelity schedulers, or the active_config_space feature which is
useful to support transfer tuning (i.e., HPO in the presence of evaluation
data from earlier experiments with different configuration spaces).


Note

When implementing a new searcher or wrapping external code, we recommend you
use HyperparameterRanges
in order to encode and decode configurations as vectors, instead of writing
this on your own. Doing so ensures that your searcher supports all
hyperparameter domais offered by Syne Tune, even new ones potentially added
in the future. If you do not like the built-in implementation of the
HyperparameterRanges API, feel free to contribute a different one.





Managing Dependencies

External code can come with extra dependencies. For example, BoTorchSearcher
depends on torch, botorch, and gpytorch. If you just use Syne Tune
for your own experiments, you do not have to worry about this. However, we
strongly encourage you to
contribute back your extension [https://github.com/awslabs/syne-tune/blob/main/CONTRIBUTING.md].

Since some applications of Syne Tune require restricted dependencies, such are
carefully managed. There are different
installation options,
each of which coming with a requirements.txt file (see setup.py for
details).


	First, check whether any of the installation options cover the dependencies
of your extension (possibly a union of several of them). If so, please use
conditional imports w.r.t. these (see below)


	If the required dependencies are not covered, you can create a new
installation option (say, foo), via requirements-foo.txt and a
modification of setup.py. In this case, please also extend
try_import by a function try_import_foo_message.




Once all required dependencies are covered by some installation option, wrap
their imports as follows:

try:
    from foo import bar  # My dependencies
    # ...
except ImportError:
    print(try_import_foo_message())









            

          

      

      

    

  

    
      
          
            
  
Extending Asynchronous Hyperband

Syne Tune provides powerful generic scheduler templates for popular
methods like successive halving and Hyperband. These can be run with
synchronous or asynchronous decision-making. The most important generic
templates at the moment are:


	FIFOScheduler:
Full evaluation scheduler, baseclass for many others. See also
FIFOScheduler.


	HyperbandScheduler:
Asynchronous successive halving and Hyperband. See also
HyperbandScheduler.


	SynchronousHyperbandScheduler:
Synchronous successive halving and Hyperband. See also
SynchronousHyperbandScheduler.




Chances are your idea for a new scheduler maps to one of these templates, in
which case you can save a lot of time and headache by just extending the
template, rather than re-implementing the wheel. Due to Syne Tune’s modular
design of schedulers and their components (e.g., searchers, decision rules),
you may even get more than you bargained for.

In this section, we will walk through an example of how to furnish the
asynchronous successive halving scheduler with a specific searcher.


HyperbandScheduler

Details about asynchronous successive halving and Hyperband are given in the
Multi-fidelity HPO tutorial. This is a
multi-fidelity scheduler, where trials report intermediate results (e.g.,
validation error at the end of each epoch of training). We can formalize this
notion by the concept of resource \(r = 1, 2, 3, \dots\) (e.g.,
\(r\) is the number of epochs trained). A generic implementation of this
method is provided in class:HyperbandScheduler.
Let us have a look at its arguments not shared with the base class
class:FIFOScheduler:


	A mandatory argument is resource_attr, which is the name of a field in
the result dictionary passed to scheduler.on_trial_report. This field
contains the resource \(r\) for which metric values have been reported.
For example, if a trial reports validation error at the end of the 5-th epoch
of training, result contains {resource_attr: 5}.


	We already noted the arguments max_resource_attr and max_t in
class:FIFOScheduler. They are used to
determine the maximum resource \(r_{max}\) (e.g., the total number of
epochs a trial is to be trained, if not stopped before). As discussed in
detail here, it is
best practice reserving a field in the configuration space
scheduler.config_space to contain \(r_{max}\). If this is done, its
name should be passed in max_resource_attr. Now, every configuration sent
to the training script contains \(r_{max}\), which should not be hardcoded
in the script. Moreover, if max_resource_attr is used, a pause-and-resume
scheduler (e.g., HyperbandScheduler
with type="stopping") can modify this field in the configuration of a trial
which is only to be run until a certain resource less than \(r_{max}\).
Nevertheless, if max_resource_attr is not used, then \(r_{max}\) has
to be passed explicitly via max_t (which is not needed if
max_resource_attr is used).


	reduction_factor, grace_period, brackets are important parameters
detailed in the tutorial. If
brackets > 1, we run asynchronous Hyperband with this number of brackets,
while for bracket == 1 we run asynchronous successive halving (this is the
default).


	As detailed in the
tutorial,
type determines whether the method uses early stopping (type="stopping")
or pause-and-resume scheduling (type="promotion"). Further choices of
type activate specific algorithms such as RUSH, PASHA, or cost-sensitive
successive halving.






Kernel Density Estimator Searcher

One of the most flexible ways of extending
HyperbandScheduler is to provide it with
a novel searcher. In order to
understand how this is done, we will walk through
MultiFidelityKernelDensityEstimator
and
KernelDensityEstimator.
This searcher implements suggest as in
BOHB [https://arxiv.org/abs/1807.01774], as also detailed in
this tutorial. In a
nutshell, the searcher splits all observations into two parts (good and
bad), depending on metric values lying above or below a certain quantile, and
fits kernel density estimators to these two subsets. It then makes decisions
based on a particular ratio of these densities, which is approximating a
variant of the expected improvement acquisition function.

We begin with the base class
KernelDensityEstimator,
which works with schedulers implementing
TrialSchedulerWithSearcher
(the most important one being FIFOScheduler),
but already implements most of what is needed in the multi-fidelity context.


	The code does quite some bookkeeping concerned with mapping configurations to
feature vectors. If you want to do this from scratch for your searcher, we
recommend to use
HyperparameterRanges.
However, KernelDensityEstimator was extracted from the original BOHB
implementation.


	Observation data is collected in self.X (feature vectors for
configurations) and self.y (values for self._metric, negated if
self.mode == "max"). In particular, the _update method simply appends
new data to these members.


	get_config fits KDEs to the good and bad parts of self.X, self.y.
It then samples self.num_candidates configurations at random, evaluates
the TPE acquisition function for each candidate, and returns the best one.


	configure_scheduler is a callback which allows the searcher to check whether
its scheduler is compatible, and to depend on details of this scheduler.
In our case, we check whether the scheduler implements
TrialSchedulerWithSearcher,
which is the minimum requirement for a searcher.





Note

Any scheduler configured by a searcher should inherit from
TrialSchedulerWithSearcher,
which mainly makes sure that
configure_scheduler()
is called before the searcher is first used. It is also strongly recommended
to implement configure_scheduler for a new searcher, restricting usage
to compatible schedulers.



The class
MultiFidelityKernelDensityEstimator
inherits from KernelDensityEstimator:


	On top of self.X and self.y, it also maintains resource values
\(r\) for each datapoint in self.resource_levels.


	get_config remains the same, only its subroutine train_kde for
training the good and bad density models is modified. The idea is to fit
these to data from a single rung level, namely the largest level at which we
have observed at least self.num_min_data_points points.


	configure_scheduler restricts usage to schedulers implementing
MultiFidelitySchedulerMixin,
which all multi-fidelity schedulers need to inherit from (examples are
HyperbandScheduler for asynchronous
Hyperband and
SynchronousHyperbandScheduler
for synchronous Hyperband). It also calls
configure_scheduler().
Moreover, self.resource_attr is obtained from the scheduler, so does not
have to be passed.





Note

Any multi-fidelity scheduler configured by a searcher should inherit from both
TrialSchedulerWithSearcher and
MultiFidelitySchedulerMixin.
The latter is a basic API to be implemented by multi-fidelity schedulers, which
is used by the configure_scheduler of searchers specialized to multi-fidelity
HPO. Doing so makes sure any new multi-fidelity scheduler can seamlessly be
used with any such searcher.



While being functional and simple, the
MultiFidelityKernelDensityEstimator does not showcase the full range of
information exchanged between HyperbandScheduler and a searcher. In
particular:


	register_pending: BOHB does not take pending evaluations into account.


	remove_case, evaluation_failed are not implemented.


	get_state, clone_from_state are not implemented, so schedulers with
this searcher are not properly serialized.




For a more complete and advanced example, the reader is invited to study
GPMultiFidelitySearcher and
GPFIFOSearcher.
This searcher takes pending evaluations into account (by way of fantasizing).
Moreover, it can be configured with a Gaussian process model and an acquisition
function, which is optimized in a gradient-based manner.

Moreover, as already noted here,
HyperbandScheduler also allows to configure the decision rule for
stop/continue or pause/resume as part of on_trial_report. Examples for this
are found in
StoppingRungSystem,
PromotionRungSystem,
RUSHStoppingRungSystem,
PASHARungSystem,
CostPromotionRungSystem.





            

          

      

      

    

  

    
      
          
            
  
Extending Synchronous Hyperband

In the previous section, we gave an example of how to extend asynchronous
Hyperband with a new searcher. Syne Tune also provides a scheduler template
for synchronous Hyperband. In this section, we will walk through an example
of how to extend this template.

Our example here is somewhat more advanced than the one given for asynchronous
Hyperband. In fact, we will walk through the implementation of
Differential Evolution Hyperband (DEHB) [https://arxiv.org/abs/2105.09821]
in Syne Tune. Readers who are not interested in how to extend synchronous
Hyperband, may skip this section without loss.


Synchronous Hyperband

The differences between synchronous and asynchronous successive halving and
Hyperband are detailed in
this tutorial.
In a nutshell, synchronous Hyperband uses rung levels of a priori fixed size,
and decisions on which trials to promote to the next level are only done when
all slots in the current rung are filled. In other words, promotion decisions
are synchronized, while the execution of parallel jobs still happens
asynchronously. This requirement poses slight additional challenges for an
implementation, over what is said in
published work [https://jmlr.org/papers/v18/16-558.html]. We start with an
overview of
SynchronousHyperbandScheduler.
Concepts such as resource, rung, bracket, grace period \(r_{min}\),
reduction factor \(\eta\) are detailed in
this tutorial.

SynchronousHyperbandBracket
represents a bracket, consisting of a list of rungs, where each rung is
defined by (rung_size, level), rung_size is the number of slots,
level the resource level. Any system of rungs is admissible, as long
as rung_size is strictly decreasing and level is strictly
increasing.


	Any active bracket (i.e., supporting running trials) has a
self.current_rung, where not all slots are occupied.


	A slot in the current rung can be occupied, pending, or free. A slot
is free if it has not been associated with a trial yet. It is pending if it
is associated with a trial, but the latter has not returned a metric value
yet. It is occupied if it contains a metric value. A rung is worked on
by turning free slots to pending by associating them with a trial, and
turning pending slots to occupied when their trials return values.


	next_free_slot: Returns SlotInRung information about the next
free slot, or None if all slots are occupied or pending. This method
is called as part of suggest.


	on_result: This method is called as part of on_trial_result, when a
trial reports the result a pending slot is waiting for. The corresponding
slot becomes occupied. If this action renders the rung complete (i.e., all
slots are occupied), then _promote_trials_at_rung_complete is called.
This method increases self.current_rung and populates the trial_id
fields by the top performers of the rung just completed. All slots in the new
rung are free. Note that the trial_id fields of the first rung are
assigned to None at the beginning, they are set by the caller (using
new trial_id values provided by the backend).




SynchronousHyperbandBracketManager
maintains all brackets during an experiment. It is configured by a list
of brackets, where each bracket has one less rungs than its predecessor.
The Hyperband algorithm cycles through this RungSystemsPerBracket in
a round robin fashion. The bracket manager relays next_job and
on_result calls to the correct SynchronousHyperbandBracket. The
first bracket which is not yet complete, is the primary bracket.


	next_job: The preferred bracket to take the job (via next_free_slot)
is the primary one. However, a bracket may not be able to take the job,
because its current rung has no free slots (i.e., they are all occupied or
pending). In this case, the manager scans successive brackets. If no existing
bracket can take the job, a new bracket is created.




Given these classes,
SynchronousHyperbandScheduler
is straightforward. It is a pause-and-resume scheduler, and it implements the API
MultiFidelitySchedulerMixin,
so that any searchers supporting multi-fidelity schedulers can be used. More
precisely, SynchronousHyperbandScheduler inherits from
SynchronousHyperbandCommon,
which derives from
TrialSchedulerWithSearcher and
MultiFidelitySchedulerMixin
and collects some code used during construction.


	_suggest polls self.bracket_manager.next_job(). If the SlotInRung
returned has trial_id assigned, it corresponds to a trial to be
promoted, so the decision is
resume_suggestion()
Otherwise, the scheduler decides for
start_suggestion()
with a new trial_id, which also updates the SlotInRung.trial_id field.
In any case, the scheduler maintains the curently pending slots in
self._trial_to_pending_slot.


	on_trial_result relays information back via
self.bracket_manager.on_result((bracket_id, slot_in_rung)), as long
as trial_id appears in self._trial_to_pending_slot and has reached
its required rung level.






Differential Evolution Hyperband

We will now have a closer look at the implementation of
DEHB [https://arxiv.org/abs/2105.09821] in Syne Tune, which is a
recent extension of synchronous Hyperband, where configurations of
trials are chosen by evolutionary computations (mutation, cross-over,
selection). This example is more advanced than the
one above, in that we need to do more than
furnishing
SynchronousHyperbandScheduler
with a new searcher. The only time when a searcher suggests configurations is
at the very start, when the first rung of the first bracket is filled. All
further configurations are obtained by evolutionary means.

The main difference between DEHB and synchronous Hyperband is how
configurations to be evaluated in a rung are chosen, based on trials in
the rung above and in earlier brackets. In synchronous Hyperband, we
simply promote the best performing trials from the rung above. In
particular, the configurations do not change, and trials paused in the
rung above are resumed. In DEHB, this promotion process is more
complicated, and importantly, it leads to new trials with different
configurations. This means that trials are not resumed in DEHB.
Moreover, each configuration attached to a trial is represented by an
encoded vector with values in \([0, 1]\), where the mapping from
vectors to configurations is not invertible if the configuration space
contains discrete parameters. Much the same is done in Gaussian process
based Bayesian optimization.

The very first bracket of DEHB is processed in the same way as in
synchronous Hyperband, so assume the current bracket is not the first.
This is how the configuration vector for a free slot in a rung is
chosen:


	Identify a mutation candidate set. If there is a rung above,
this set contains the best performing trials from there, namely those
that would be promoted in synchronous Hyperband. If there is no rung
above, the set is the rung with same level from the previous bracket.
Now, if this set contains less than 3 entries, we add configurations
from earlier trials at the same rung level (the global parent pool).
This mutation candidate set is the same for all choices in the same
rung.


	Draw 3 configurations at random, without replacement, from the
mutation candidate set and create a mutant as a linear combination of
them.


	Identify the target configuration from the same slot and rung
level in the previous bracket. The candidate for the slot is obtained by
cross-over between mutant and target, in that each entry of the vector
is picked randomly from that position in one of the two. An evaluation
is started for this candidate configuration.


	Finally, there is selection. Once the slot is to be occupied, we compare
metric values between target and candidate, and the better one gets assigned
to the slot.




While this sounds quite foreign to what we saw
above, we can make
progress by associating each candidate vector arising from mutation and
cross-over with a new trial_id. After all, in order to determine the
winner between candidate and target, we have to evaluate the former.
Once this is done, we can map mutation and cross-over to suggest,
and selection to on_trial_report. It becomes clear that we can use
most of the infrastructure for synchronous Hyperband without change.

DifferentialEvolutionHyperbandBracket
has only minor differences to SynchronousHyperbandBracket. First,
_promote_trials_at_rung_complete does nothing, because promotion
(i.e., determining the trials for a rung from the one above) is a more
complex process now. In particular, the trial_id fields of free
slots in the current rung are None until they become occupied.
Second, top_list_for_previous_rung returns the top performing trials
of the rung above the current one. This information is needed in order
to create the mutation candidate set. All other methods remain the same.
We still need to identify the next free slot (at the time of mutation
and cross-over), and need to write information back when a slot gets
occupied.

At this point, it is important to acknowledge some difficulties arising
from asynchronous job execution. Namely, mutation and cross-over require
the configurations for the mutation candidate set and target to have
been determined before, and selection needs the metric value for the
target. If this type of information is not present when we need it, we
are not allowed to wait.


	If the current rung is not the first in the bracket, we know that all slots
in the rung above are occupied. After all, DEHB is still a synchronous HPO
method.


	The rung from where to choose the target can be problematic, as it may not
have been decided upon completely when mutation starts for the current rung.
In this case, our implementation cycles back through the brackets until an
assigned slot (i.e., not free) is found in the right place.


	For this reason, it is possible in principle that the target trial_id
changes between cross-over and selection. Also, in rare cases, the target may
not have a metric at selection time. In this case, the candidate wins.




DifferentialEvolutionHyperbandBracketManager
is very similar to SynchronousHyperbandBracketManager. Differences include:


	The system of brackets is more rigid in DEHB, in that subsequent brackets are
determined by the first one. In particular, later brackets have less total
budget, because rung sizes are inherited from the first bracket.


	top_of_previous_rung helps choosing the mutation candidate set. Its
return values are cached.


	trial_id_from_parent_slot selects the trial_id for the target for
cross-over and selection.




DifferentialEvolutionHyperbandScheduler
implements the DEHB scheduler. Just like SynchronousHyperbandScheduler, it
inherits from
SynchronousHyperbandCommon,
which contains common code used by both of them.


	On top of SynchronousHyperbandScheduler, it also maps trial_id to
encoded configuration in self._trial_info, and self._global_parent_pool
maintains all completed trials at each rung level.


	_suggest: We start by determining a free slot, then a configuration vector
for the new trial, typically by mutation and cross-over. One difficulty is that
this could end up suggesting a configuration already proposed before,
because many encoded vectors map to the same configuration. In this
case, we retry and may ultimately draw encoded configs at random. Except
for a special case in the very first bracket, we return with
start_suggestion().


	New encoded configurations are chosen only for the first rung of the first
bracket. Our implementation allows a searcher to be specified for this choice.
However, the default is to sample the new vector uniformly at random, see
_encoded_config_from_searcher. Importantly, this is different from
using searcher="random". The latter samples a configuration and maps
it to an encoded vector, a process which has less entropy if discrete
hyperparameters are present.


	on_trial_result is similar to what happens in
SynchronousHyperbandScheduler, except that selection is happening as
well. If the target wins in the selection, ext_slot.trial_id is changed
to the target trial_id. In any case, we return SchedulerDecision.STOP
because the trial will not have to be resumed later on (except in the very
first bracket).








            

          

      

      

    

  

    
      
          
            
  
Linking in a New Searcher

At this point, you should have learned everything needed for implementing a new
scheduler, or for modifying an existing template scheduler to your special
requirements. Say, you have implemented a new searcher to be plugged into one
of the existing generic schedulers. In this section, we will look into how a
new searcher can be made available in an easy-to-use fashion.


The Searcher Factory

Recall that our generic schedulers, such as
FIFOScheduler or
HyperbandScheduler allow the
user to choose a searcher via the string argument searcher, and to
configure the searcher (away from defaults) by the dictionary argument
search_options. While searcher can also be a
BaseSearcher
instance, it is simpler and more convenient to choose the searcher by
name. For example:


	Generic schedulers only work with certain types of searchers. This
consistency is checked when searcher is a name, but may lead to subtle
errors if not.


	Several arguments of a searcher are typically just the same as for the
surrounding scheduler, or can be inferred from arguments of the scheduler.
This can become complex for some searchers and leads to difficult boiler plate
code in case searcher is to be created by hand.


	While not covered in this tutorial, constructing schedulers and searchers for
Gaussian process based Bayesian optimization and its extensions to
multi-fidelity scheduling, constrained or cost-aware search is significantly
more complex, as can be seen in
syne_tune.optimizer.schedulers.searchers.gp_searcher_factory.




It is the purpose of
searcher_factory()
to create the correct
BaseSearcher object for given
scheduler arguments, including searcher (name) and search_options. Let
us have a look how the constructor of
FIFOScheduler calls the factory. We see
how scheduler arguments like metric, mode, points_to_evaluate are
just passed through to the factory. We also need to set
search_options["scheduler"] in order to tell searcher_factory which
generic scheduler is calling it.

The
searcher_factory()
code should be straightforward to understand and extend. Pick a name for your
new searcher and set searcher_cls and supported_schedulers (the latter
can be left to None if your searcher works with all generic schedulers). The
constructor of your searcher needs to have the signature

def __init__(self, config_space: dict, metric: str, **kwargs):





Here, kwargs will be fed with search_options, but enriched with fields
like mode, points_to_evaluate, random_seed_generator, scheduler.
Your searcher is not required to make use of them, even though we strongly
recommend to support points_to_evaluate and to make use of
random_seed_generator (as is
shown here). Here are
some best practices for linking a new searcher into the factory:


	The Syne Tune code is written in a way which allows to run certain scenarios
with a restricted set of all possible dependencies (see
FAQ).
This is achieved by conditional imports. If your searcher requires
dependencies beyond the core, please make sure to use
try ... except ImportError as you see in the code.


	Try to make sure that your searcher also works without search_options
being specified by the user. You will always have the fields contributed by
the generic schedulers, and for all others, your code should ideally come with
sensible defaults.


	Make sure to implement the configure_scheduler method of your new searcher,
restricting usage to supported scheduler types.






The Baseline Wrappers

In order to facilitate choosing and configuring a scheduler along with its
searcher, Syne Tune defines the most frequently used combinations in
syne_tune.optimizer.baselines. The minimal signature of a baseline
class is this:

def __init__(self, config_space: dict, metric: str, **kwargs):





Or, in the multi-objective case:

def __init__(self, config_space: dict, metric: List[str], **kwargs):





If the underlying scheduler maintains a searcher (as most schedulers do),
arguments to the searcher (except for config_space, metric) are
given in kwargs["search_options"]. If a scheduler is of multi-fidelity
type, the minimal signature is:

def __init__(self, config_space: dict, metric: str, resource_attr: str, **kwargs):





If the scheduler accepts a random seed, this must be kwargs["random_seed"].
Several wrapper classes in syne_tune.optimizer.baselines have signatures
with more arguments, which are either passed to the scheduler or to the searcher.
For example, some wrappers make random_seed explicit in the signature,
instead of having it in kwargs.


Note

If a scheduler maintains a searcher inside, and in particular if it simply
configures FIFOScheduler or
class:HyperbandScheduler with a new
searcher, it is strongly recommended to adhere to the policy to specify
searcher arguments in kwargs["search_options"]. This simplifies enabling
the new scheduler in the simple experimentation framework of
syne_tune.experiments, and in general provides a common user
experience across different schedulers.



Let us look at an example of a baseline wrapper whose underlying scheduler is
of type FIFOScheduler with a specific
searcher, which is not itself created via a searcher factory:


syne_tune/optimizer/baselines.py – REA

class REA(FIFOScheduler):
    """Regularized Evolution (REA).

    See :class:`~syne_tune.optimizer.schedulers.searchers.regularized_evolution.RegularizedEvolution`
    for ``kwargs["search_options"]`` parameters.

    :param config_space: Configuration space for evaluation function
    :param metric: Name of metric to optimize
    :param population_size: See
        :class:`~syne_tune.optimizer.schedulers.searchers.RegularizedEvolution`.
        Defaults to 100
    :param sample_size: See
        :class:`~syne_tune.optimizer.schedulers.searchers.RegularizedEvolution`.
        Defaults to 10
    :param random_seed: Random seed, optional
    :param kwargs: Additional arguments to
        :class:`~syne_tune.optimizer.schedulers.FIFOScheduler`
    """

    def __init__(
        self,
        config_space: Dict[str, Any],
        metric: str,
        population_size: int = 100,
        sample_size: int = 10,
        random_seed: Optional[int] = None,
        **kwargs,
    ):
        searcher_kwargs = _create_searcher_kwargs(
            config_space, metric, random_seed, kwargs
        )
        searcher_kwargs["population_size"] = population_size
        searcher_kwargs["sample_size"] = sample_size
        super(REA, self).__init__(
            config_space=config_space,
            metric=metric,
            searcher=RegularizedEvolution(**searcher_kwargs),
            random_seed=random_seed,
            **kwargs,
        )


def create_gaussian_process_estimator(
    config_space: Dict[str, Any],
    metric: str,
    random_seed: Optional[int] = None,
    search_options: Optional[Dict[str, Any]] = None,
) -> Estimator:
    scheduler = BayesianOptimization(
        config_space=config_space,
        metric=metric,
        random_seed=random_seed,
        search_options=search_options,
    )
    searcher = scheduler.searcher  # GPFIFOSearcher
    state_transformer = searcher.state_transformer  # ModelStateTransformer
    estimator = state_transformer.estimator  # GaussProcEmpiricalBayesEstimator

    # update the estimator properties
    estimator.active_metric = metric
    return estimator


class MORandomScalarizationBayesOpt(FIFOScheduler):
    """
    Uses :class:`~syne_tune.optimizer.schedulers.multiobjective.MultiObjectiveMultiSurrogateSearcher`
    with one standard GP surrogate model per metric (same as in
    :class:`BayesianOptimization`, together with the
    :class:`~syne_tune.optimizer.schedulers.multiobjective.MultiObjectiveLCBRandomLinearScalarization`
    acquisition function.

    If `estimators` is given, surrogate models are taken from there, and the
    default is used otherwise. This is useful if you have a good low-variance
    model for one of the objectives.

    :param config_space: Configuration space for evaluation function
    :param metric: Name of metrics to optimize
    :param mode: Modes of optimization. Defaults to "min" for all
    :param random_seed: Random seed, optional
    :param estimators: Use these surrogate models instead of the default GP
        one. Optional
    :param kwargs: Additional arguments to
        :class:`~syne_tune.optimizer.schedulers.FIFOScheduler`. Here,
        ``kwargs["search_options"]`` is used to create the searcher and its
        GP surrogate models.
    """

    def __init__(
        self,
        config_space: Dict[str, Any],
        metric: List[str],
        mode: Union[List[str], str] = "min",
        random_seed: Optional[int] = None,
        estimators: Optional[Dict[str, Estimator]] = None,
        **kwargs,
    ):
        try:
            from syne_tune.optimizer.schedulers.multiobjective import (
                MultiObjectiveMultiSurrogateSearcher,
                MultiObjectiveLCBRandomLinearScalarization,
            )
        except ImportError:
            logging.info(try_import_moo_message())
            raise

        searcher_kwargs = _create_searcher_kwargs(
            config_space, metric, random_seed, kwargs
        )

        if estimators is None:
            estimators = dict()
        else:
            estimators = estimators.copy()
        if isinstance(mode, str):
            mode = [mode] * len(metric)
        if "search_options" in kwargs:
            search_options = kwargs["search_options"].copy()
        else:
            search_options = dict()
        search_options["no_fantasizing"] = True
        for _metric in metric:
            if _metric not in estimators:
                estimators[_metric] = create_gaussian_process_estimator(
                    config_space=config_space,
                    metric=_metric,
                    search_options=search_options,
                )
        # Note: ``mode`` is dealt with in the ``update`` method of the MO
        # searcher, by converting the metrics. Internally, all metrics are
        # minimized
        searcher = MultiObjectiveMultiSurrogateSearcher(
            estimators=estimators,
            mode=mode,
            scoring_class=partial(
                MultiObjectiveLCBRandomLinearScalarization, random_seed=random_seed
            ),
            **searcher_kwargs,
        )
        super().__init__(
            config_space=config_space,
            metric=metric,
            mode=mode,
            searcher=searcher,
            random_seed=random_seed,
            **kwargs,
        )


class NSGA2(FIFOScheduler):
    """
    See :class:`~syne_tune.optimizer.schedulers.searchers.RandomSearcher`
    for ``kwargs["search_options"]`` parameters.

    :param config_space: Configuration space for evaluation function
    :param metric: Name of metric to optimize
    :param population_size: The size of the population for NSGA-2
    :param random_seed: Random seed, optional
    :param kwargs: Additional arguments to
        :class:`~syne_tune.optimizer.schedulers.FIFOScheduler`
    """

    def __init__(
        self,
        config_space: Dict[str, Any],
        metric: List[str],
        mode: Union[List[str], str] = "min",
        population_size: int = 20,
        random_seed: Optional[int] = None,
        **kwargs,
    ):
        searcher_kwargs = _create_searcher_kwargs(
            config_space, metric, random_seed, kwargs
        )
        searcher_kwargs["mode"] = mode
        searcher_kwargs["population_size"] = population_size
        super(NSGA2, self).__init__(
            config_space=config_space,
            metric=metric,
            mode=mode,
            searcher=NSGA2Searcher(**searcher_kwargs),
            random_seed=random_seed,
            **kwargs,
        )










	The signature has config_space, metric, and random_seed. It also
has two searcher arguments, population_size and sample_size.


	In order to compile the arguments searcher_kwargs for creating the
searcher, we first call
_create_searcher_kwargs(config_space, metric, random_seed, kwargs).
Doing so is particularly important in order to ensure random seeds are
managed between scheduler and searcher in the same way across different
Syne Tune schedulers.


	Next, the additional arguments population_size and sample_size need
to be appended to these searcher arguments. Had we used
kwargs["search_options"] instead, this would not be necessary.


	Finally, we create FIFOScheduler,
passing config_space, metric, as well as the new searcher via
searcher=RegularizedEvolution(**searcher_kwargs), and finally pass
**kwargs at the end.





Baselines and Benchmarking

As shown in this tutorial and
this tutorial, a particularly convenient
way to define and run experiments is using the code in
syne_tune.experiments. Once a new scheduler has a baseline wrapper, it
is very easy to make it available there: you just need to add a wrapper in
syne_tune.experiments.default_baselines. For the REA example above,
this is:

from syne_tune.optimizer.baselines import REA as _REA

def REA(method_arguments: MethodArguments, **kwargs):
    return _REA(**_baseline_kwargs(method_arguments, kwargs))








Contribute your Extension

At this point, you are ready to plug in your latest idea and make it work in
Syne Tune. Given that it works well, we would encourage you to
contribute it back to the community [https://github.com/awslabs/syne-tune/blob/main/CONTRIBUTING.md].
We are looking forward to your pull request.





            

          

      

      

    

  

    
      
          
            
  
Extending the Documentation

Syne Tune comes with an extensive amount of documentation:


	User-facing APIs are commented in the code, using the reStructered text format.
This is used to generate the API Reference. Please refer to the code in
order to understand our conventions. Please make sure that links to classes,
methods, or functions work. In the presence of :math: expression, the
docstring should be raw: r""" ... """.


	Examples in examples/ are working, documented scripts showcasing
individual features. If you contribute a new example, please also link it
in docs/source/examples.rst.


	Frequently asked questions at
docs/source/faq.rst.


	Table of all HPO algorithms in
docs/source/getting_started.rst.
If you contribute a new HPO method, please add a row there. As explained above,
please also extend baselines.


	Tutorials at docs/source/tutorials/. These are short chapters, explaining
a concept in more detail than an example. A tutorial should be self-contained
and come with functioning code, which can be run in a reasonable amount of
time and cost. It may contain figures created with a larger effort.





Building the Documentation

You can build the documentation locally as follows. Make sure to have Syne
Tune installed with dev dependencies:

cd docs
rm -rf source/_apidoc
make clean
make html





Then, open docs/build/html/index.html in your browser.

The documentation is also built as part of our CI system, so you can inspect it
as part of a pull request:


	Move to the list of all checks (if the PR is in good shape, you should see
All checks have passed)


	Locate docs/readthedocs.org:syne-tune at the end of the list. Click on
Details


	Click on View docs just below Build took X seconds (do not click on the
tall View Docs button upper right, this leads to the latest public docs)




When extending the documentation, please verify the following:


	Check whether links work. They typically fail silently, possibly emitting
a warning. Use proper links when referring to classes, modules, functions,
methods, or constants, and check whether the links to the API Reference
work.






Conventions

We use the following conventions to ensure that documentation stays
up-to-date:


	Use literalinclude for almost all code snippets. In general, the
documentation is showing code which is part of a functional script,
which can either be in examples/, in benchmarking/examples/, or
otherwise next to the documentation files.


	Almost all code shown in the documentation is run as part of
integration testing (.github/workflows/integ-tests.yml) or
end-to-end testing (.github/workflows/end-to-end-tests.yml). If you
contribute documentation with code, please insert your functional script
into one of the two:


	integ-tests.yml is run as part of our CI system. Code should run
for no more than 30 seconds. It must not depend on data loaded from
elsewhere, and not make use of surrogate blackboxes. It must not
use SageMaker.


	end-to-end-tests.yml is run manually on a regular basis, and in
particular before a new release. Code may download files or depend on
surrogate blackboxes. It may use SageMaker. Costs and runtime should
be kept reasonable.






	Links to other parts of the documentation should be used frequently. We
use anonymous references (two trailing underscores).


	Whenever mentioning a code construction (class, method, function, module,
constant), please use a proper link with absolute module name and leading
tilde. This allows interested readers to inspect API details and the code.
When the same name is used several times in the same paragraph, it is
sufficient to use a proper link for the first occurence only.








            

          

      

      

    

  

    
      
          
            
  
How to Implement Bayesian Optimization

This tutorial can be seen as more advanced successor of our
developer tutorial. It provides an overview of
how model-based search, and in particular Bayesian optimization, is
implemented in Syne Tune, and how this code can be extended in order to fit your
needs. The basic developer tutorial is a prerequisite to take full advantage
of the advanced tutorial here.

We hope this information inspires you to give it a try to extend Syne Tune’s
Bayesian optimization to your needs. Please do consider
contributing your efforts to Syne Tune [https://github.com/awslabs/syne-tune/blob/main/CONTRIBUTING.md].


Note

In order to develop new methodology in Syne Tune, make sure to use an
installation from source.
In particular, you need to have installed the dev dependencies.





	Overview of Module Structure

	Implementing a Surrogate Model

	Implementing Components of Bayesian Optimization

	Combining a Gaussian Process Model from Components








            

          

      

      

    

  

    
      
          
            
  
Overview of Module Structure

We begin with an overview of the module structure of the Bayesian optimization
(BO) code in Syne Tune. Feel free to directly move to the first example and come
back here for reference.

Recall that
Bayesian optimization is implemented in a searcher, which is a component of
a scheduler responsible for suggesting the next configuration to sample, given
data from earlier trials. While searchers using BO are located in
syne_tune.optimizer.schedulers.searchers and submodules, the BO code
itself is found in syne_tune.optimizer.schedulers.searchers.bayesopt.
Recall that
a typical BO algorithm is configured by a surrogate model  and an acquisition
function. In Syne Tune, acquisition functions are implemented generically,
while (except for special cases) surrogate models can be grouped in two
different classes:


	Gaussian process based surrogate models: Implementations in
gpautograd.


	Surrogate models based on scikit-learn like estimators: Implementations
in sklearn.




The remaining code in syne_tune.optimizer.schedulers.searchers.bayesopt
is generic or wraps lower-level code. Submodules are as follows:


	datatypes:
Collects types related to maintaining data obtained from trials. The most
important class is
TuningJobState,
which collects relevant data during an experiment. Note that other relevant
classes are in syne_tune.optimizer.schedulers.searchers.utils, such as
HyperparameterRanges,
which wraps a configuration space and maps configurations to encoded vectors
used as inputs to a surrogate model.


	models:
Contains a range of surrogate models, both for single and multi-fidelity
tuning, along with the machinery to fit parameters of these models. In a
nutshell, retraining of parameters and posterior computations for a surrogate
model are defined in
Estimator,
which returns a
Predictor
to be used for posterior predictions, which in turn drive the optimization of
an acquisition function. A model-based searcher interacts with a
ModelStateTransformer,
which maintains the state of the experiment (a
TuningJobState
object) and interacts with an Estimator. Subclasses of Estimator and
Predictor are mainly wrappers of underlying code in
gpautograd or
sklearn. Details
will be provided shortly. This module also contains a range of acquisition
functions, mostly in
meanstd_acqfunc.


	tuning_algorithms:
The Bayesian optimization logic resides here, mostly in
BayesianOptimizationAlgorithm.
Interfaces for all relevant concepts are defined in
base_classes:


	Predictor:
Probabilistic predictor obtained from surrogate model, to be plugged into acquisition
function.


	AcquisitionFunction:
Acquisition function, which is optimized in order to suggest the next
configuration.


	ScoringFunction:
Base class of AcquisitionFunction which does not support gradient
computations. Score functions can be used to rank a finite number of
candidates.


	LocalOptimizer:
Local optimizer for minimizing the acquisition function.






	gpautograd:
The Gaussian process based surrogate models, defined in
models, can be
implemented in different ways. Syne Tune currently uses the lightweight
autograd [https://github.com/HIPS/autograd] library, and the corresponding
implementation lies in this module.


	sklearn:
Collects code required to implement surrogate models based on
scikit-learn like estimators.





Note

The most low-level code for Gaussian process based Bayesian optimization is
contained in
gpautograd, which
is specific to autograd [https://github.com/HIPS/autograd] and L-BFGS
optimization. Unless you want to implement a new kernel function, you
probably do not have to extend this code. As we will see, most extensions of
interest can be done in
models (new
surrogate model, new acquisition function), or in
tuning_algorithms
(different BO workflow).




A Walk Through Bayesian Optimization

The key primitive of BO is to suggest a next configuration to evaluate the
unknown target function at (e.g., the validation error after training a
machine learning model with a hyperparameter configuration), based on all
data gathered about this function in the past. This primitive is triggered in
the get_config()
method of a BO searcher. It consists of two main steps:


	Estimate surrogate model(s), given all data obtained. Often, a single surrogate
model represents the target metric of interest, but in generalized setups
such as multi-fidelity, constrained, or multi-objective BO, surrogate models
may be fit to several metrics. A surrogate model provides predictive
distributions for the metric it represents, at any configuration, which
allows BO to explore the space of configurations not yet sampled at. For most
built-in GP based surrogate models, estimation is done by maximizing the log
marginal likelihood, as we see in more detail below.


	Use probabilistic predictions of surrogate models to search for the best
next configuration to sample at. This is done in
BayesianOptimizationAlgorithm,
and is the main focus here.




BayesianOptimizationAlgorithm
can suggest a batch of num_requested_candidates > 1. If
greedy_batch_selection == True, this is done greedily, one configuration
at a time, yet diversity is maintained by inserting already suggested
configurations as pending into the state. If greedy_batch_selection == False,
we simply return the num_requested_candidates top-scoring configurations.
For simplicity, we focus on num_requested_candidates == 1, so that
a single configuration is suggested. This happens in several steps:


	First, a list of num_initial_candidates initial configurations is drawn
at random from initial_candidates_generator of type
CandidateGenerator.


	Next, these configurations are scored using initial_candidates_scorer of type
ScoringFunction.
This is a parent class of
AcquisitionFunction,
but acquisition functions support gradient computation as well. The scoring
function typically depends on a predictor obtained from a surrogate model.


	Finally, local optimization of an acquisition function is run, using an
instance of
LocalOptimizer,
which depends on an acquisition function and one or more predictors. Local
optimization is initialized with the top-scoring configuration from the
previous step. If it fails or does not result in a configuration with a
better acquisition value, then this initial configuration is returned. The
final local optimization can be skipped by passing an instance of
NoOptimization.




This workflow offers a number of opportunities for customization:


	The initial_candidates_generator by default draws configurations at random
with replacement (checking for duplicates is expensive, and does not add
value). This could be replaced by pseudo-random sampling with better
coverage properties, or by Latin hypercube designs.


	The initial_candidate_scorer is often the same as the acquisition function
in the final local optimization. Other acquisition strategies, such as
(independent) Thompson sampling, can be implemented here.


	You may want to customize the acquisition function feeding into local
optimization (and initial scoring), more details are provided
below.








            

          

      

      

    

  

    
      
          
            
  
Implementing a Surrogate Model

In Bayesian optimization (BO), a surrogate model represents the data observed
from a target metric so far, and its probabilistic predictions at new
configurations (typically involving both predictive mean and variance) guides
the search for a most informative next acquisition. In this section, we will
show how surrogate models are implemented in Syne Tune, and give an example of
how a novel model can be added.

Recall from above that Syne Tune offers surrogate model from two broad classes:
Gaussian process based models and scikit-learn estimator based models. Both
are implemented in terms of the same abstractions
Estimator,
and
Predictor.
We will first walk through GP based surrogate models, then dive into an example
of how to implement a new scikit-learn estimator based model. More details
about how to extend GP based models are provided
further below.


Example

Before diving into details, let us look at a simple example for how to implement
a new surrogate model in Syne Tune, of the scikit-learn estimator based type. It
does not come with some of the complexities of Gaussian process based surrogate
models, to be discussed below:


	Fantasizing is not supported


	MCMC (or ensemble predictions) is not supported


	Gradient-based optimization of an acquisition function is not supported, in
that Bayesian optimization is scoring a finite number of candidates drawn
at random, selecting the best




The full example code is given
here.
We implement subclasses of
SKLearnPredictor
and
SKLearnEstimator.
These are wrapped by
SKLearnPredictorWrapper
and
SKLearnEstimatorWrapper.


examples/launch_sklearn_surrogate_bo.py

from syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn import (
    SKLearnEstimator,
    SKLearnPredictor,
)


class BayesianRidgePredictor(SKLearnPredictor):
    """
    Predictor for surrogate model given by ``sklearn.linear_model.BayesianRidge``.
    """

    def __init__(self, ridge: BayesianRidge):
        self.ridge = ridge

    def predict(self, X: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
        return self.ridge.predict(X, return_std=True)


class BayesianRidgeEstimator(SKLearnEstimator):
    """
    Estimator for surrogate model given by ``sklearn.linear_model.BayesianRidge``.

    None of the parameters of ``BayesianRidge`` are exposed here, so they are all
    fixed up front.
    """

    def __init__(self, *args, **kwargs):
        self.ridge = BayesianRidge(*args, **kwargs)

    def fit(
        self, X: np.ndarray, y: np.ndarray, update_params: bool
    ) -> SKLearnPredictor:
        self.ridge.fit(X, y.ravel())
        return BayesianRidgePredictor(ridge=copy.deepcopy(self.ridge))










	The BayesianRidgeEstimator is wrapping the scikit-learn estimator
sklearn.linear_model.BayesianRidge, which implements a form of
Bayesian regression estimation. While this method has hyperparameters, they
are automatically set in fit, so we do not need to make them explicit.
The result of fit is a BayesianRidgePredictor instance which wraps
a copy of the fitted scikit-learn estimator.


	In BayesianRidgePredictor, the predict methods calls the equivalent
of the scikit-learn estimator with return_std=True, so that both
predictive means and stddevs are returned.




The remaining launcher script is much the same as other examples, except that
FIFOScheduler is used with a
particular searcher:


examples/launch_sklearn_surrogate_bo.py

    searcher = SKLearnSurrogateSearcher(
        config_space=config_space,
        metric=METRIC_ATTR,
        estimator=BayesianRidgeEstimator(),
        scoring_class=EIAcquisitionFunction,
    )








	SKLearnSurrogateSearcher
needs a SKLearnEstimator
object as estimator, as well as the choice of acquisition function as
scoring_class.






The Predictor Class

Scikit-learn based estimators are typically rather simple and based on
deterministic machine learning methods. Bayesian optimization is usually run with
Bayesian models, where proper quantification of uncertainty is center-stage,
and supporting these is a little more difficult.

In Bayesian statistics, (surrogate) models are conditioned on data in order to
obtain a posterior distribution, represented by a posterior state. Given this
state, probabilistic predictions can be done at arbitrary input points. This is
done by objects of type
Predictor,
whose methods deal with predictions on new configurations.


Note

Before moving on, it is important to understand the difference between
conditioning a probabilistic model on data in order to obtain a
posterior distribution, with which probabilistic predictions (i.e., mean
and variance) can be computed at input points, and learning (or fitting)
the (hyper)parameters of the model. For a Bayesian surrogate model, the
latter involves Markov Chain Monte Carlo or marginal likelihood optimization,
which requires conditioning on data several times. For non-Bayesian models,
parameters are often fit by cross-validation.



At this point, there are a number of relevant concepts:


	A model can be “fitted” by Markov Chain Monte Carlo (MCMC), in which case its
predictive distribution is an ensemble. This is why prediction methods
returns lists. In the default case (single model, no MCMC), these lists are
of size one.


	A model may support fantasizing in order to properly deal with pending
configurations in the current state (see also register_pending in the
discussion
here).
At least in the Gaussian process surrogate model case, fantasizing is done
by drawing nf samples of target values for the pending configurations,
then average predictions over this sample. The Gaussian predictive
distributions in this average share the same variance, but have different
means. A surrogate model which does not support fantasizing, can ignore this
extra complexity.




Take the example of a basic Gaussian process surrogate model, which is behind
BayesianOptimization. The predictor is
GaussProcPredictor.
This class can serve models fit by marginal likelihood optimization (empirical
Bayes) or MCMC, but let us focus on the former. Predictions in this model are
based on a posterior state, which maintains a representation of the Gaussian
posterior distribution needed for probabilistic predictions. Say we would like
do a prediction at some configuration \(\mathbf{c}\). First, this
configuration is mapped to an (encoded) input vector \(\mathbf{x}\). Next,
predictive distributions are computed, using the posterior state:


\[P(y | \mathbf{x}) = \left[ \mathcal{N}(y | \mu_j(\mathbf{x}),
\sigma^2(\mathbf{x})) \right],\quad j=1,\dots, \mathrm{nf}.\]

Here, nf denotes the number of fantasy samples (nf=1 if fantasizing is not
supported). This is served by methods of
Predictor:


	hp_ranges_for_prediction: Returns instance of
HyperparameterRanges
which is used to map a configuration \(\mathbf{c}\) to an encoded
vector \(\mathbf{x}\).


	predict: Given a matrix \(\mathbf{X}\) of input vectors (these are
the rows \(\mathbf{x}_i\)), return a list of dictionaries. In our
non-MCMC example, this list has length 1. The dictionary contains
statistics of the predictive distribution. In our example, this would be
predictive means (key “mean”) and predictive standard deviations (key
“std”). More precisely, the entry for “mean” would be a matrix
\([\mu_j(\mathbf{x}_i)]_{i,j}\) of shape (n, nf), where n is
the number of input vectors, and the entry for “std” would be a vector
\([\sigma(\mathbf{x}_i)]_i\) of shape (n,). If the surrogate
model does not support fantasizing, the entry for “mean” is also a
vector of shape (n,).


	predict_candidates: Version of predict, where the input is a list of
configurations \([\mathbf{c}_j]\), which are first mapped to rows of
the matrix \(\mathbf{X}\) by using hp_ranges_for_prediction.


	keys_predict: Keys of dictionaries returned by predict. If a
surrogate model is to be used with a standard acquisition function, such
as expected improvement, it needs to return at least means (“mean”) and
standard deviations (“std”). However, in other contexts, a surrogate
model may be deterministic, in which case only means (“mean”) are
returned. This method allows an acquisition function to check whether
it can work with surrogate models passed to it.


	backward_gradient: This method is needed in order to support local
gradient-based optimization of an acquisition function, as discussed
here.
It is detailed below.


	current_best: A number of acquisition functions depend on the
incumbent, which is a smooth approximation to the best target value
observed so far. Typically, this is implemented as
\(\mathrm{min}(\mu_j(\mathbf{x}_i))\) over all inputs
\(\mathbf{x}_i\) already sampled for previous trials. As with
predict, this returns a list of vectors of shape (nf,),
catering for fantasizing. If fantasizing is not supported, this is
a list of scalars, and the list size is 1 for non-MCMC.





Note

In fact,
GaussProcPredictor
inherits from
BasePredictor,
which extends the base interface by some helper code to implement the
current_best method.




Supporting Local Gradient-based Optimization

As discussed above, BO in Syne Tune supports local gradient-based optimization
of an acquisition function. This needs to be supported by an implementation of
Predictor,
in terms of the backward_gradient method.

In the most basic case, an acquisition function \(\alpha(\mathbf{x})\) has
the following structure:


\[\alpha(\mathbf{x}) = \alpha(\mu(\mathbf{x}), \sigma(\mathbf{x})).\]

We ignore fantasizing here, otherwise \(\mu(\mathbf{x})\) becomes a
vector. For gradient-based optimization, we need derivatives


\[\frac{\partial\alpha}{\partial\mathbf{x}} =
\frac{\partial\alpha}{\partial\mu} \frac{\partial\mu}{\partial\mathbf{x}} +
\frac{\partial\alpha}{\partial\sigma} \frac{\partial\sigma}{\partial\mathbf{x}}.\]

The backward_gradient method takes arguments \(\mathbf{x}\) (input) and
a dictionary mapping “mean” to \(\partial\alpha/\partial\mu\) at
\(\mu = \mu(\mathbf{x})\), “std” to \(\partial\alpha/\partial\sigma\)
at \(\sigma = \sigma(\mathbf{x})\) (head_gradients), and returns the
gradient \(\partial\alpha/\partial\mathbf{x}\).

Readers familiar with deep learning frameworks like PyTorch may wonder why
we don’t just combine surrogate model and acquisition function into forming
\(\alpha(\mathbf{x})\), and compute its gradient by reverse mode
differentiation. However, this would strongly couple the two concepts, in that
they would have to be implemented in the same auto-differentiation system.
Instead, backward_gradient decouples the gradient computation into head
gradients for the acquisition function, which (as we will see) can be
implemented in native NumPy, and backward_gradient for the surrogate
model itself. For Syne Tune’s Gaussian process surrogate models, the latter
is implemented using autograd [https://github.com/HIPS/autograd]. If the
predict method is implemented using this framework, gradients are
obtained automatically as usual.




ModelStateTransformer and Estimator

An instance of
Predictor
represents the posterior distribution of a model conditioned on observed data.
Where does this conditioning take place? Note that while machine learning
APIs like scikit-learn couple fitting and prediction in a single API, these
two are decoupled in Syne Tune by design:


	Estimator:
The most important method is
fit_from_state().
It computes the posterior state by conditioning on observed data, which are
sufficient statistics required for probabilistic predictions. Moreover, if
update_params=True, this final conditioning is preceded by fitting the
(hyper)parameters of the model (this is more expensive, and if
update_params=False, the current parameters are used without updating
them).


	Predictor:
Wraps the posterior state computed by the Estimator, allows for predictions.




The fitting of surrogate models underlying a Bayesian optimization experiment
happens in
ModelStateTransformer,
which interfaces between a model-based searcher and the surrogate model. The
ModelStateTransformer maintains the state of the experiment, where all data
about observations and pending configurations are collected. Its
fit()
method triggers fitting the surrogate models to the current data (this step can
be skipped for computational savings) and computing their posterior states.

ModelStateTransformer hands down these tasks to an object of type
Estimator,
which is specific to the surrogate model being used. For our Gaussian process
example, this would be
GaussProcEmpiricalBayesEstimator.
Here, parameters of the Gaussian process models (such as parameters of the
covariance function) are fitted by marginal likelihood maximization, and the
GP posterior state is computed.


Note

To summarize, if your surrogate model needs to be fit to data, you need to
implement a subclass of
Estimator,
whose fit_from_state method takes in data in form of a
TuningJobState
and returns a
Predictor.
You can use
transform_state_to_data()
in order to convert the TuningJobState object into the usual pair of
feature matrix features and target vector targets, along with
normalization of targets.







            

          

      

      

    

  

    
      
          
            
  
Implementing Components of Bayesian Optimization

At this point, you should have obtained an overview of how Bayesian optimization
(BO) is structured in Syne Tune, and understood how a new surrogate model can
be implemented. In this section, we turn to other components of BO: the
acquisition function, and the covariance kernel of the Gaussian process
surrogate model. We also look inside the factory for creating Gaussian process
based searchers.


Implementing an Acquisition Function

In Bayesian optimization, the next configuration to sample at is chosen by
minimizing an acquisition function:


\[\mathbf{x}_* = \mathrm{argmin}_{\mathbf{x}} \alpha(\mathbf{x})\]

In general, the acquisition function \(\alpha(\mathbf{x})\) is optimized
over encoded vectors \(\mathbf{x}\), and the optimal \(\mathbf{x}_*\)
is rounded back to a configuration. This allows for gradient-based
optimization of \(\alpha(\mathbf{x})\).

In Syne Tune, acquisition functions are subclasses of
AcquisitionFunction.
It may depend on one or more surrogate models, by being a function of the
predictive statistics returned by the predict method of
Predictor.
For a wide range of acquisition functions used in practice, we have that


\[\alpha(\mathbf{x}) = \alpha(\mu(\mathbf{x}), \sigma(\mathbf{x})).\]

In other words, \(\alpha(\mathbf{x})\) is a function of the predictive
mean and standard deviation of a single surrogate model. This case is
covered by
MeanStdAcquisitionFunction.
More general, this class implements acquisition functions depending on one
or more surrogate models, each of which returning means and (optionally)
standard deviations in predict. Given the generic code in Syne Tune, a
new acquisition function of this type is easy to implement. As an example,
consider the lower confidence bound (LCB) acquisition function:


\[\alpha_{\mathrm{LCB}}(\mathbf{x}) =
\mu(\mathbf{x}) - \kappa \sigma(\mathbf{x}),\quad \kappa > 0.\]

Here is the code:


bayesopt/models/meanstd_acqfunc_impl.py

class LCBAcquisitionFunction(MeanStdAcquisitionFunction):
    r"""
    Lower confidence bound (LCB) acquisition function:

    .. math::

       h(\mu, \sigma) = \mu - \kappa * \sigma
    """

    def __init__(self, predictor: Predictor, kappa: float, active_metric: str = None):
        super().__init__(predictor, active_metric)
        assert isinstance(predictor, Predictor)
        assert kappa > 0, "kappa must be positive"
        self.kappa = kappa

    def _head_needs_current_best(self) -> bool:
        return False

    def _compute_head(
        self,
        output_to_predictions: SamplePredictionsPerOutput,
        current_best: Optional[np.ndarray],
    ) -> np.ndarray:
        means, stds = self._extract_mean_and_std(output_to_predictions)
        return np.mean(means - stds * self.kappa, axis=1)

    def _compute_head_and_gradient(
        self,
        output_to_predictions: SamplePredictionsPerOutput,
        current_best: Optional[np.ndarray],
    ) -> HeadWithGradient:
        mean, std = self._extract_mean_and_std(output_to_predictions)
        nf_mean = mean.size

        dh_dmean = np.ones_like(mean) / nf_mean
        dh_dstd = (-self.kappa) * np.ones_like(std)
        return HeadWithGradient(
            hval=np.mean(mean - std * self.kappa),
            gradient={self.active_metric: dict(mean=dh_dmean, std=dh_dstd)},
        )










	An object is constructed by passing model (a Predictor) and
kappa (the positive constant \(\kappa\)). The surrogate model
must return means and standard deviations in its predict method.


	_compute_head: This method computes
\(\alpha(\mathbf{\mu}, \mathbf{\sigma})\), given means and standard
deviations. The argument output_to_predictions is a dictionary of
dictionaries. If the acquisition function depends on a dictionary of
surrogate models, the first level corresponds to that. The second level
corresponds to the statistics returned by predict. In the simple
case here, the first level is a single entry with key
INTERNAL_METRIC_NAME,
and the second level uses keys “mean” and “std” for means \(\mathbf{\mu}\)
and stddevs \(\mathbf{\sigma}\). Recall that due to fantasizing, the
“mean” entry can be a (n, nf) matrix, in which case we compute the
average along the columns. The argument current_best is needed only
for acquisition functions which depend on the incumbent.


	_compute_head_and_gradient: This method is needed for the computation
of \(\partial\alpha/\partial\mathbf{x}\), for a single input
\(\mathbf{x}\). Given the same arguments
as _compute_head (but for \(n = 1\) inputs), it returns a
HeadWithGradient object, whose hval entry is the same as the
return value of _compute_head, whereas the gradient entry contains
the head gradients which are passed to the backward_gradient method of
the
Predictor.
This entry is a nested dictionary of the same structure as
output_to_predictions. The head gradient for a single surrogate model
(as in our example) has \(\partial\alpha/(\partial\mathbf{\mu})\) for
“mean” and \(\partial\alpha/(\partial\mathbf{\sigma})\) for “std”.
It is particularly simple for the LCB example.


	_head_needs_current_best returns False, since the LCB acquisition
function does not depend on the incumbent (i.e., the current best metric
value), which means that the current_best arguments need not be
provided.




Finally, a new acquisition function should be linked into
acquisition_function_factory(),
so that users can select it via arguments acq_function and
acq_function_kwargs in
BayesianOptimization. The factory code
is:


bayesopt/models/acqfunc_factory.py

from functools import partial

from syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes import (
    AcquisitionFunctionConstructor,
)
from syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl import (
    EIAcquisitionFunction,
    LCBAcquisitionFunction,
)


SUPPORTED_ACQUISITION_FUNCTIONS = (
    "ei",
    "lcb",
)


def acquisition_function_factory(name: str, **kwargs) -> AcquisitionFunctionConstructor:
    assert (
        name in SUPPORTED_ACQUISITION_FUNCTIONS
    ), f"name = {name} not supported. Choose from:\n{SUPPORTED_ACQUISITION_FUNCTIONS}"
    if name == "ei":
        return EIAcquisitionFunction
    else:  # name == "lcb"
        kappa = kwargs.get("kappa", 1.0)
        return partial(LCBAcquisitionFunction, kappa=kappa)







Here, acq_function_kwargs is passed as kwargs. For our example,
acq_function="lcb". The user can pass a value for kappa via
acq_function_kwargs={"kappa": 0.5}.

A slightly more involved example is
EIAcquisitionFunction,
representing the expected improvement (EI) acquisition function, which is the
default choice for BayesianOptimization
in Syne Tune. This function depends on the incumbent, so current_best needs
to be given. Note that if the means passed to _compute_head have shape
(n, nf) due to fantasies, then current_best has shape (1, nf),
since the incumbent depends on the fantasy sample.

Acquisition functions can depend on more than one surrogate model. In such a
case, the model argument to their constructor is a dictionary, and the
key names of the corresponding models (or outputs) are also used in the
output_to_predictions arguments and head gradients:


	EIpuAcquisitionFunction
is an acquisition function for cost-aware HPO:


\[\alpha_{\mathrm{EIpu}}(\mathbf{x}) =
\frac{\alpha_{\mathrm{EI}}(\mu_y(\mathbf{x}), \sigma_y(\mathbf{x}))}{\mu_c(\mathbf{x})^{\rho}}\]

Here, \((\mu_y, \sigma_y)\) are predictions from the surrogate model for
the target function \(y(\mathbf{x})\), whereas \(\mu_c\) are mean
predictions for the cost function \(c(\mathbf{x})\). The latter can be
represented by a deterministic surrogate model, whose predict method only
returns means as “mean”. In fact, the method _output_to_keys_predict
specifies which moments are required from each surrogate model.



	CEIAcquisitionFunction
is an acquisition function for constrained HPO:


\[\alpha_{\mathrm{CEI}}(\mathbf{x}) =
\alpha_{\mathrm{EI}}(\mu_y(\mathbf{x}), \sigma_y(\mathbf{x})) \cdot
\mathbb{P}(c(\mathbf{x})\le 0).\]

Here, \(y(\mathbf{x})\) is the target function, \(c(\mathbf{x})\) is
the constraint function. Both functions are represented by probabilistic
surrogate models, whose predict method returns means and stddevs.
We say that \(\mathbf{x}\) is feasible if \(c(\mathbf{x})\le 0\),
and the goal is to minimize \(y(\mathbf{x})\) over feasible points.

One difficulty with this acquisition function is that the incumbent in
the EI term is computed only over observations which are feasible (so
\(c_i\le 0\)). This means we cannot rely on the surrogate model for
\(y(\mathbf{x})\) to provide the incumbent, but instead need to determine
the feasible incumbent ourselves, in the _get_current_bests_internal
method.





A final complication in
MeanStdAcquisitionFunction
arises if some or all surrogate models are MCMC ensembles. In such a case,
we average over the sample for each surrogate model involved. Inside this sum
over the Cartesian product, the incumbent depends on the sample index for each
model. This is dealt with by
CurrentBestProvider.
In the default case for an acquisition function which needs the incumbent
(such as, for example, EI), this value depends only on the model for the
active (target) metric, and
ActiveMetricCurrentBestProvider
is used.


Note

Acquisition function implementations are independent of which
auto-differentiation mechanism is used under the hood. Different to
surrogate models, there is no acquisition function code in
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.
This is because the implementation only needs to provide head gradients
in compute_acq_with_gradient, which are easy to derive and compute
for common acquisition functions.





Implementing a Covariance Function for GP Surrogate Models

A Gaussian process, modelling a random function \(y(\mathbf{x})\), is
defined by a mean function \(\mu(\mathbf{x})\) and a covariance function
(or kernel) \(k(\mathbf{x}, \mathbf{x}')\). While Syne Tune contains a
number of different covariance functions for multi-fidelity HPO, where
learning curves \(y(\mathbf{x}, r)\) are modelled, \(r = 1, 2, \dots\)
the number of epochs trained (details are provided
here),
it currently provides the Matern 5/2 covariance function only for models
of \(y(\mathbf{x})\). A few comments up front:


	Mean and covariance functions are parts of (Gaussian process) surrogate
models. For these models, complex gradients are required for different
purposes. First, our Bayesian optimization code supports gradient-based
minimization of the acquisition function. Second, a surrogate model is
fitted to observed data, which is typically done by gradient-based
optimization (e.g., marginal likelihood optimization, empirical Bayes)
or by gradient-based Markov Chain Monte Carlo (e.g., Hamiltonian Monte Carlo).
This means that covariance function code must be written in a framework
supporting automatic differentiation. In Syne Tune, this code resides in
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd. It is
based on autograd [https://github.com/HIPS/autograd].


	Covariance functions contain parameters to be fitted to observed data.
Kernels in Syne Tune typically feature an overall output scale, as well
as inverse bandwidths for the input. In the (so called) automatic relevance
determination parameterization, we use one inverse bandwidth per input
vector component. This allows the surrogate model to learn relevance to
certain input components: if components are not relevant to explain the
observed data, their inverse bandwidths can be driven to very small values.
Syne Tune uses code extracted from
MXNet Gluon [https://mxnet.apache.org/versions/1.6/api/python/docs/api/gluon/index.html]
for managing parameters. The base class
KernelFunction
derives from
MeanFunction,
which derives from
Block.
The main service of this class is to maintain a parameter dictionary,
collecting all parameters in the current objects and its members (recursively).




In order to understand how a new covariance function can be implemented, we will
go through the most important parts of
Matern52.
This covariance function is defined as:


\[k(\mathbf{x}, \mathbf{x}') = c \left( 1 + d + d^2/3 \right) e^{-d}, \quad
d = \sqrt{5} \|\mathbf{S} (\mathbf{x} - \mathbf{x}')\|.\]

Its parameters are the output scale \(c > 0\) and the inverse bandwidths
\(s_j > 0\), where \(\mathbf{S}\) is the
diagonal matrix with diagonal entries \(s_j\). If ARD == False, there
is only a single bandwidth parameter \(s > 0\).

First, we need some includes:


bayesopt/gpautograd/kernel/base.py – includes

import autograd.numpy as anp
from autograd.tracer import getval
from typing import Dict, Any

from syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.constants import (
    INITIAL_COVARIANCE_SCALE,
    INITIAL_INVERSE_BANDWIDTHS,
    DEFAULT_ENCODING,
    INVERSE_BANDWIDTHS_LOWER_BOUND,
    INVERSE_BANDWIDTHS_UPPER_BOUND,
    COVARIANCE_SCALE_LOWER_BOUND,
    COVARIANCE_SCALE_UPPER_BOUND,
    NUMERICAL_JITTER,
)
from syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.distribution import (
    Uniform,
    LogNormal,
)
from syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon import Block
from syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers import (
    encode_unwrap_parameter,
    register_parameter,
    create_encoding,
)
from syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.mean import (
    MeanFunction,
)









Since a number of covariance functions are simple expressions of squared
distances \(\|\mathbf{S} (\mathbf{x} - \mathbf{x}')\|^2\), Syne Tune contains
a block for this one:


bayesopt/gpautograd/kernel/base.py – SquaredDistance

class SquaredDistance(Block):
    r"""
    Block that is responsible for the computation of matrices of squared
    distances. The distances can possibly be weighted (e.g., ARD
    parametrization). For instance:

    .. math::

       m_{i j} = \sum_{k=1}^d ib_k^2 (x_{1: i k} - x_{2: j k})^2

       \mathbf{X}_1 = [x_{1: i j}],\quad \mathbf{X}_2 = [x_{2: i j}]

    Here, :math:`[ib_k]` is the vector :attr:`inverse_bandwidth`.
    if ``ARD == False``, ``inverse_bandwidths`` is equal to a scalar broadcast to the
    d components (with ``d = dimension``, i.e., the number of features in ``X``).

    :param dimension: Dimensionality :math:`d` of input vectors
    :param ARD: Automatic relevance determination (``inverse_bandwidth`` vector
        of size ``d``)? Defaults to ``False``
    :param encoding_type: Encoding for ``inverse_bandwidth``. Defaults to
        :const:`~syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.constants.DEFAULT_ENCODING`
    """

    def __init__(
        self,
        dimension: int,
        ARD: bool = False,
        encoding_type: str = DEFAULT_ENCODING,
        **kwargs
    ):
        super().__init__(**kwargs)
        self.ARD = ARD
        inverse_bandwidths_dimension = 1 if not ARD else dimension
        self.encoding = create_encoding(
            encoding_type,
            INITIAL_INVERSE_BANDWIDTHS,
            INVERSE_BANDWIDTHS_LOWER_BOUND,
            INVERSE_BANDWIDTHS_UPPER_BOUND,
            inverse_bandwidths_dimension,
            Uniform(INVERSE_BANDWIDTHS_LOWER_BOUND, INVERSE_BANDWIDTHS_UPPER_BOUND),
        )

        with self.name_scope():
            self.inverse_bandwidths_internal = register_parameter(
                self.params,
                "inverse_bandwidths",
                self.encoding,
                shape=(inverse_bandwidths_dimension,),
            )

    def _inverse_bandwidths(self):
        return encode_unwrap_parameter(self.inverse_bandwidths_internal, self.encoding)

    def forward(self, X1, X2):
        """Computes matrix of squared distances

        :param X1: input matrix, shape ``(n1, d)``
        :param X2: input matrix, shape ``(n2, d)``
        """
        # In case inverse_bandwidths if of size (1, dimension), dimension>1,
        # ARD is handled by broadcasting
        inverse_bandwidths = anp.reshape(self._inverse_bandwidths(), (1, -1))

        X1_scaled = anp.multiply(X1, inverse_bandwidths)
        X1_squared_norm = anp.sum(anp.square(X1_scaled), axis=1)
        if X2 is X1:
            D = -2.0 * anp.dot(X1_scaled, anp.transpose(X1_scaled))
            X2_squared_norm = X1_squared_norm
        else:
            X2_scaled = anp.multiply(X2, inverse_bandwidths)
            D = -2.0 * anp.matmul(X1_scaled, anp.transpose(X2_scaled))
            X2_squared_norm = anp.sum(anp.square(X2_scaled), axis=1)
        D = D + anp.reshape(X1_squared_norm, (-1, 1))
        D = D + anp.reshape(X2_squared_norm, (1, -1))

        return anp.abs(D)

    def get_params(self) -> Dict[str, Any]:
        """
        Parameter keys are "inv_bw<k> "if ``dimension > 1``, and "inv_bw" if
        ``dimension == 1``.
        """
        inverse_bandwidths = anp.reshape(self._inverse_bandwidths(), (-1,))
        if inverse_bandwidths.size == 1:
            return {"inv_bw": inverse_bandwidths[0]}
        else:
            return {
                "inv_bw{}".format(k): inverse_bandwidths[k]
                for k in range(inverse_bandwidths.size)
            }

    def set_params(self, param_dict: Dict[str, Any]):
        dimension = self.encoding.dimension
        if dimension == 1:
            inverse_bandwidths = [param_dict["inv_bw"]]
        else:
            keys = ["inv_bw{}".format(k) for k in range(dimension)]
            for k in keys:
                assert k in param_dict, "'{}' not in param_dict = {}".format(
                    k, param_dict
                )
            inverse_bandwidths = [param_dict[k] for k in keys]
        self.encoding.set(self.inverse_bandwidths_internal, inverse_bandwidths)










	In the constructor, we create a parameter vector for the inverse bandwidths
\([s_j]\), which can be just a scalar if ARD == False. In Syne Tune,
each parameter has an encoding (e.g., identity or logarithmic), which
includes a lower and upper bound, an initial value, as well as a prior
distribution. The latter is used for regularization during optimization.


	The most important method is forward. Given two matrices
\(\mathbf{X}_1\), \(\mathbf{X}_2\), whose rows are input vectors,
we compute the matrix \([\|\mathbf{x}_{1:i} - \mathbf{x}_{2:j}\|^2]_{i, j}\)
of squared distances. Most important, we use anp = autograd.numpy here
instead of numpy. These autograd wrappers ensure that automatic
differentiation can be used in order to compute gradients w.r.t. leaf nodes
in the computation graph spanned by the numpy computations. Also, note
the use of encode_unwrap_parameter in _inverse_bandwidths to obtain
the inverse bandwidth parameters as numpy array. Finally, note that
X1 and X2 can be the same object, in which case we can save compute
time and create a smaller computation graph.


	Each block in Syne Tune also provides get_params and set_params
methods, which are used for serialization and deserialization.




Given this code, the implementation of
Matern52
is simple:


bayesopt/gpautograd/kernel/base.py – Matern52

class Matern52(KernelFunction):
    """
    Block that is responsible for the computation of Matern 5/2 kernel.

    if ``ARD == False``, ``inverse_bandwidths`` is equal to a scalar broadcast to the
    d components (with ``d = dimension``, i.e., the number of features in ``X``).

    Arguments on top of base class :class:`SquaredDistance`:

    :param has_covariance_scale: Kernel has covariance scale parameter? Defaults
        to ``True``
    """

    def __init__(
        self,
        dimension: int,
        ARD: bool = False,
        encoding_type: str = DEFAULT_ENCODING,
        has_covariance_scale: bool = True,
        **kwargs
    ):
        super(Matern52, self).__init__(dimension, **kwargs)
        self.has_covariance_scale = has_covariance_scale
        self.squared_distance = SquaredDistance(
            dimension=dimension, ARD=ARD, encoding_type=encoding_type
        )
        if has_covariance_scale:
            self.encoding = create_encoding(
                encoding_name=encoding_type,
                init_val=INITIAL_COVARIANCE_SCALE,
                constr_lower=COVARIANCE_SCALE_LOWER_BOUND,
                constr_upper=COVARIANCE_SCALE_UPPER_BOUND,
                dimension=1,
                prior=LogNormal(0.0, 1.0),
            )
            with self.name_scope():
                self.covariance_scale_internal = register_parameter(
                    self.params, "covariance_scale", self.encoding
                )

    @property
    def ARD(self) -> bool:
        return self.squared_distance.ARD

    def _covariance_scale(self):
        if self.has_covariance_scale:
            return encode_unwrap_parameter(
                self.covariance_scale_internal, self.encoding
            )
        else:
            return 1.0

    def forward(self, X1, X2):
        """Computes Matern 5/2 kernel matrix

        :param X1: input matrix, shape ``(n1,d)``
        :param X2: input matrix, shape ``(n2,d)``
        """
        covariance_scale = self._covariance_scale()
        X1 = self._check_input_shape(X1)
        if X2 is not X1:
            X2 = self._check_input_shape(X2)
        D = 5.0 * self.squared_distance(X1, X2)
        # Using the plain np.sqrt is numerically unstable for D ~ 0
        # (non-differentiability)
        # that's why we add NUMERICAL_JITTER
        B = anp.sqrt(D + NUMERICAL_JITTER)
        return anp.multiply((1.0 + B + D / 3.0) * anp.exp(-B), covariance_scale)

    def diagonal(self, X):
        X = self._check_input_shape(X)
        covariance_scale = self._covariance_scale()
        covariance_scale_times_ones = anp.multiply(
            anp.ones((getval(X.shape[0]), 1)), covariance_scale
        )

        return anp.reshape(covariance_scale_times_ones, (-1,))

    def diagonal_depends_on_X(self):
        return False

    def param_encoding_pairs(self):
        result = [
            (
                self.squared_distance.inverse_bandwidths_internal,
                self.squared_distance.encoding,
            )
        ]
        if self.has_covariance_scale:
            result.insert(0, (self.covariance_scale_internal, self.encoding))
        return result

    def get_covariance_scale(self):
        if self.has_covariance_scale:
            return self._covariance_scale()[0]
        else:
            return 1.0

    def set_covariance_scale(self, covariance_scale):
        assert self.has_covariance_scale, "covariance_scale is fixed to 1"
        self.encoding.set(self.covariance_scale_internal, covariance_scale)

    def get_params(self) -> Dict[str, Any]:
        result = self.squared_distance.get_params()
        if self.has_covariance_scale:
            result["covariance_scale"] = self.get_covariance_scale()
        return result

    def set_params(self, param_dict: Dict[str, Any]):
        self.squared_distance.set_params(param_dict)
        if self.has_covariance_scale:
            self.set_covariance_scale(param_dict["covariance_scale"])








	In the constructor, we create an object of type
SquaredDistance.
A nice feature of MXNet Gluon blocks is that the parameter dictionary of an
object is automatically extended by the dictionaries of members, so we don’t
need to cater for that. Beware that this only works for members which are of
type Block directly. If you use a list or dictionary containing such
objects, you need to include their parameter dictionaries explicitly.
Next, we also define a covariance scale parameter \(c > 0\), unless
has_covariance_scale == False.


	forward calls forward of the SquaredDistance object, then
computes the kernel matrix, using anp = autograd.numpy once more.


	diagonal returns the diagonal of the kernel matrix based on a
matrix X of inputs. For this particular kernel, the diagonal does not
depend on the content of X, but only its shape, which is why
diagonal_depends_on_X returns False.


	Besides get_params and set_params, we also need to implement
param_encoding_pairs, which is required by the optimization code
used for fitting the surrogate model parameters.




At this point, you should not have any major difficulties implementing a new
covariance function, such as the Gaussian kernel or the Matern kernel with
parameter 3/2.



The Factory for Gaussian Process Searchers

Once a covariance function (or any other component of a surrogate model) has
been added, how is it accessed by a user? In general, all details about the
surrogate model are specified in search_options passed to
FIFOScheduler or
BayesianOptimization. Available options
are documented in
GPFIFOSearcher. Syne Tune
offers a range of searchers based on various Gaussian process surrogate models
(e.g., single fidelity, multi-fidelity, constrained, cost-aware). The code to
generate all required components for these searchers is bundled in
gp_searcher_factory. For
each type of searcher, there is a factory function and a defaults function.
For BayesianOptimization (which is
equivalent to FIFOScheduler with
searcher="bayesopt"), we have:


	gp_fifo_searcher_factory():
Takes search_options for kwargs and returns the arguments for the
GPFIFOSearcher constructor.


	gp_fifo_searcher_defaults():
Provides default values and type constraints for search_options




The searcher object is created in
searcher_factory().
Finally, search_options are merged with default values, and searcher_factory
is called in the constructor of
FIFOScheduler. This process keeps
things simple for the user, who just has to specify the type of searcher by
searcher, and additional arguments by search_options. For any argument
not provided there, a sensible default value is used.

Factory and default functions in
gp_searcher_factory are based
on common code in this module, which reflects the complexity of some of the
searchers, but is otherwise self-explanatory. As a continuation of the
previous section, suppose we had implemented a novel covariance function to
be used in GP-based Bayesian optimization. The user-facing argument to select
a kernel is gp_base_kernel, its default value is “matern52-ard” (Matern
5/2 with ARD parameters). Here is the code for creating this covariance
function in gp_searcher_factory:


gp_searcher_factory.py

def _create_base_gp_kernel(hp_ranges: HyperparameterRanges, **kwargs) -> KernelFunction:
    """
    The default base kernel is :class:`Matern52` with ARD parameters.
    But in the transfer learning case, the base kernel is a product of
    two ``Matern52`` kernels, the first non-ARD over the categorical
    parameter determining the task, the second ARD over the remaining
    parameters.
    """
    input_warping = kwargs.get("input_warping", False)
    if kwargs.get("transfer_learning_task_attr") is not None:
        if input_warping:
            logger.warning(
                "Cannot use input_warping=True together with transfer_learning_task_attr. Will use input_warping=False"
            )
        # Transfer learning: Specific base kernel
        kernel = create_base_gp_kernel_for_warmstarting(hp_ranges, **kwargs)
    else:
        has_covariance_scale = kwargs.get("has_covariance_scale", True)
        kernel = base_kernel_factory(
            name=kwargs["gp_base_kernel"],
            dimension=hp_ranges.ndarray_size,
            has_covariance_scale=has_covariance_scale,
        )
        if input_warping:
            # Use input warping on all coordinates which do not belong to a
            # categorical hyperparameter
            kernel = kernel_with_warping(kernel, hp_ranges)
            if kwargs.get("debug_log", False) and isinstance(kernel, WarpedKernel):
                ranges = [(warp.lower, warp.upper) for warp in kernel.warpings]
                logger.info(
                    f"Creating base GP covariance kernel with input warping: ranges = {ranges}"
                )
    return kernel










	Ignoring transfer_learning_task_attr, we first call base_kernel_factory
to create the base kernel, passing kwargs["gp_base_kernel"] as its name.


	Syne Tune also supports warping of the inputs to a kernel, which adds two
more parameters for each component (except those coming from categorical
hyperparameters, these are not warped).





bayesopt/models/kernel_factory.py

from syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel import (
    KernelFunction,
    Matern52,
    ExponentialDecayResourcesKernelFunction,
    ExponentialDecayResourcesMeanFunction,
    FreezeThawKernelFunction,
    FreezeThawMeanFunction,
    CrossValidationMeanFunction,
    CrossValidationKernelFunction,
)
from syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.warping import (
    WarpedKernel,
    Warping,
)
from syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.mean import (
    MeanFunction,
)


SUPPORTED_BASE_MODELS = (
    "matern52-ard",
    "matern52-noard",
)


def base_kernel_factory(name: str, dimension: int, **kwargs) -> KernelFunction:
    assert (
        name in SUPPORTED_BASE_MODELS
    ), f"name = {name} not supported. Choose from:\n{SUPPORTED_BASE_MODELS}"
    return Matern52(
        dimension=dimension,
        ARD=name == "matern52-ard",
        has_covariance_scale=kwargs.get("has_covariance_scale", True),
    )










	base_kernel_factory creates the base kernel, based on its name (must be
in SUPPORTED_BASE_MODELS, the dimension of input vectors, as well as
further parameters (has_covariance_scale in our example). Currently,
Syne Tune only supports the Matern  5/2 kernel, with and without ARD.


	Had we implemented a novel covariance function, we would have to select a
new name, insert it into SUPPORTED_BASE_MODELS, and insert code into
base_kernel_factory. Once this is done, the new base kernel can as well
be selected as component in multi-fidelity or constrained Bayesian
optimization.








            

          

      

      

    

  

    
      
          
            
  
Combining a Gaussian Process Model from Components

We have already seen above how to implement a
surrogate model from scratch. However, many Gaussian process models
proposed in the Bayesian optimization literature are combinations of more
basic underlying models. In this section, we show how such combinations
are implemented in Syne Tune.


Note

When planning to implement a new Gaussian process model, you should first
check whether the outcome is simply a Gaussian process with mean and
covariance function arising from combinations of means and kernels of the
components. If that is the case, it is often simpler and more efficient to
implement a new mean and covariance function using existing code (as shown
above),
and to use a standard GP model with these functions.




Independent Processes for Multiple Fidelities

In this section, we will look at the example of
independent,
providing a surrogate model for a set of functions
\(y(\mathbf{x}, r)\), where \(r\in \mathcal{R}\) is an integer from a
finite set. This model is used in the context of
multi-fidelity HPO.
Each \(y(\mathbf{x}, r)\) is represented by an independent Gaussian process,
with mean function \(\mu_r(\mathbf{x})\) and covariance function
\(c_r k(\mathbf{x}, \mathbf{x}')\). The covariance function \(k\) is
shared between all the processes, but the scale parameters \(c_r > 0\) are
different for each process. In multi-fidelity HPO, we observe more data at
smaller resource levels \(r\). Using the same ARD-parameterized kernel for
all processes allows to share statistical strenght between the different
levels. The code in
independent
follows a useful pattern:


	IndependentGPPerResourcePosteriorState:
Posterior state, representing the posterior distribution after conditioning
on data. This is used (a) to compute the log marginal likelihood for fitting
the model parameters, and (b) for predictions driving the acquisition function
optimization.


	IndependentGPPerResourceMarginalLikelihood:
Wraps code to generate posterior state, and represents the negative log marginal
likelihood function used to fit the model parameters.


	IndependentGPPerResourceModel:
Wraps code for creating the likelihood object. API towards higher level code.




The code of
IndependentGPPerResourcePosteriorState
is a simple reduction to
GaussProcPosteriorState,
the posterior state for a basic Gaussian process. For example, here is the code
to compute the posterior state:


bayesopt/gpautograd/independent/posterior_state.py

    def _compute_states(
        self,
        features: np.ndarray,
        targets: np.ndarray,
        kernel: KernelFunction,
        mean: Dict[int, MeanFunction],
        covariance_scale: Dict[int, np.ndarray],
        noise_variance: Dict[int, np.ndarray],
        resource_attr_range: Tuple[int, int],
        debug_log: bool = False,
    ):
        features, resources = decode_extended_features(features, resource_attr_range)
        self._states = dict()
        for resource, mean_function in mean.items():
            cov_scale = covariance_scale[resource]
            rows = np.flatnonzero(resources == resource)
            if rows.size > 0:
                r_features = features[rows]
                r_targets = targets[rows]
                self._states[resource] = GaussProcPosteriorState(
                    features=r_features,
                    targets=r_targets,
                    mean=mean_function,
                    kernel=(kernel, cov_scale),
                    noise_variance=noise_variance[resource],
                    debug_log=debug_log,
                )









	mean and covariance_scale are dictionaries containing \(\mu_r\)
and \(c_r\) respectively.


	features are extended features of the form \((\mathbf{x}_i, r_i)\).
The function decode_extended_features maps this to arrays
\([\mathbf{x}_i]\) and \([r_i]\).


	We compute separate posterior states for each level \(r\in\mathcal{R}\),
using the data \((\mathbf{x}_i, y_i)\) so that \(r_i = r\).


	Other methods of the base class
PosteriorStateWithSampleJoint
are implemented accordingly, reducing computations to the states for each
level.




The code of
IndependentGPPerResourceMarginalLikelihood
is obvious, given the base class
MarginalLikelihood.
The same holds for
IndependentGPPerResourceModel,
given the base class
GaussianProcessOptimizeModel.
One interesting feature is that the creation of the likelihood object is
delayed, because the set of rung levels \(\mathcal{R}\) of the multi-fidelity
scheduler need to be known. The create_likelihood method is called in
configure_scheduler(),
a callback function with the scheduler as argument.

Since our independent GP model implements the APIs of
MarginalLikelihood
and
GaussianProcessOptimizeModel,
we can plug it into generic code in syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_model,
which works as outlined
above.
In particular, the estimator
GaussProcEmpiricalBayesEstimator
accepts gp_model of type
IndependentGPPerResourceModel,
and it creates predictors of type
GaussProcPredictor.



Overview of gpautograd

Most of the code in
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd adheres to
the same pattern (posterior state, likelihood function, model wrapper):


	Standard GP model:
GaussProcPosteriorState,
GaussianProcessMarginalLikelihood,
GaussianProcessRegression.
This also covers multi-task GP models for multi-fidelity, by way of extended
configurations.


	Independent GP models for multi-fidelity (example above):
IndependentGPPerResourcePosteriorState,
IndependentGPPerResourceMarginalLikelihood,
IndependentGPPerResourceModel.


	Hyper-Tune independent GP models for multi-fidelity:
HyperTuneIndependentGPPosteriorState,
HyperTuneIndependentGPMarginalLikelihood,
HyperTuneIndependentGPModel.


	Hyper-Tune multi-task GP models for multi-fidelity:
HyperTuneJointGPPosteriorState,
HyperTuneJointGPMarginalLikelihood,
HyperTuneJointGPModel.


	Linear state space learning curve models:
IncrementalUpdateGPAdditivePosteriorState,
GaussAdditiveMarginalLikelihood,
GaussianProcessLearningCurveModel.
This code is still experimental.








            

          

      

      

    

  

    
      
          
            
  
PASHA: Efficient HPO and NAS with Progressive Resource Allocation

Hyperparameter optimization (HPO) and neural architecture search (NAS) are methods
of choice to obtain the best-in-class machine learning models, but in practice they
can be costly to run. When models are trained on large datasets, tuning them with HPO
or NAS rapidly becomes prohibitively expensive for practitioners, even when efficient
multi-fidelity methods are employed. PASHA is an approach designed to tackle the challenge
of tuning machine learning models trained on large datasets with limited
computational resources. PASHA extends ASHA and is able to dynamically
allocate maximum resources for the tuning procedure depending on the need.
The experimental comparison shows that PASHA identifies well-performing hyperparameter
configurations and architectures while consuming significantly fewer computational
resources than ASHA.


What is PASHA?

The goal of PASHA [https://openreview.net/forum?id=syfgJE6nFRW] is to identify
well-performing configurations significantly faster than current methods,
so that we can then retrain the model with the selected configuration
(in practice on the combined training and validation sets). By giving preference
to evaluating more configurations rather than evaluating them for longer than
needed, PASHA can lead to significant speedups while achieving similar performance
as existing methods.

PASHA is a variant of ASHA that starts with a small amount of initial resources
and gradually increases them depending on the stability of configuration rankings
in the top two rungs (rounds of promotion). Each time the ranking of configurations
in the top two rungs becomes inconsistent, PASHA increases the maximum number
of resources. This can be understood as “unlocking” a new rung level. An illustration
of how PASHA stops early if the ranking of configurations has stabilized
is shown in Figure 1.

[image: ../../_images/pasha_illustration.png]
Given that deep-learning algorithms typically rely on stochastic gradient descent, ranking
inconsistencies can occur between similarly performing configurations. Hence, we need some
benevolence in estimating the ranking. As a solution, PASHA uses a soft-ranking
approach where we group configurations based on their validation performance metric
(e.g. accuracy).

In soft ranking, configurations are still sorted by predictive performance but they
are considered equivalent if the performance difference is smaller than a
value \(\epsilon\) (or equal to it). Instead of producing a sorted list of configurations,
this provides a list of lists where for every position of the ranking there is a list
of equivalent configurations. The concept is explained graphically in Figure 2.
The value of \(\epsilon\) is automatically estimated by measuring noise in rankings.

[image: ../../_images/soft_ranking.png]


How well does PASHA work?

Experimental evaluation has shown PASHA consistently leads to strong improvements in runtime,
while achieving similar accuracies as ASHA. PASHA is e.g. three times faster than ASHA on NASBench201.
Full experiments and further details are available in
PASHA: Efficient HPO and NAS with Progressive Resource Allocation [https://openreview.net/forum?id=syfgJE6nFRW].

We provide an example script
launch_pasha_nasbench201.py
that shows how to run an experiment with PASHA on NASBench201.



Recommendations


	PASHA is particularly useful for large-scale datasets with millions of
datapoints, where it can lead to e.g. 15x speedup compared to ASHA.


	If only a few epochs are used for training, it is useful to define rung levels
in terms of the number of datapoints processed rather than the number of
epochs. This makes it possible for PASHA to stop the HPO significantly earlier
and obtain a large speedup.


	A suitable stopping criterion for PASHA is the number of configurations that
have been evaluated so far, but it can also be evaluated using stopping
criteria based on the wallclock time. With time-based criteria PASHA would
make an impact when the stopping time is selected as a small value.








            

          

      

      

    

  

    
      
          
            
  
Using Syne Tune for Transfer Learning

Transfer learning allows us to speed up our current optimisation by learning
from related optimisation runs. For instance, imagine we want to change from a
smaller to a larger model. We already have a collection of hyperparameter
evaluations for the smaller model. Then we can use these to guide our
hyperparameter optimisation of the larger model, for instance by starting with
the configuration that performed best.
Or imagine that we keep the same model, but add more training data or add
another data feature. Then we expect good hyperparameter configurations on the
previous training data to work well on the augmented data set as well.

Syne Tune includes implementations of several transfer learning schedulers; a
list of available schedulers is given
here. In this tutorial we
look at three of them:


	
	ZeroShotTransfer
	
Sequential Model-Free Hyperparameter Tuning.

Martin Wistuba, Nicolas Schilling, Lars Schmidt-Thieme.

IEEE International Conference on Data Mining (ICDM) 2015.




First we calculate the rank of each hyperparameter configuration on each previous task. Then we choose configurations in order to minimise the sum of the ranks across the previous tasks. The idea is to speed up optimisation by picking configurations with high ranks on previous tasks.









	
	BoundingBox
	
Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning.

Valerio Perrone, Huibin Shen, Matthias Seeger, Cédric Archambeau, Rodolphe Jenatton.

NeurIPS 2019.




We construct a smaller hyperparameter search space by taking the minimum box which contains the optimal configurations for the previous tasks. The idea is to speed up optimisation by not searching areas which have been suboptimal for all previous tasks.









	
	Quantiles (quantile_based_searcher)
	
A Quantile-based Approach for Hyperparameter Transfer Learning.

David Salinas, Huibin Shen, Valerio Perrone.

ICML 2020.




We map the hyperparameter evaluations to quantiles for each task. Then we learn a distribution of quantiles given hyperparameters. Finally, we sample from the distribution and evaluate the best sample. The idea is to speed up optimisation by searching areas with high-ranking configurations but without enforcing hard limits on the search space.











We compare them to standard
BayesianOptimization (BO).

We construct a set of tasks based on the
height example. We first collect
evaluations on five tasks, and then compare results on the sixth. We consider
the single-fidelity case. For each task we assume a budget of 10 (max_trials)
evaluations.
We use BO on the preliminary tasks, and for the transfer task we compare BO,
ZeroShot, BoundingBox and Quantiles. The set of tasks is made by adjusting the
max_steps parameter in the height example, but could correspond to adjusting
the training data instead.

The code is available
here.
Make sure to run it as
python launch_transfer_learning_example.py --generate_plots
if you want to generate the plots locally.
The optimisations vary between runs, so your plots might look
different.

In order to run our transfer learning schedulers we need to parse the output of
the tuner into a dict of
TransferLearningTaskEvaluations.
We do this in the extract_transferable_evaluations function.


Code to prepare evaluations from previous tasks for transfer learning.

def filter_completed(df):
    # Filter out runs that didn't finish
    return df[df["status"] == "Completed"].reset_index()


def extract_transferable_evaluations(df, metric, config_space):
    """
    Take a dataframe from a tuner run, filter it and generate
    TransferLearningTaskEvaluations from it
    """
    filter_df = filter_completed(df)

    return TransferLearningTaskEvaluations(
        configuration_space=config_space,
        hyperparameters=filter_df[config_space.keys()],
        objectives_names=[metric],
        # objectives_evaluations need to be of shape
        # (num_evals, num_seeds, num_fidelities, num_objectives)
        # We only have one seed, fidelity and objective
        objectives_evaluations=np.array(filter_df[metric], ndmin=4).T,
    )









We start by collecting evaluations by running BayesianOptimization on
the five preliminary
tasks. We generate the different tasks by setting max_steps=1..5 in the
backend in init_scheduler, giving five very similar tasks.
Once we have run BO on the task we store the
evaluations as TransferLearningTaskEvaluations.


Code to initialise schedulers, use it to optimise a task and collect evaluations on preliminary tasks.

def run_scheduler_on_task(entry_point, scheduler, max_trials):
    """
    Take a scheduler and run it for max_trials on the backend specified by entry_point
    Return a dataframe of the optimisation results
    """
    tuner = Tuner(
        trial_backend=LocalBackend(entry_point=str(entry_point)),
        scheduler=scheduler,
        stop_criterion=StoppingCriterion(max_num_trials_finished=max_trials),
        n_workers=4,
        sleep_time=0.001,
    )
    tuner.run()

    return tuner.tuning_status.get_dataframe()


def init_scheduler(
    scheduler_str, max_steps, seed, mode, metric, transfer_learning_evaluations
):
    """
    Initialise the scheduler
    """
    kwargs = {
        "metric": metric,
        "config_space": height_config_space(max_steps=max_steps),
        "mode": mode,
        "random_seed": seed,
    }
    kwargs_w_trans = copy.deepcopy(kwargs)
    kwargs_w_trans["transfer_learning_evaluations"] = transfer_learning_evaluations

    if scheduler_str == "BayesianOptimization":
        return BayesianOptimization(**kwargs)

    if scheduler_str == "ZeroShotTransfer":
        return ZeroShotTransfer(use_surrogates=True, **kwargs_w_trans)

    if scheduler_str == "Quantiles":
        return FIFOScheduler(
            searcher=QuantileBasedSurrogateSearcher(**kwargs_w_trans),
            **kwargs,
        )

    if scheduler_str == "BoundingBox":
        kwargs_sched_fun = {key: kwargs[key] for key in kwargs if key != "config_space"}
        kwargs_w_trans[
            "scheduler_fun"
        ] = lambda new_config_space, mode, metric: BayesianOptimization(
            new_config_space,
            **kwargs_sched_fun,
        )
        del kwargs_w_trans["random_seed"]
        return BoundingBox(**kwargs_w_trans)
    raise ValueError("scheduler_str not recognised")


if __name__ == "__main__":

    max_trials = 10
    np.random.seed(1)
    # Use train_height backend for our tests
    entry_point = str(
        Path(__file__).parent
        / "training_scripts"
        / "height_example"
        / "train_height.py"
    )

    # Collect evaluations on preliminary tasks
    transfer_learning_evaluations = {}
    for max_steps in range(1, 6):
        scheduler = init_scheduler(
            "BayesianOptimization",
            max_steps=max_steps,
            seed=np.random.randint(100),
            mode=METRIC_MODE,
            metric=METRIC_ATTR,
            transfer_learning_evaluations=None,
        )

        print("Optimising preliminary task %s" % max_steps)
        prev_task = run_scheduler_on_task(entry_point, scheduler, max_trials)

        # Generate TransferLearningTaskEvaluations from previous task
        transfer_learning_evaluations[max_steps] = extract_transferable_evaluations(
            prev_task, METRIC_ATTR, scheduler.config_space
        )








Then we run different schedulers to compare on our transfer task with
max_steps=6. For ZeroShotTransfer we set use_surrogates=True, meaning
that it uses an XGBoost model to estimate the rank of configurations, as we do
not have evaluations of the same configurations on all previous tasks.


Code to run schedulers on transfer task.

    # Collect evaluations on transfer task
    max_steps = 6
    transfer_task_results = {}
    labels = ["BayesianOptimization", "BoundingBox", "ZeroShotTransfer", "Quantiles"]
    for scheduler_str in labels:
        scheduler = init_scheduler(
            scheduler_str,
            max_steps=max_steps,
            seed=max_steps,
            mode=METRIC_MODE,
            metric=METRIC_ATTR,
            transfer_learning_evaluations=transfer_learning_evaluations,
        )
        print("Optimising transfer task using %s" % scheduler_str)
        transfer_task_results[scheduler_str] = run_scheduler_on_task(
            entry_point, scheduler, max_trials
        )








We plot the results on the transfer task. We see that the early performance of
the transfer schedulers is much better than standard BO. We only plot the first
max_trials results. The transfer task is very similar to the preliminary
tasks, so we expect the transfer schedulers to do well. And that is what we see
in the plot below.


Plotting helper code.

def add_labels(ax, conf_space, title):
    ax.legend()
    ax.set_xlabel("width")
    ax.set_ylabel("height")
    ax.set_xlim([conf_space["width"].lower - 1, conf_space["width"].upper + 1])
    ax.set_ylim([conf_space["height"].lower - 10, conf_space["height"].upper + 10])
    ax.set_title(title)


def scatter_space_exploration(ax, task_hyps, max_trials, label, color=None):
    ax.scatter(
        task_hyps["width"][:max_trials],
        task_hyps["height"][:max_trials],
        alpha=0.4,
        label=label,
        color=color,
    )


colours = {
    "BayesianOptimization": "C0",
    "BoundingBox": "C1",
    "ZeroShotTransfer": "C2",
    "Quantiles": "C3",
}


def plot_last_task(max_trials, df, label, metric, color):
    max_tr = min(max_trials, len(df))
    plt.scatter(range(max_tr), df[metric][:max_tr], label=label, color=color)
    plt.plot([np.min(df[metric][:ii]) for ii in range(1, max_trials + 1)], color=color)










Code to plot results on transfer task.

    # Optionally generate plots. Defaults to False
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--generate_plots", action="store_true", help="generate optimisation plots."
    )
    args = parser.parse_args()

    if args.generate_plots:
        from syne_tune.try_import import try_import_visual_message

        try:
            import matplotlib.pyplot as plt
        except ImportError:
            print(try_import_visual_message())

        print("Generating optimisation plots.")
        """ Plot the results on the transfer task """
        for label in labels:
            plot_last_task(
                max_trials,
                transfer_task_results[label],
                label=label,
                metric=METRIC_ATTR,
                color=colours[label],
            )
        plt.legend()
        plt.ylabel(METRIC_ATTR)
        plt.xlabel("Iteration")
        plt.title("Transfer task (max_steps=6)")
        plt.savefig("Transfer_task.png", bbox_inches="tight")







[image: ../../_images/Transfer_task.png]
We also look at the parts of the search space explored. First by looking at the
preliminary tasks.


Code to plot the configurations tried for the preliminary tasks.

        """ Plot the configs tried for the preliminary tasks """
        fig, ax = plt.subplots()
        for key in transfer_learning_evaluations:
            scatter_space_exploration(
                ax,
                transfer_learning_evaluations[key].hyperparameters,
                max_trials,
                "Task %s" % key,
            )
        add_labels(
            ax,
            scheduler.config_space,
            "Explored locations of BO for preliminary tasks",
        )
        plt.savefig("Configs_explored_preliminary.png", bbox_inches="tight")







[image: ../../_images/Configs_explored_preliminary.png]
Then we look at the explored search space for the transfer task. For all the
transfer methods the first tested point (marked as a square) is closer to the
previously explored optima (in black crosses), than for BO which starts by
checking the middle of the search space.


Code to plot the configurations tried for the transfer task.

        """ Plot the configs tried for the transfer task """
        fig, ax = plt.subplots()

        # Plot the configs tried by the different schedulers on the transfer task
        for label in labels:
            finished_trials = filter_completed(transfer_task_results[label])
            scatter_space_exploration(
                ax, finished_trials, max_trials, label, color=colours[label]
            )

            # Plot the first config tested as a big square
            ax.scatter(
                finished_trials["width"][0],
                finished_trials["height"][0],
                marker="s",
                color=colours[label],
                s=100,
            )

        # Plot the optima from the preliminary tasks as black crosses
        past_label = "Preliminary optima"
        for key in transfer_learning_evaluations:
            argmin = np.argmin(
                transfer_learning_evaluations[key].objective_values(METRIC_ATTR)[
                    :max_trials, 0, 0
                ]
            )
            ax.scatter(
                transfer_learning_evaluations[key].hyperparameters["width"][argmin],
                transfer_learning_evaluations[key].hyperparameters["height"][argmin],
                color="k",
                marker="x",
                label=past_label,
            )
            past_label = None
        add_labels(ax, scheduler.config_space, "Explored locations for transfer task")
        plt.savefig("Configs_explored_transfer.png", bbox_inches="tight")







[image: ../../_images/Configs_explored_transfer.png]



            

          

      

      

    

  

    
      
          
            
  
Distributed Hyperparameter Tuning: Finding the Right Model can be Fast and Fun

These sections are part of a tutorial given at the Open Data Science Conference
Europe in June 2023. They provide hands-on examples for distributed
hyperparameter tuning, as well as links to further details for self-teaching.


Note

The code used in this tutorial is contained in the
Syne Tune sources, it is not
installed by pip. You can obtain this code by installing Syne Tune from
source, but the only code that is needed is in
benchmarking.nursery.odsc_tutorial.
You also need have access to AWS SageMaker, and work through
these setups.





	Getting Started with Hyperparameter Tuning

	Multi-Fidelity Hyperparameter Tuning

	Comparing Different HPO Methods

	Launching Experiments Remotely

	Distributed Tuning

	Drilling Down on Performance Differences








            

          

      

      

    

  

    
      
          
            
  
Getting Started with Hyperparameter Tuning

In this section, you will learn what is needed to get hyperparameter tuning up
and running. We will look at an example where a deep learning language model
is trained on natural language text.


What is Hyperparameter Tuning?

When solving a business problem with machine learning, there are parts which can
be automated by spending compute resources, and other parts require human
expert attention and choices to be made. By automating some of the more tedious
parts of the latter, hyperparameter tuning shifts the needle between these cost
factors. Like any other smart tool, it saves you time to concentrate on where your
strengths really lie, and where you can create the most value.

At a high level, hyperparameter tuning finds configurations of a system which
optimize a target metric (or several ones, as we will see later). We can try
any configuration from a configuration space, but each evaluation of the system
has a cost and takes time. The main challenge of hyperparameter tuning is to
run as few trials as possible, so that total costs are minimal. Also, if
possible, trials should be run in parallel, so that the total experiment time
is minimal.

In this tutorial, we will mostly
be focussed on making decisions and tuning free parameters in the context of
training machine learning models on data, so their predictions can be used as
part of a solution to a business problem. There are many other steps between the
initial need and a deployed solution, such as understanding business requirements,
collecting, cleaning and labeling data, monitoring and maintenance. Some of
these can be addressed with automated tuning as well, others need different
tools.

A common paradigm for decision-making and parameter tuning is to try a number of
different configurations and select the best in the end.


	A trial consists of training a model on a part of the data (the training
data). Here, training is an automated process (for example, stochastic
gradient descent on weight and biases of a neural network model), given
a configuration (e.g., what learning rate is used, what batch size, etc.).
Then, the trained model is evaluated on another part of the data (validation
data, disjoint from training data), giving rise to a quality metric (e.g.,
validation error, AUC, F1), or even several ones. For small datasets, we can
also use cross-validation, by repeating training and evaluation on a
number of different splits, reporting the average of validation metrics.


	This metric value (or values) is the response of the system to a
configuration. Note that the response is stochastic: if we run again with
the same configuration, we may get a different value. This is because training
has random elements (e.g., initial weights are sampled, ordering of training
data).




Enough high level and definitions, let us dive into an example.



Annotating a Training Script

First, we need a script to execute a trial, by training a model and evaluating it.
Since training models is bread and butter to machine learners, you will have no
problem to come up with one. We start with an example:
training_script_report_end.py.
Ignoring the boilerplate, here are the important parts. First, we define the
hyperparameters which should be optimized over:


transformer_wikitext2/code/training_script_report_end.py – hyperparameters

from syne_tune import Reporter
from syne_tune.config_space import randint, uniform, loguniform, add_to_argparse


METRIC_NAME = "val_loss"

MAX_RESOURCE_ATTR = "epochs"


_config_space = {
    "lr": loguniform(1e-6, 1e-3),
    "dropout": uniform(0, 0.99),
    "batch_size": randint(16, 48),
    "momentum": uniform(0, 0.99),
    "clip": uniform(0, 1),
}










	The keys of _config_space are the hyperparameters we would like to tune
(lr, dropout, batch_size, momentum, clip). It also defines
their ranges and datatypes, we come back to this
below.


	METRIC_NAME is the name of the target metric returned, MAX_RESOURCE_ATTR
the key name for how many epochs to train.




Next, here is the function which executes a trial:


transformer_wikitext2/code/training_script_report_end.py – objective

def objective(config):
    torch.manual_seed(config["seed"])
    use_cuda = config["use_cuda"]
    if torch.cuda.is_available() and not use_cuda:
        print("WARNING: You have a CUDA device, so you should run with --use-cuda 1")
    device = torch.device("cuda" if use_cuda else "cpu")
    # [1]
    # Download data, setup data loaders
    corpus = download_dataset(config)
    ntokens = len(corpus.dictionary)
    train_data = batchify(corpus.train, bsz=config["batch_size"], device=device)
    valid_data = batchify(corpus.valid, bsz=10, device=device)
    # Used for reporting metrics to Syne Tune
    report = Reporter()
    # [2]
    # Create model and optimizer
    model, optimizer, criterion = create_training_objects(config, ntokens, device)
    # [3]
    for epoch in range(1, config[MAX_RESOURCE_ATTR] + 1):
        train(model, train_data, optimizer, criterion, config, ntokens, epoch)
    # [4]
    # Report validation loss back to Syne Tune
    val_loss = evaluate(model, valid_data, criterion, config, ntokens)
    report(**{METRIC_NAME: val_loss})








	The input config to objective is a configuration dictionary, containing
values for the hyperparameters and other fixed parameters (such as the number
of epochs to train).


	[1] We start with downloading training and validation data. The training data
loader train_data depends on hyperparameter config["batch_size"].


	[2] Next, we create model and optimizer. This depends on the remaining hyperparameters
in config.


	[3] We then run config[MAX_RESOURCE_ATTR] epochs of training.


	[4] Finally, we compute the error on the validation data and report it back to
Syne Tune. The latter is done by creating report of type Reporter and
calling it with a dictionary, using METRIC_NAME as key.




Finally, the script needs some command line arguments:


transformer_wikitext2/code/training_script_report_end.py – command line arguments

    parser = argparse.ArgumentParser(
        description="PyTorch Wikitext-2 Transformer Language Model",
        formatter_class=argparse.RawTextHelpFormatter,
    )
    parser.add_argument(
        "--" + MAX_RESOURCE_ATTR, type=int, default=40, help="upper epoch limit"
    )
    parser.add_argument("--use_cuda", type=int, default=1)
    parser.add_argument(
        "--input_data_dir",
        type=str,
        default="./",
        help="location of the data corpus",
    )
    parser.add_argument(
        "--optimizer_name", type=str, default="sgd", choices=["sgd", "adam"]
    )
    parser.add_argument("--bptt", type=int, default=35, help="sequence length")
    parser.add_argument("--seed", type=int, default=1111, help="random seed")
    parser.add_argument(
        "--precision", type=str, default="float", help="float | double | half"
    )
    parser.add_argument(
        "--log_interval",
        type=int,
        default=200,
        help="report interval",
    )
    parser.add_argument("--d_model", type=int, default=256, help="width of the model")
    parser.add_argument(
        "--ffn_ratio", type=int, default=1, help="the ratio of d_ffn to d_model"
    )
    parser.add_argument("--nlayers", type=int, default=2, help="number of layers")
    parser.add_argument(
        "--nhead",
        type=int,
        default=2,
        help="the number of heads in the encoder/decoder of the transformer model",
    )
    add_to_argparse(parser, _config_space)

    args, _ = parser.parse_known_args()
    args.use_cuda = bool(args.use_cuda)

    objective(config=vars(args))








	We use an argument parser parser. Hyperparameters can be added by
add_to_argparse(parser, _config_space), given the configuration space is
defined in this script, or otherwise you can do this manually. We also need
some more inputs, which are not hyperparameters, for example
MAX_RESOURCE_ATTR.




You can also provide the input to a training script
as JSON file.

Compared to a vanilla training script, we only added two lines, creating
report and calling it for reporting the validation error at the end.



Choosing a Configuration Space

Apart from annotating a training script, making hyperparameters explicit as
inputs, you also need to define a configuration space. In our example, we
add this definition to the script, but you can also keep it separate and
use the same training script with different configuration spaces:


transformer_wikitext2/code/training_script_report_end.py – configuration space

_config_space = {
    "lr": loguniform(1e-6, 1e-3),
    "dropout": uniform(0, 0.99),
    "batch_size": randint(16, 48),
    "momentum": uniform(0, 0.99),
    "clip": uniform(0, 1),
}










	Each hyperparameters gets assigned a data type and a range. In this example,
batch_size is an integer, while lr, dropout, momentum, clip
are floats. lr is encoded in log scale.




Syne Tune provides a range of data types. Choosing them well requires a bit of
attention, guidelines are given here.



Specifying Default Values

Once you have annotated your training script and chosen a configuration space,
you have specified all the input Syne Tune needs. You can now specify the
details about your tuning experiment in code, as discussed
here.
However, Syne Tune provides some tooling in syne_tune.experiments which makes the
life of most users easier, and we will use this tooling in the rest of the
tutorial. To this end, we need to define some defaults about how experiments
are to be run (most of these can be overwritten by command line arguments):


transformer_wikitext2/code/transformer_wikitext2_definition.py

from pathlib import Path

from transformer_wikitext2.code.training_script import (
    _config_space,
    METRIC_NAME,
    RESOURCE_ATTR,
    MAX_RESOURCE_ATTR,
)
from syne_tune.experiments.benchmark_definitions.common import RealBenchmarkDefinition
from syne_tune.remote.constants import (
    DEFAULT_GPU_INSTANCE_1GPU,
    DEFAULT_GPU_INSTANCE_4GPU,
)


def transformer_wikitext2_benchmark(sagemaker_backend: bool = False, **kwargs):
    if sagemaker_backend:
        instance_type = DEFAULT_GPU_INSTANCE_1GPU
    else:
        # For local backend, GPU cores serve different workers
        instance_type = DEFAULT_GPU_INSTANCE_4GPU
    fixed_parameters = dict(
        **{MAX_RESOURCE_ATTR: 40},
        d_model=256,
        ffn_ratio=1,
        nlayers=2,
        nhead=2,
        bptt=35,
        optimizer_name="sgd",
        input_data_dir="./",
        use_cuda=1,
        seed=1111,
        precision="float",
        log_interval=200,
    )
    config_space = {**_config_space, **fixed_parameters}
    _kwargs = dict(
        script=Path(__file__).parent / "training_script.py",
        config_space=config_space,
        metric=METRIC_NAME,
        mode="min",
        max_resource_attr=MAX_RESOURCE_ATTR,
        resource_attr=RESOURCE_ATTR,
        max_wallclock_time=5 * 3600,
        n_workers=4,
        instance_type=instance_type,
        framework="PyTorch",
    )
    _kwargs.update(kwargs)
    return RealBenchmarkDefinition(**_kwargs)







All you need to do is to provide a function (transformer_wikitext2_benchmark here)
which returns an instance of
RealBenchmarkDefinition.
The most important fields are:


	script: Filename of training script.


	config_space: The configuration space to be used by default. This consists
of two parts. First, the hyperparameters from _config, already discussed
above. Second, fixed_parameters are
passed to each trial as they are. In particular, we would like to train for
40 epochs, so pass {MAX_RESOURCE_ATTR: 40}.


	metric, max_resource_attr, resource_attr: Names of inputs to and
metrics reported from the training script. If mode == "max", the target
metric metric is maximized, if mode == "min", it is minimized.


	max_wallclock_time: Wallclock time the experiment is going to run (5 hours
in our example).


	n_workers: Maximum number of trials which run in parallel (4 in our
example). The achievable degree of parallelism may be lower, depending on
which execution backend is used and which hardware instance we run on.




Also, note the role of **kwargs in the function signature, which allows
to overwrite any of the default values (e.g., for max_wallclock_time,
n_workers, or instance_type) with command line arguments.


Note

In the Syne Tune experimentation framework, a tuning problem (i.e., training and
evaluation script together with defaults) is called a benchmark.
This terminology is used even if the goal of experimentation is not benchmarking
(i.e., comparing different HPO methods), as is the case in this tutorial here.







            

          

      

      

    

  

    
      
          
            
  
Multi-Fidelity Hyperparameter Tuning

In our example above, a transformer language model is trained for 40 epochs
before being validated. If a configuration performs poorly, we should find out
earlier, and a lot of time could be saved by stopping poorly performing trials
early. This is what multi-fidelity HPO methods are doing. There are different
variants:


	Early stopping (“stopping” type): Trials are not just validated after 40
epochs, but at the end of every epoch. If a trial is performing worse than many
others trained for the same number of epochs, it is stopped early.


	Pause and resume (“promotion” type): Trials are generally paused at the end of
certain epochs, called rungs. A paused trial gets promoted (i.e., its
training is resumed) if it does better than a majority of trials who reached
the same rung.




Syne Tune provides a large number of multi-fidelity HPO methods, more details
are given in
this tutorial. In this section, you learn
what needs to be done to support multi-fidelity hyperparameter tuning.


Annotating a Training Script for Multi-fidelity Tuning

Clearly, the training script
training_script_report_end.py
won’t do for multi-fidelity tuning. These methods need to know validation errors
of models after each epoch of training, while the script above only validates the
model at the end, after 40 epochs of training. A small modification of our
training script,
training_script_no_checkpoints.py,
enables multi-fidelity tuning. The relevant part is this:


transformer_wikitext2/code/training_script_no_checkpoints.py – objective

def objective(config):
    torch.manual_seed(config["seed"])
    use_cuda = config["use_cuda"]
    if torch.cuda.is_available() and not use_cuda:
        print("WARNING: You have a CUDA device, so you should run with --use-cuda 1")
    device = torch.device("cuda" if use_cuda else "cpu")
    # Download data, setup data loaders
    corpus = download_dataset(config)
    ntokens = len(corpus.dictionary)
    train_data = batchify(corpus.train, bsz=config["batch_size"], device=device)
    valid_data = batchify(corpus.valid, bsz=10, device=device)
    # Used for reporting metrics to Syne Tune
    report = Reporter()
    # Create model and optimizer
    model, optimizer, criterion = create_training_objects(config, ntokens, device)

    for epoch in range(1, config[MAX_RESOURCE_ATTR] + 1):
        train(model, train_data, optimizer, criterion, config, ntokens, epoch)
        val_loss = evaluate(model, valid_data, criterion, config, ntokens)
        print("-" * 89)
        print(
            f"| end of epoch {epoch:3d} | valid loss {val_loss:5.2f} | "
            f"valid ppl {np.exp(val_loss):8.2f}"
        )
        print("-" * 89)
        # Report validation loss back to Syne Tune
        report(**{RESOURCE_ATTR: epoch, METRIC_NAME: val_loss})







Instead of calling report only once, at the end, we evaluate the model and
report back at the end of each epoch. We also need to report the number of
epochs done, using RESOURCE_ATTR as key. The execution backend receives these
reports and relays them to the HPO method, which in turn makes a decision whether
the trial may continue or should be stopped.



Checkpointing

Instead of stopping underperforming trials, some multi-fidelity methods rather
pause trials. Any paused trial can be resumed in the future if there is evidence
that it outperforms the majority of other trials. If training is very expensive,
pause-and-resume scheduling can work better than early stopping, because any
pause decision can be revisited in the future, while a stopping decision is
final. Moreover, pause-and-resume scheduling does not require trials to be
stopped, which can carry delays in some execution backends.

However, pause-and-resume scheduling needs checkpointing in order to work
well. Once a trial is paused, its mutable state is stored in disk. When a trial
gets resumed, this state is loaded from disk, and training can resume exactly
from where it stopped.

Checkpointing needs to be implemented as part of the training script. Fortunately,
Syne Tune provides some tooling to simplify this. Another modification of our
training script,
training_script.py,
enables checkpointing. The relevant part is this:


transformer_wikitext2/code/training_script.py – objective

def objective(config):
    torch.manual_seed(config["seed"])
    use_cuda = config["use_cuda"]
    if torch.cuda.is_available() and not use_cuda:
        print("WARNING: You have a CUDA device, so you should run with --use-cuda 1")
    device = torch.device("cuda" if use_cuda else "cpu")
    # Download data, setup data loaders
    corpus = download_dataset(config)
    ntokens = len(corpus.dictionary)
    train_data = batchify(corpus.train, bsz=config["batch_size"], device=device)
    valid_data = batchify(corpus.valid, bsz=10, device=device)
    # Used for reporting metrics to Syne Tune
    report = Reporter()
    # Create model and optimizer
    model, optimizer, criterion = create_training_objects(config, ntokens, device)
    # [3]
    # Checkpointing
    state_dict_objects = {
        "model": model,
        "optimizer": optimizer,
    }
    if config["precision"] == "half":
        state_dict_objects["amp"] = amp
    load_model_fn, save_model_fn = pytorch_load_save_functions(
        state_dict_objects=state_dict_objects,
    )
    # [2]
    # Resume from checkpoint
    resume_from = resume_from_checkpointed_model(config, load_model_fn)

    for epoch in range(resume_from + 1, config[MAX_RESOURCE_ATTR] + 1):
        train(model, train_data, optimizer, criterion, config, ntokens, epoch)
        val_loss = evaluate(model, valid_data, criterion, config, ntokens)
        print("-" * 89)
        print(
            f"| end of epoch {epoch:3d} | valid loss {val_loss:5.2f} | "
            f"valid ppl {np.exp(val_loss):8.2f}"
        )
        print("-" * 89)
        # [1]
        # Write checkpoint
        checkpoint_model_at_rung_level(config, save_model_fn, epoch)
        # Report validation loss back to Syne Tune
        report(**{RESOURCE_ATTR: epoch, METRIC_NAME: val_loss})







Full details about supporting checkpointing are given in
this tutorial.
In a nutshell:


	[1] Checkpoints have to be written at the end of each epoch, to a path passed
as command line argument. A checkpoint needs to include the epoch number
when it was written.


	[2] Before the training loop starts, a checkpoint should be loaded from the
same place. If one is found, the training loop skips all epochs already
done. If not, it starts from scratch as usual.


	[3] Syne Tune provides some checkpointing tooling for PyTorch models.




At this point, we have a final version,
training_script.py,
of our training script, which can be used with all HPO methods in Syne Tune.
While earlier versions are simpler to implement, we recommend to include
reporting and checkpointing after every epoch in any training script you care
about. When checkpoints become very large, you may run into problems with disk
space, which can be dealt with as described
here.


Note

The pause-and-resume HPO methods in Syne Tune also work if checkpointing is
not implemented. However, this means that training for a trial to be resumed
in fact starts from scratch. The additional overhead makes running these
methods less attractive. We strongly recommend to implement checkpointing.







            

          

      

      

    

  

    
      
          
            
  
Comparing Different HPO Methods

We have learned about different methods for hyperparameter tuning:


	RandomSearch: Sample configurations
at random


	BayesianOptimization: Learn how to
best sample by probabilistic modeling of past observations


	ASHA: Compare running trials with
each other after certain numbers of epochs and stop those which underperform


	MOBSTER: Combine early stopping from
ASHA with informed sampling from BayesianOptimization




How do these methods compare when applied to our transformer_wikitext2 tuning
problem? In this section, we look at comparative plots which can easily be
generated with Syne Tune.


Note

Besides MOBSTER, Syne Tune provides
a number of additional state-of-the-art model-based variants of
ASHA, such as
HyperTune or
DyHPO. Moreover, these methods can
be configured in many ways, see
this tutorial.




A Comparative Study

It is easy to compare different setups with each other in Syne Tune, be it a
number of HPO methods, or the same method on different variations, such as
different number of workers, or different configuration spaces. First,
we specify which methods to compare with each other:


transformer_wikitext2/baselines.py

from syne_tune.experiments.default_baselines import (
    RandomSearch,
    BayesianOptimization,
    ASHA,
    MOBSTER,
)


class Methods:
    RS = "RS"
    BO = "BO"
    ASHA = "ASHA"
    MOBSTER = "MOBSTER"


methods = {
    Methods.RS: lambda method_arguments: RandomSearch(method_arguments),
    Methods.BO: lambda method_arguments: BayesianOptimization(method_arguments),
    Methods.ASHA: lambda method_arguments: ASHA(method_arguments, type="promotion"),
    Methods.MOBSTER: lambda method_arguments: MOBSTER(
        method_arguments, type="promotion"
    ),
}







We compare random search (RS), Bayesian Optimization (BO), ASHA
(ASHA), and MOBSTER (MOBSTER), deviating from the defaults for
each method only in that we use the promotion (or pause-and-resume)
variant of the latter two. Next, we specify which baselines we would like
to consider in our study:


transformer_wikitext2/benchmark_definitions.py

from typing import Dict

from syne_tune.experiments.benchmark_definitions import RealBenchmarkDefinition
from transformer_wikitext2.code.transformer_wikitext2_definition import (
    transformer_wikitext2_benchmark,
)


def benchmark_definitions(
    sagemaker_backend: bool = False, **kwargs
) -> Dict[str, RealBenchmarkDefinition]:
    return {
        "transformer_wikitext2": transformer_wikitext2_benchmark(
            sagemaker_backend=sagemaker_backend, **kwargs
        ),
    }







The only benchmark we consider in this study is our transformer_wikitext2
tuning problem, with its default configuration space (in general, many
benchmarks can be selected from
benchmarking.benchmark_definitions.real_benchmark_definitions.real_benchmark_definitions()).
Our study has the following properties:


	We use LocalBackend as execution backend, which
runs n_workers=4 trials as parallel processes. The AWS instance type is
instance_type="ml.g4dn.12xlarge", which provides 4 GPUs, one for each
worker.


	We repeat each experiment 10 times with different random seeds, so that all
in all, we run 40 experiments (4 methods, 10 seeds).




These details are specified in scripts
hpo_main.py and
launch_remote.py, which we will
discuss in more detail in Module 2, along with the
choice of the execution backend. Once all experiments have finished (if all of
them are run in parallel, this takes a little more than max_wallclock_time,
or 5 hours), we can visualize results.



	[image: Local transformer_wikitext2]





	Comparison of methods on transformer_wikitext2 benchmark,
using the local backend with 4 workers.






We can clearly see the benefits coming both from Bayesian optimization
(intelligent rather than random sampling) and multi-fidelity scheduling. A
combination of the two, MOBSTER, provides both a rapid initial decrease
and the best performance after 5 hours.





            

          

      

      

    

  

    
      
          
            
  
Launching Experiments Remotely

As a machine learning practitioner, you operate in a highly competitive
landscape. Your success depends to a large extent on whether you can decrease
the time to the next decision. In this section, we discuss one important
approach, namely how to increase the number of experiments run in parallel.


Note

Imports in our scripts are absolute against the root package
transformer_wikitext2, so that only the code in
benchmarking.nursery.odsc_tutorial has to be present. In order to run
them, you need to append <abspath>/odsc_tutorial/ to the PYTHONPATH
environment variable. This is required even if you have installed Syne Tune
from source.




Launching our Study

Here is how we specified and ran experiments of our
study. First, we specify a
script for launching experiments locally:


transformer_wikitext2/local/hpo_main.py

from transformer_wikitext2.baselines import methods
from transformer_wikitext2.benchmark_definitions import benchmark_definitions
from syne_tune.experiments.launchers.hpo_main_local import main


if __name__ == "__main__":
    main(methods, benchmark_definitions)







This is very simple, as most work is done by the generic
syne_tune.experiments.launchers.hpo_main_local.main(). Note that hpo_main_local
needs to be chosen, since we use the local backend.

This local launcher script can be used to configure your experiment, given
additional command line arguments, as is explained in detail
here.

You can use hpo_main.py to launch experiments locally, but they’ll run
sequentially, one after the other, and you need to have all dependencies
installed locally. A second script is needed in order to launch many
experiments in parallel:


transformer_wikitext2/local/launch_remote.py

from pathlib import Path

from transformer_wikitext2.baselines import methods
from transformer_wikitext2.benchmark_definitions import benchmark_definitions
from syne_tune.experiments.launchers.launch_remote_local import launch_remote


if __name__ == "__main__":
    entry_point = Path(__file__).parent / "hpo_main.py"
    source_dependencies = [str(Path(__file__).parent.parent)]
    launch_remote(
        entry_point=entry_point,
        methods=methods,
        benchmark_definitions=benchmark_definitions,
        source_dependencies=source_dependencies,
    )







Once more, all the hard work in done in
syne_tune.experiments.launchers.launch_remote_local.launch_remote(), where
launch_remote_local needs to be chosen for the local backend. Most important
is that our previous hpo_main.py is specified as entry_point here. Here is
the command to run all experiments of our study in parallel (replace ... by the
absolute path to odsc_tutorial):

export PYTHONPATH="${PYTHONPATH}:/.../odsc_tutorial/"
python transformer_wikitext2/local/launch_remote.py \
  --experiment_tag odsc-1 --benchmark transformer_wikitext2 --num_seeds 10






	This command launches 40 SageMaker training jobs, running 10 random repetitions
(seeds) for each of the 4 methods specified in baselines.py.


	Each SageMaker training job uses one ml.g4dn.12xlarge AWS instance. You can
only run all 40 jobs in parallel if your resource limit for this instance type
is 40 or larger. Each training job will run a little longer than 5 hours, as
specified by max_wallclock_time.


	You can use --instance_type and --max_wallclock_time command line
arguments to change these defaults. However, if you choose an instance type with
less than 4 GPUs, the local backend will not be able to run 4 trials in parallel.


	If benchmark_definitions.py defines a single benchmark only, the
--benchmark argument can also be dropped.




When using remote launching, results of your experiments are written to S3, to
the default bucket for your AWS account. Once all jobs have finished (which takes
a little more than 5 hours if you have sufficient limits, and otherwise longer),
you can create the comparative plot shown
above, using this script:


transformer_wikitext2/local/plot_results.py

from typing import Dict, Any, Optional
import logging

from transformer_wikitext2.baselines import methods
from transformer_wikitext2.benchmark_definitions import benchmark_definitions
from syne_tune.experiments import ComparativeResults, PlotParameters


SETUPS = list(methods.keys())


def metadata_to_setup(metadata: Dict[str, Any]) -> Optional[str]:
    return metadata["algorithm"]


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)
    experiment_names = ("odsc-1",)
    num_runs = 10
    download_from_s3 = False  # Set ``True`` in order to download files from S3
    # Plot parameters across all benchmarks
    plot_params = PlotParameters(
        xlabel="wall-clock time",
        aggregate_mode="iqm_bootstrap",
        grid=True,
    )
    # The creation of ``results`` downloads files from S3 (only if
    # ``download_from_s3 == True``), reads the metadata and creates an inverse
    # index. If any result files are missing, or there are too many of them,
    # warning messages are printed
    results = ComparativeResults(
        experiment_names=experiment_names,
        setups=SETUPS,
        num_runs=num_runs,
        metadata_to_setup=metadata_to_setup,
        plot_params=plot_params,
        download_from_s3=download_from_s3,
    )
    # Create comparative plot (single panel)
    benchmark_name = "transformer_wikitext2"
    benchmark = benchmark_definitions(sagemaker_backend=False)[benchmark_name]
    # These parameters overwrite those given at construction
    plot_params = PlotParameters(
        metric=benchmark.metric,
        mode=benchmark.mode,
        ylim=(5, 8),
    )
    results.plot(
        benchmark_name=benchmark_name,
        plot_params=plot_params,
        file_name=f"./odsc-comparison-local-{benchmark_name}.png",
    )







For details about visualization of results in Syne Tune, please consider
this tutorial. In a nutshell, this is what
happens:


	Collect and filter results from all experiments of a study


	Group them according to setup (HPO method here), aggregate over seeds


	Create plot in which each setup is represented by a curve and confidence bars








            

          

      

      

    

  

    
      
          
            
  
Distributed Tuning

The second approach to shorten the time to the next decision is to decrease
the time per experiment. This can be done, to some extent, by increasing the
number of workers, i.e. the number of trials which are run in parallel. In
this section, we show how this can be done.


Note

Imports in our scripts are absolute against the root package
transformer_wikitext2, so that only the code in
benchmarking.nursery.odsc_tutorial has to be present. In order to run
them, you need to append <abspath>/odsc_tutorial/ to the PYTHONPATH
environment variable. This is required even if you have installed Syne Tune
from source.




Comparing Different Numbers of Workers

Our study above was done with 4
workers. With the local backend, an experiment with all its workers runs on a
single instance. We need to select an instance type with at least 4 GPUs, and
each training script can use one of them only.

Syne Tune provides another backend,
SageMakerBackend, which executes each trial as a
separate SageMaker training job. This allows you to decouple the number of
workers from the instance type. In fact, for this backend, the default
instance type for our benchmark is ml.g4dn.xlarge, which has a single
GPU and is cheaper to run than ml.g4dn.12xlarge we used with the
local backend above.

In order to showcase the SageMaker backend, we run a second study in order
to compare our 4 methods RS, BO, ASHA, and MOBSTER using
a variable number of workers (2, 4, 8). Here, max_wallclock_time is 5
hours for 4, 8 workers, but double that (10 hours) for 2 workers. Using the
SageMaker backend instead of the local one only requires a minimal change
in the launcher scripts:


transformer_wikitext2/sagemaker/hpo_main.py

from transformer_wikitext2.baselines import methods
from transformer_wikitext2.benchmark_definitions import benchmark_definitions
from syne_tune.experiments.launchers.hpo_main_sagemaker import main


if __name__ == "__main__":
    main(methods, benchmark_definitions)








transformer_wikitext2/sagemaker/launch_remote.py

from pathlib import Path

from transformer_wikitext2.baselines import methods
from transformer_wikitext2.benchmark_definitions import benchmark_definitions
from syne_tune.experiments.launchers.launch_remote_sagemaker import launch_remote


if __name__ == "__main__":
    entry_point = Path(__file__).parent / "hpo_main.py"
    source_dependencies = [str(Path(__file__).parent.parent)]
    launch_remote(
        entry_point=entry_point,
        methods=methods,
        benchmark_definitions=benchmark_definitions,
        source_dependencies=source_dependencies,
    )







We import from hpo_main_sagemaker and launch_remote_sagemaker instead
of hpo_main_local and launch_remote_local. Here is how the experiments
are launched (replace ... by the absolute path to odsc_tutorial):

export PYTHONPATH="${PYTHONPATH}:/.../odsc_tutorial/"
python benchmarking/nursery/odsc_tutorial/transformer_wikitext2/sagemaker/launch_remote.py \
  --experiment_tag tmlr-10 --benchmark transformer_wikitext2 \
  --random_seed 2938702734 --scale_max_wallclock_time 1 \
  --num_seeds 5 --n_workers <n-workers>





Here, <n_workers> is 2, 4, 8 respectively.


	We run 5 random repetitions (seeds), therefore 20 experiments per value of
<n_workers>.


	Running the experiments for <n_workers> requires a resource limit larger
or equal to <n_workers> * 20 for instance type ml.g4dn.xlarge. If
your limit is less than this, you should launch fewer experiments in
parallel, since otherwise most of the experiments will not be able to use
<n_workers> workers.


	With --scale_max_wallclock_time 1, we adjust max_wallclock_time if
n_workers is smaller than the default value (4) for our benchmark. In
our example, the case --n_workers 2 runs for 10 hours instead of 5.




Once all experiments are finished, with results written to S3, we can create
a plot comparing the performance across different numbers of workers, using
the following script:


transformer_wikitext2/sagemaker/plot_results.py

from typing import Dict, Any, Optional
import logging

from transformer_wikitext2.benchmark_definitions import benchmark_definitions
from syne_tune.experiments import ComparativeResults, PlotParameters, SubplotParameters


TMLR10_SETUPS = [
    "2 workers",
    "4 workers",
    "8 workers",
]


def metadata_to_setup(metadata: Dict[str, Any]) -> Optional[str]:
    return f"{metadata['n_workers']} workers"


TMLR10_METHOD_TO_SUBPLOT = {
    "RS": 0,
    "BO": 1,
    "ASHA": 2,
    "MOBSTER": 3,
}


def metadata_to_subplot(metadata: dict) -> Optional[int]:
    return TMLR10_METHOD_TO_SUBPLOT[metadata["algorithm"]]


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)
    experiment_names = ("tmlr-10",)
    num_runs = 5
    download_from_s3 = False  # Set ``True`` in order to download files from S3
    # Plot parameters across all benchmarks
    plot_params = PlotParameters(
        xlabel="wall-clock time",
        aggregate_mode="iqm_bootstrap",
        grid=True,
    )
    # We would like to have 4 subfigures, one for each method
    plot_params.subplots = SubplotParameters(
        nrows=2,
        ncols=2,
        kwargs=dict(sharex="all", sharey="all"),
        titles=["RS", "BO", "ASHA", "MOBSTER"],
        title_each_figure=True,
        legend_no=[0],
    )
    # The creation of ``results`` downloads files from S3 (only if
    # ``download_from_s3 == True``), reads the metadata and creates an inverse
    # index. If any result files are missing, or there are too many of them,
    # warning messages are printed
    results = ComparativeResults(
        experiment_names=experiment_names,
        setups=TMLR10_SETUPS,
        num_runs=num_runs,
        metadata_to_setup=metadata_to_setup,
        plot_params=plot_params,
        metadata_to_subplot=metadata_to_subplot,
        download_from_s3=download_from_s3,
    )
    # Create comparative plot (single panel)
    benchmark_name = "transformer_wikitext2"
    benchmark = benchmark_definitions(sagemaker_backend=True)[benchmark_name]
    # These parameters overwrite those given at construction
    plot_params = PlotParameters(
        metric=benchmark.metric,
        mode=benchmark.mode,
        ylim=(5, 8),
    )
    results.plot(
        benchmark_name=benchmark_name,
        plot_params=plot_params,
        file_name=f"./odsc-comparison-sagemaker-{benchmark_name}.png",
    )







For details about visualization of results in Syne Tune, please consider
this tutorial. In a nutshell:


	Different to the plot above, we have four subplots here, one for each method.
In each subplot, we compare results for different numbers of workers.


	metadata_to_subplot configures grouping w.r.t. subplot (depends on
method), while metadata_to_setup configures grouping w.r.t. each curve
shown in each subplot (depends on n_workers).




Here is the plot:



	[image: SageMaker transformer_wikitext2]





	Comparison of methods on transformer_wikitext2 benchmark,
using the SageMaker backend with 2, 4, 8 workers.







	In general, we obtain good results faster with more workers. However,
especially for BO and MOBSTER, the improvements are less pronounced
than one might expect.


	Our results counter a common misconception, that as we go to higher degrees of
parallelization of trials, the internals of the HPO method do not matter
anymore, and one might as well use random search. This is certainly not the
case for our problem, where BO with 2 workers attains a better
performance after 5 hours than RS with 8 workers, at a quarter of the
cost.








            

          

      

      

    

  

    
      
          
            
  
Drilling Down on Performance Differences

Often, we would like to gain an understanding about why one method performs
better than another on a given problem. In this section, we show another type
of visualization which can shed some light on this question.


Plotting Learning Curves per Trial

A useful step towards understanding performance differences between setups is
to look at the learning curves of trials. Here is a script for creating such
plots for the methods compared in our
study:


transformer_wikitext2/local/plot_learning_curves.py

from typing import Dict, Any, Optional
import logging

from transformer_wikitext2.baselines import methods
from transformer_wikitext2.benchmark_definitions import benchmark_definitions
from syne_tune.experiments import (
    TrialsOfExperimentResults,
    PlotParameters,
    MultiFidelityParameters,
    SubplotParameters,
)


SETUPS = list(methods.keys())


def metadata_to_setup(metadata: Dict[str, Any]) -> Optional[str]:
    return metadata["algorithm"]


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)
    experiment_names = ("odsc-1",)
    seed_to_plot = 0
    download_from_s3 = False  # Set ``True`` in order to download files from S3

    # Plot parameters across all benchmarks
    plot_params = PlotParameters(
        xlabel="wall-clock time",
        grid=True,
    )
    # We need to provide details about rung levels of the multi-fidelity methods.
    # Also, all methods compared are pause-and-resume
    multi_fidelity_params = MultiFidelityParameters(
        rung_levels=[1, 3, 9, 27, 40],
        multifidelity_setups={"ASHA": True, "MOBSTER": True},
    )
    # We would like to have 4 subfigures, one for each method
    plot_params.subplots = SubplotParameters(
        nrows=2,
        ncols=2,
        kwargs=dict(sharex="all", sharey="all"),
        titles=SETUPS,
        title_each_figure=True,
    )
    # The creation of ``results`` downloads files from S3 (only if
    # ``download_from_s3 == True``), reads the metadata and creates an inverse
    # index. If any result files are missing, or there are too many of them,
    # warning messages are printed
    results = TrialsOfExperimentResults(
        experiment_names=experiment_names,
        setups=SETUPS,
        metadata_to_setup=metadata_to_setup,
        plot_params=plot_params,
        multi_fidelity_params=multi_fidelity_params,
        download_from_s3=download_from_s3,
    )

    # Create plot for certain benchmark and seed
    benchmark_name = "transformer_wikitext2"
    benchmark = benchmark_definitions(sagemaker_backend=True)[benchmark_name]
    # These parameters overwrite those given at construction
    plot_params = PlotParameters(
        metric=benchmark.metric,
        mode=benchmark.mode,
    )
    results.plot(
        benchmark_name=benchmark_name,
        seed=seed_to_plot,
        plot_params=plot_params,
        file_name=f"./odsc-learncurves-local-seed{seed_to_plot}.png",
    )







Full details about visualization of results in Syne Tune are given in
this tutorial. In a nutshell, this is what
happens:


	The workflow is similar to comparative plots, but here, each setup
occupies a different subfigure, and there is no aggregation over seeds
(the seed has to be specified in results.plot).


	Two of the methods compared are multi-fidelity (ASHA, MOBSTER), which is
why additional information has to be passed as multi_fidelity_params.
This is because learning curves are plotted differently for single-fidelity,
multi-fidelity of early stopping and of pause-and-resume type.


	With plot_params.subplots, we ask for a two-by-two matrix of subfigures.
By default, subfigures are oriented as a single row.






	[image: Learning curves transformer_wikitext2]





	Learning curves of trials for different methods on
transformer_wikitext2 benchmark, using the local backend
with 4 workers.







	Learning curves of different trials are plotted in different colors.


	For ASHA and MOBSTER, learning curves are interrupted by pauses at rung
levels, and in some cases resume later. Single markers are trials run for
a single epoch only.


	Comparing RS with BO, we see that BO learns to avoid early mistakes rapidly,
while RS samples poorly performing configurations at a constant rate.


	Comparing RS with ASHA, we see that ASHA stops poor trials early, so can
explore more configurations, but still suffers from repeating mistakes over
and over.


	Comparing BO with MOBSTER, both clearly learn from the past. However, MOBSTER
pauses suboptimal configurations earlier, which allows it to find very good
configurations earlier than BO (in about half the time).




With a small modification of the script, we can plot pairs of subfigures for
side-by-side comparisons:


transformer_wikitext2/local/plot_learning_curve_pairs.py

from typing import Dict, Any, Optional
import logging

from transformer_wikitext2.baselines import methods
from transformer_wikitext2.benchmark_definitions import benchmark_definitions
from syne_tune.experiments import (
    TrialsOfExperimentResults,
    PlotParameters,
    MultiFidelityParameters,
    SubplotParameters,
)


SETUPS = list(methods.keys())


def metadata_to_setup(metadata: Dict[str, Any]) -> Optional[str]:
    return metadata["algorithm"]


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)
    experiment_names = ("odsc-1",)
    seed_to_plot = 0
    download_from_s3 = False  # Set ``True`` in order to download files from S3

    # Plot parameters across all benchmarks
    plot_params = PlotParameters(
        xlabel="wall-clock time",
        grid=True,
        ylim=(5, 13),
    )
    # We need to provide details about rung levels of the multi-fidelity methods.
    # Also, all methods compared are pause-and-resume
    multi_fidelity_params = MultiFidelityParameters(
        rung_levels=[1, 3, 9, 27, 40],
        multifidelity_setups={"ASHA": True, "MOBSTER": True},
    )
    # The creation of ``results`` downloads files from S3 (only if
    # ``download_from_s3 == True``), reads the metadata and creates an inverse
    # index. If any result files are missing, or there are too many of them,
    # warning messages are printed
    results = TrialsOfExperimentResults(
        experiment_names=experiment_names,
        setups=SETUPS,
        metadata_to_setup=metadata_to_setup,
        plot_params=plot_params,
        multi_fidelity_params=multi_fidelity_params,
        download_from_s3=download_from_s3,
    )

    # Create plots for certain benchmark and seed
    benchmark_name = "transformer_wikitext2"
    benchmark = benchmark_definitions(sagemaker_backend=True)[benchmark_name]
    # These parameters overwrite those given at construction
    plot_params = PlotParameters(
        metric=benchmark.metric,
        mode=benchmark.mode,
    )
    for indices, name in [
        ([0, 1], "rs-vs-bo"),
        ([0, 2], "rs-vs-asha"),
        ([1, 3], "bo-vs-mobster"),
    ]:
        plot_params.subplots = SubplotParameters(
            nrows=1,
            ncols=2,
            kwargs=dict(sharey="all"),
            subplot_indices=indices,
            titles=[SETUPS[ind] for ind in indices],
        )
        results.plot(
            benchmark_name=benchmark_name,
            seed=seed_to_plot,
            plot_params=plot_params,
            file_name=f"./odsc-learncurves-{name}-seed{seed_to_plot}.png",
        )
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benchmarking.benchmark_definitions.distilbert_on_imdb module


	
benchmarking.benchmark_definitions.distilbert_on_imdb.distilbert_imdb_benchmark(sagemaker_backend=False, **kwargs)

	






            

          

      

      

    

  

    
      
          
            
  
benchmarking.benchmark_definitions.finetune_transformer_glue module


	
benchmarking.benchmark_definitions.finetune_transformer_glue.finetune_transformer_glue_benchmark(sagemaker_backend=False, choose_model=False, dataset='rte', model_type='bert-base-cased', num_train_epochs=3, train_valid_fraction=0.7, random_seed=31415927, **kwargs)

	This benchmark consists of fine-tuning a Hugging Face transformer model,
selected from the zoo, on one of the GLUE benchmarks:



Wang etal.

GLUE: A Multi-task Benchmark and Analysis Platform for Natural

Language Understanding

ICLR 2019







	Parameters:

	
	sagemaker_backend (bool) – Use SageMaker backend? This affects the choice
of instance type. Defaults to False


	choose_model (bool) – Should tuning involve selecting the best pre-trained
model from PRETRAINED_MODELS? If so, the configuration space is
extended by another choice variable. Defaults to False


	dataset (str) – Name of GLUE task, from TASK2METRICSMODE. Defaults to
“rte”


	model_type (str) – Pre-trained model to be used. If choose_model is
set, this is the model used in the first evaluation. Defaults to
“bert-base-cased”


	num_train_epochs (int) – Maximum number of epochs for fine-tuning. Defaults
to 3


	train_valid_fraction (float) – The original training set is split into training
and validation part, this is the fraction of the training part


	random_seed (int) – Random seed for training script


	kwargs – Overwrites default params in RealBenchmarkDefinition
object returned






	Return type:

	RealBenchmarkDefinition










	
benchmarking.benchmark_definitions.finetune_transformer_glue.finetune_transformer_glue_all_benchmarks(sagemaker_backend=False, model_type='bert-base-cased', num_train_epochs=3, train_valid_fraction=0.7, random_seed=31415927, **kwargs)

	
	Return type:

	Dict[str, RealBenchmarkDefinition]












            

          

      

      

    

  

    
      
          
            
  
benchmarking.benchmark_definitions.finetune_transformer_swag module


	
benchmarking.benchmark_definitions.finetune_transformer_swag.finetune_transformer_swag_benchmark(sagemaker_backend=False, num_train_epochs=3, per_device_train_batch_size=8, **kwargs)

	
	Parameters:

	
	sagemaker_backend (bool) – Use SageMaker backend? This affects the choice
of instance type. Defaults to False


	num_train_epochs (int) – Maximum number of epochs for fine-tuning. Defaults
to 3


	per_device_train_batch_size (int) – Batch size per device. Defaults to 8


	kwargs – Overwrites default params in RealBenchmarkDefinition
object returned






	Return type:

	RealBenchmarkDefinition
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benchmarking.benchmark_definitions.lstm_wikitext2.lstm_wikitext2_benchmark(sagemaker_backend=False, **kwargs)
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benchmarking.benchmark_definitions.real_benchmark_definitions module


	
benchmarking.benchmark_definitions.real_benchmark_definitions.real_benchmark_definitions(sagemaker_backend=False, **kwargs)

	
	Return type:

	Dict[str, RealBenchmarkDefinition]












            

          

      

      

    

  

    
      
          
            
  
benchmarking.benchmark_definitions.resnet_cifar10 module


	
benchmarking.benchmark_definitions.resnet_cifar10.resnet_cifar10_benchmark(sagemaker_backend=False, **kwargs)

	






            

          

      

      

    

  

    
      
          
            
  
benchmarking.benchmark_definitions.transformer_wikitext2 module


	
benchmarking.benchmark_definitions.transformer_wikitext2.transformer_wikitext2_benchmark(sagemaker_backend=False, **kwargs)
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benchmarking.examples.benchmark_dehb package


Submodules
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benchmarking.examples.benchmark_dehb.baselines module


	
class benchmarking.examples.benchmark_dehb.baselines.Methods

	Bases: object


	
ASHA = 'ASHA'

	




	
SYNCHB = 'SYNCHB'

	




	
DEHB = 'DEHB'

	




	
BOHB = 'BOHB'

	




	
ASHA_ORD = 'ASHA-ORD'

	




	
SYNCHB_ORD = 'SYNCHB-ORD'

	




	
DEHB_ORD = 'DEHB-ORD'

	




	
BOHB_ORD = 'BOHB-ORD'

	




	
ASHA_STOP = 'ASHA-STOP'

	




	
SYNCMOBSTER = 'SYNCMOBSTER'

	








	
benchmarking.examples.benchmark_dehb.baselines.conv_numeric_then_rest(margs)

	
	Return type:

	Dict[str, Any]
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benchmarking.examples.benchmark_dehb.hpo_main module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.benchmark_dehb.launch_remote module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.benchmark_dyhpo package


Submodules
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benchmarking.examples.benchmark_dyhpo.baselines module


	
class benchmarking.examples.benchmark_dyhpo.baselines.Methods

	Bases: object


	
BO = 'BO'

	




	
ASHA = 'ASHA'

	




	
MOBSTER = 'MOBSTER'

	




	
HYPERTUNE = 'HyperTune'

	




	
DYHPO = 'DYHPO'

	










            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.benchmark_dyhpo.benchmark_definitions module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.benchmark_dyhpo.hpo_main module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.benchmark_dyhpo.launch_remote module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.benchmark_hypertune package


Submodules
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benchmarking.examples.benchmark_hypertune.baselines module


	
class benchmarking.examples.benchmark_hypertune.baselines.Methods

	Bases: object


	
ASHA = 'ASHA'

	




	
MOBSTER_JOINT = 'MOBSTER-JOINT'

	




	
MOBSTER_INDEP = 'MOBSTER-INDEP'

	




	
HYPERTUNE_INDEP = 'HYPERTUNE-INDEP'

	




	
HYPERTUNE_JOINT = 'HYPERTUNE-JOINT'

	




	
SYNCHB = 'SYNCHB'

	




	
BOHB = 'BOHB'

	










            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.benchmark_hypertune.benchmark_definitions module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.benchmark_hypertune.hpo_main module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.benchmark_hypertune.launch_remote module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.benchmark_hypertune.plot_results module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.benchmark_warping package


Submodules



	benchmarking.examples.benchmark_warping.baselines module
	Methods
	Methods.RS

	Methods.ASHA

	Methods.BO

	Methods.BO_WARP

	Methods.BO_BOXCOX

	Methods.BO_WARP_BOXCOX

	Methods.MOBSTER

	Methods.MOBSTER_WARP

	Methods.MOBSTER_BOXCOX

	Methods.MOBSTER_WARP_BOXCOX
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	benchmarking.examples.benchmark_warping.launch_remote module









            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.benchmark_warping.baselines module


	
class benchmarking.examples.benchmark_warping.baselines.Methods

	Bases: object


	
RS = 'RS'

	




	
ASHA = 'ASHA'

	




	
BO = 'BO'

	




	
BO_WARP = 'BO-WARP'

	




	
BO_BOXCOX = 'BO-BOXCOX'

	




	
BO_WARP_BOXCOX = 'BO-WARP-BOXCOX'

	




	
MOBSTER = 'MOBSTER'

	




	
MOBSTER_WARP = 'MOBSTER-WARP'

	




	
MOBSTER_BOXCOX = 'MOBSTER-BOXCOX'

	




	
MOBSTER_WARP_BOXCOX = 'MOBSTER-WARP-BOXCOX'

	










            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.benchmark_warping.benchmark_definitions module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.benchmark_warping.hpo_main module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.benchmark_warping.launch_remote module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.demo_experiment package


Submodules



	benchmarking.examples.demo_experiment.baselines module
	Methods
	Methods.RS

	Methods.BO

	Methods.ASHA

	Methods.MOBSTER

	Methods.ASHA_TANH

	Methods.MOBSTER_TANH

	Methods.ASHA_RELU

	Methods.MOBSTER_RELU









	benchmarking.examples.demo_experiment.benchmark_definitions module

	benchmarking.examples.demo_experiment.hpo_main module

	benchmarking.examples.demo_experiment.launch_remote module

	benchmarking.examples.demo_experiment.plot_results module









            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.demo_experiment.baselines module


	
class benchmarking.examples.demo_experiment.baselines.Methods

	Bases: object


	
RS = 'RS'

	




	
BO = 'BO'

	




	
ASHA = 'ASHA'

	




	
MOBSTER = 'MOBSTER'

	




	
ASHA_TANH = 'ASHA-TANH'

	




	
MOBSTER_TANH = 'MOBSTER-TANH'

	




	
ASHA_RELU = 'ASHA-RELU'

	




	
MOBSTER_RELU = 'MOBSTER-RELU'

	










            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.demo_experiment.benchmark_definitions module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.demo_experiment.hpo_main module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.demo_experiment.launch_remote module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.demo_experiment.plot_results module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.fine_tuning_transformer_glue package


Submodules



	benchmarking.examples.fine_tuning_transformer_glue.baselines module
	Methods
	Methods.BO

	Methods.MOBSTER









	benchmarking.examples.fine_tuning_transformer_glue.hpo_main module
	map_method_args()





	benchmarking.examples.fine_tuning_transformer_glue.launch_remote module

	benchmarking.examples.fine_tuning_transformer_glue.plot_results module
	metadata_to_setup()













            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.fine_tuning_transformer_glue.baselines module


	
class benchmarking.examples.fine_tuning_transformer_glue.baselines.Methods

	Bases: object


	
BO = 'BO'

	




	
MOBSTER = 'MOBSTER'

	










            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.fine_tuning_transformer_glue.hpo_main module


	
benchmarking.examples.fine_tuning_transformer_glue.hpo_main.map_method_args(args, method, method_kwargs)

	
	Return type:

	Dict[str, Any]












            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.fine_tuning_transformer_glue.launch_remote module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.fine_tuning_transformer_glue.plot_results module


	
benchmarking.examples.fine_tuning_transformer_glue.plot_results.metadata_to_setup(metadata)

	
	Return type:

	Optional[str]












            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.fine_tuning_transformer_swag package


Submodules



	benchmarking.examples.fine_tuning_transformer_swag.baselines module
	Methods
	Methods.BO

	Methods.MOBSTER









	benchmarking.examples.fine_tuning_transformer_swag.hpo_main module
	map_method_args()





	benchmarking.examples.fine_tuning_transformer_swag.launch_remote module









            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.fine_tuning_transformer_swag.baselines module


	
class benchmarking.examples.fine_tuning_transformer_swag.baselines.Methods

	Bases: object


	
BO = 'BO'

	




	
MOBSTER = 'MOBSTER'

	










            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.fine_tuning_transformer_swag.hpo_main module


	
benchmarking.examples.fine_tuning_transformer_swag.hpo_main.map_method_args(args, method, method_kwargs)

	
	Return type:

	Dict[str, Any]












            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.fine_tuning_transformer_swag.launch_remote module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.launch_local package


Submodules



	benchmarking.examples.launch_local.baselines module
	Methods
	Methods.RS

	Methods.BO

	Methods.ASHA

	Methods.MOBSTER









	benchmarking.examples.launch_local.hpo_main module

	benchmarking.examples.launch_local.launch_remote module









            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.launch_local.baselines module


	
class benchmarking.examples.launch_local.baselines.Methods

	Bases: object


	
RS = 'RS'

	




	
BO = 'BO'

	




	
ASHA = 'ASHA'

	




	
MOBSTER = 'MOBSTER'

	










            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.launch_local.hpo_main module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.launch_local.launch_remote module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.launch_sagemaker package


Submodules



	benchmarking.examples.launch_sagemaker.baselines module
	Methods
	Methods.RS

	Methods.BO

	Methods.ASHA

	Methods.MOBSTER









	benchmarking.examples.launch_sagemaker.hpo_main module

	benchmarking.examples.launch_sagemaker.launch_remote module









            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.launch_sagemaker.baselines module


	
class benchmarking.examples.launch_sagemaker.baselines.Methods

	Bases: object


	
RS = 'RS'

	




	
BO = 'BO'

	




	
ASHA = 'ASHA'

	




	
MOBSTER = 'MOBSTER'

	










            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.launch_sagemaker.hpo_main module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.examples.launch_sagemaker.launch_remote module




            

          

      

      

    

  

    
      
          
            
  
benchmarking.training_scripts package




            

          

      

      

    

  

    
      
          
            
  
benchmarking.utils package


	
benchmarking.utils.get_cost_model_for_batch_size(params, batch_size_key, batch_size_range)

	Returns cost model depending on the batch size only.


	Parameters:

	
	params (Dict[str, Any]) – Command line arguments


	batch_size_key (str) – Name of batch size entry in config


	batch_size_range (Tuple[int, int]) – (lower, upper) for batch size, both sides are
inclusive






	Returns:

	Cost model (or None if dependencies cannot be imported)










	
class benchmarking.utils.StoreSearcherStatesCallback

	Bases: TunerCallback

Stores list of searcher states alongside a tuning run. The list
is extended by a new state whenever the TuningJobState has changed
compared to the last recently added one.

This callback is useful to create meaningful unit tests, by sampling
a given searcher alongside a realistic experiment.

Works only for ModelBasedSearcher searchers. For other searchers, nothing
is stored.


	
on_tuning_start(tuner)

	Called at start of tuning loop


	Parameters:

	tuner (Tuner) – Tuner object










	
on_trial_result(trial, status, result, decision)

	Called when a new result (reported by a trial) is observed

The arguments here are inputs or outputs of scheduler.on_trial_result
(called just before).


	Parameters:

	
	trial (Trial) – Trial whose report has been received


	status (str) – Status of trial before scheduler.on_trial_result has
been called


	result (Dict) – Result dict received


	decision (str) – Decision returned by scheduler.on_trial_result













	
property states

	




	
searcher_state_as_code(pos, add_info=False)

	








Submodules



	benchmarking.utils.get_cost_model module
	get_cost_model_for_batch_size()





	benchmarking.utils.launch_sample_searcher_states module

	benchmarking.utils.searcher_state_callback module
	StoreSearcherStatesCallback
	StoreSearcherStatesCallback.on_tuning_start()

	StoreSearcherStatesCallback.on_trial_result()

	StoreSearcherStatesCallback.states

	StoreSearcherStatesCallback.searcher_state_as_code()

















            

          

      

      

    

  

    
      
          
            
  
benchmarking.utils.get_cost_model module


	
benchmarking.utils.get_cost_model.get_cost_model_for_batch_size(params, batch_size_key, batch_size_range)

	Returns cost model depending on the batch size only.


	Parameters:

	
	params (Dict[str, Any]) – Command line arguments


	batch_size_key (str) – Name of batch size entry in config


	batch_size_range (Tuple[int, int]) – (lower, upper) for batch size, both sides are
inclusive






	Returns:

	Cost model (or None if dependencies cannot be imported)












            

          

      

      

    

  

    
      
          
            
  
benchmarking.utils.launch_sample_searcher_states module

This script launches an experiment for the purpose of sampling searcher
states, which can then be used in unit tests.




            

          

      

      

    

  

    
      
          
            
  
benchmarking.utils.searcher_state_callback module


	
class benchmarking.utils.searcher_state_callback.StoreSearcherStatesCallback

	Bases: TunerCallback

Stores list of searcher states alongside a tuning run. The list
is extended by a new state whenever the TuningJobState has changed
compared to the last recently added one.

This callback is useful to create meaningful unit tests, by sampling
a given searcher alongside a realistic experiment.

Works only for ModelBasedSearcher searchers. For other searchers, nothing
is stored.


	
on_tuning_start(tuner)

	Called at start of tuning loop


	Parameters:

	tuner (Tuner) – Tuner object










	
on_trial_result(trial, status, result, decision)

	Called when a new result (reported by a trial) is observed

The arguments here are inputs or outputs of scheduler.on_trial_result
(called just before).


	Parameters:

	
	trial (Trial) – Trial whose report has been received


	status (str) – Status of trial before scheduler.on_trial_result has
been called


	result (Dict) – Result dict received


	decision (str) – Decision returned by scheduler.on_trial_result













	
property states

	




	
searcher_state_as_code(pos, add_info=False)

	










            

          

      

      

    

  

    
      
          
            
  
setup module




            

          

      

      

    

  

    
      
          
            
  
syne_tune package


	
class syne_tune.StoppingCriterion(max_wallclock_time=None, max_num_evaluations=None, max_num_trials_started=None, max_num_trials_completed=None, max_cost=None, max_num_trials_finished=None, min_metric_value=None, max_metric_value=None)

	Bases: object

Stopping criterion that can be used in a Tuner, for instance
Tuner(stop_criterion=StoppingCriterion(max_wallclock_time=3600), ...).

If several arguments are used, the combined criterion is true whenever
one of the atomic criteria is true.

In principle, stop_criterion for Tuner can be any lambda function, but
this class should be used with remote launching in order to ensure
proper serialization.


	Parameters:

	
	max_wallclock_time (Optional[float]) – Stop once this wallclock time is reached


	max_num_evaluations (Optional[int]) – Stop once more than this number of metric
records have been reported


	max_num_trials_started (Optional[int]) – Stop once more than this number of trials
have been started


	max_num_trials_completed (Optional[int]) – Stop once more than this number of trials
have been completed. This does not include trials which were stopped
or failed


	max_cost (Optional[float]) – Stop once total cost of evaluations larger than this value


	max_num_trials_finished (Optional[int]) – Stop once more than this number of trials
have finished (i.e., completed, stopped, failed, or stopping)


	min_metric_value (Optional[Dict[str, float]]) – Dictionary with thresholds for selected metrics.
Stop once an evaluation reports a metric value below a threshold


	max_metric_value (Optional[Dict[str, float]]) – Dictionary with thresholds for selected metrics.
Stop once an evaluation reports a metric value above a threshold









	
max_wallclock_time: float = None

	




	
max_num_evaluations: int = None

	




	
max_num_trials_started: int = None

	




	
max_num_trials_completed: int = None

	




	
max_cost: float = None

	




	
max_num_trials_finished: int = None

	




	
min_metric_value: Optional[Dict[str, float]] = None

	




	
max_metric_value: Optional[Dict[str, float]] = None

	








	
class syne_tune.Tuner(trial_backend, scheduler, stop_criterion, n_workers, sleep_time=5.0, results_update_interval=10.0, print_update_interval=30.0, max_failures=1, tuner_name=None, asynchronous_scheduling=True, wait_trial_completion_when_stopping=False, callbacks=None, metadata=None, suffix_tuner_name=True, save_tuner=True, start_jobs_without_delay=True, trial_backend_path=None)

	Bases: object

Controller of tuning loop, manages interplay between scheduler and
trial backend. Also, stopping criterion and number of workers are
maintained here.


	Parameters:

	
	trial_backend (TrialBackend) – Backend for trial evaluations


	scheduler (TrialScheduler) – Tuning algorithm for making decisions about which
trials to start, stop, pause, or resume


	stop_criterion (Callable[[TuningStatus], bool]) – Tuning stops when this predicates returns True.
Called in each iteration with the current tuning status. It is
recommended to use StoppingCriterion.


	n_workers (int) – Number of workers used here. Note that the backend
needs to support (at least) this number of workers to be run
in parallel


	sleep_time (float) – Time to sleep when all workers are busy. Defaults to
DEFAULT_SLEEP_TIME


	results_update_interval (float) – Frequency at which results are updated and
stored (in seconds). Defaults to 10.


	print_update_interval (float) – Frequency at which result table is printed.
Defaults to 30.


	max_failures (int) – This many trial execution failures are allowed before
the tuning loop is aborted. Defaults to 1


	tuner_name (Optional[str]) – Name associated with the tuning experiment, default to
the name of the entrypoint. Must consists of alpha-digits characters,
possibly separated by ‘-’. A postfix with a date time-stamp is added
to ensure uniqueness.


	asynchronous_scheduling (bool) – Whether to use asynchronous scheduling
when scheduling new trials. If True, trials are scheduled as soon as
a worker is available. If False, the tuner waits that all trials
are finished before scheduling a new batch of size n_workers.
Default to True.


	wait_trial_completion_when_stopping (bool) – How to deal with running
trials when stopping criterion is met. If True, the tuner waits
until all trials are finished. If False, all trials are terminated.
Defaults to False.


	callbacks (Optional[List[TunerCallback]]) – Called at certain times in the tuning loop, for example
when a result is seen. The default callback stores results every
results_update_interval.


	metadata (Optional[dict]) – Dictionary of user-metadata that will be persisted in
{tuner_path}/{ST_METADATA_FILENAME}, in addition to metadata provided by
the user. SMT_TUNER_CREATION_TIMESTAMP is always included which
measures the time-stamp when the tuner started to run.


	suffix_tuner_name (bool) – If True, a timestamp is appended to the
provided tuner_name that ensures uniqueness, otherwise the name is
left unchanged and is expected to be unique. Defaults to True.


	save_tuner (bool) – If True, the Tuner object is serialized at
the end of tuning, including its dependencies (e.g., scheduler). This
allows all details of the experiment to be recovered. Defaults to
True.


	start_jobs_without_delay (bool) – Defaults to True. If this is True, the tuner
starts new jobs depending on scheduler decisions communicated to the
backend. For example, if a trial has just been stopped (by calling
backend.stop_trial), the tuner may start a new one immediately, even
if the SageMaker training job is still busy due to stopping delays.
This can lead to faster experiment runtime, because the backend is
temporarily going over its budget.

If set to False, the tuner always asks the backend for the number of
busy workers, which guarantees that we never go over the n_workers
budget. This makes a difference for backends where stopping or pausing
trials is not immediate (e.g., SageMakerBackend). Not going
over budget means that n_workers can be set up to the available quota,
without running the risk of an exception due to the quota being
exceeded. If you get such exceptions, we recommend to use
start_jobs_without_delay=False. Also, if the SageMaker warm pool
feature is used, it is recommended to set
start_jobs_without_delay=False, since otherwise more than n_workers
warm pools will be started, because existing ones are busy with
stopping when they should be reassigned.




	trial_backend_path (Optional[str]) – If this is given, the path of trial_backend
(where logs and checkpoints of trials are stored) is set to this.
Otherwise, it is set to self.tuner_path, so that per-trial
information is written to the same path as tuning results.

If the backend is LocalBackend and the
experiment is run remotely, we recommend to set this, since otherwise
checkpoints and logs are synced to S3, along with tuning results, which
is costly and error-prone.











	
run()

	Launches the tuning.






	
save(folder=None)

	




	
static load(tuner_path)

	




	
best_config(metric=0)

	
	Parameters:

	metric (Union[str, int, None]) – Indicates which metric to use, can be the index or a name of the metric.
default to 0 - first metric defined in the Scheduler



	Return type:

	Tuple[int, Dict[str, Any]]



	Returns:

	the best configuration found while tuning for the metric given and the associated trial-id














	
class syne_tune.Reporter(add_time=True, add_cost=True)

	Bases: object

Callback for reporting metric values from a training script back to Syne Tune.
Example:

from syne_tune import Reporter

report = Reporter()
for epoch in range(1, epochs + 1):
    # ...
    report(epoch=epoch, accuracy=accuracy)






	Parameters:

	
	add_time (bool) – If True (default), the time (in secs) since creation of the
Reporter object is reported automatically as
ST_WORKER_TIME


	add_cost (bool) – If True (default), estimated dollar cost since creation of
Reporter object is reported automatically as
ST_WORKER_COST. This is available for
SageMaker backend only. Requires add_time=True.









	
add_time: bool = True

	




	
add_cost: bool = True

	








Subpackages



	syne_tune.backend package
	LocalBackend
	LocalBackend.trial_path()

	LocalBackend.checkpoint_trial_path()

	LocalBackend.copy_checkpoint()

	LocalBackend.delete_checkpoint()

	LocalBackend.busy_trial_ids()

	LocalBackend.stdout()

	LocalBackend.stderr()

	LocalBackend.set_path()

	LocalBackend.entrypoint_path()

	LocalBackend.set_entrypoint()





	PythonBackend
	PythonBackend.tune_function_path

	PythonBackend.set_path()

	PythonBackend.save_tune_function()





	SageMakerBackend
	SageMakerBackend.sm_client

	SageMakerBackend.add_metric_definitions_to_sagemaker_estimator()

	SageMakerBackend.busy_trial_ids()

	SageMakerBackend.stdout()

	SageMakerBackend.stderr()

	SageMakerBackend.source_dir

	SageMakerBackend.set_entrypoint()

	SageMakerBackend.entrypoint_path()

	SageMakerBackend.initialize_sagemaker_session()

	SageMakerBackend.copy_checkpoint()

	SageMakerBackend.delete_checkpoint()

	SageMakerBackend.set_path()

	SageMakerBackend.on_tuner_save()





	Subpackages
	syne_tune.backend.python_backend package
	Submodules





	syne_tune.backend.sagemaker_backend package
	Submodules





	syne_tune.backend.simulator_backend package
	Submodules









	Submodules
	syne_tune.backend.local_backend module
	LocalBackend





	syne_tune.backend.time_keeper module
	TimeKeeper

	RealTimeKeeper





	syne_tune.backend.trial_backend module
	TrialBackend





	syne_tune.backend.trial_status module
	Status

	Trial

	TrialResult













	syne_tune.blackbox_repository package
	BlackboxOffline
	BlackboxOffline.hyperparameter_objectives_values()





	deserialize()

	load_blackbox()

	blackbox_list()

	add_surrogate()

	BlackboxRepositoryBackend
	BlackboxRepositoryBackend.blackbox





	UserBlackboxBackend
	UserBlackboxBackend.blackbox





	Subpackages
	syne_tune.blackbox_repository.conversion_scripts package
	Subpackages

	Submodules









	Submodules
	syne_tune.blackbox_repository.blackbox module
	Blackbox

	from_function()





	syne_tune.blackbox_repository.blackbox_offline module
	BlackboxOffline

	serialize()

	deserialize()





	syne_tune.blackbox_repository.blackbox_surrogate module
	Columns

	BlackboxSurrogate

	add_surrogate()





	syne_tune.blackbox_repository.blackbox_tabular module
	BlackboxTabular

	serialize()

	deserialize()





	syne_tune.blackbox_repository.repository module
	blackbox_list()

	load_blackbox()

	check_blackbox_local_files()





	syne_tune.blackbox_repository.serialize module
	serialize_configspace()

	deserialize_configspace()

	serialize_metadata()

	deserialize_metadata()





	syne_tune.blackbox_repository.simulated_tabular_backend module
	make_surrogate()

	BlackboxRepositoryBackend

	UserBlackboxBackend





	syne_tune.blackbox_repository.utils module
	metrics_for_configuration()













	syne_tune.callbacks package
	TensorboardCallback
	TensorboardCallback.on_trial_result()

	TensorboardCallback.on_tuning_start()

	TensorboardCallback.on_tuning_end()





	Submodules
	syne_tune.callbacks.hyperband_remove_checkpoints_callback module
	TrialStatus

	BetaBinomialEstimator

	TrialInformation

	HyperbandRemoveCheckpointsCommon

	HyperbandRemoveCheckpointsCallback

	HyperbandRemoveCheckpointsBaselineCallback





	syne_tune.callbacks.hyperband_remove_checkpoints_score module
	compute_probabilities_of_getting_resumed()





	syne_tune.callbacks.remove_checkpoints_callback module
	RemoveCheckpointsCallback

	DefaultRemoveCheckpointsSchedulerMixin





	syne_tune.callbacks.tensorboard_callback module
	TensorboardCallback













	syne_tune.experiments package
	ExperimentResult
	ExperimentResult.name

	ExperimentResult.results

	ExperimentResult.metadata

	ExperimentResult.tuner

	ExperimentResult.path

	ExperimentResult.creation_date()

	ExperimentResult.plot_hypervolume()

	ExperimentResult.plot()

	ExperimentResult.plot_trials_over_time()

	ExperimentResult.metric_mode()

	ExperimentResult.metric_names()

	ExperimentResult.entrypoint_name()

	ExperimentResult.best_config()





	load_experiment()

	get_metadata()

	list_experiments()

	load_experiments_df()

	ComparativeResults
	ComparativeResults.metadata_values()

	ComparativeResults.plot()





	PlotParameters
	PlotParameters.metric

	PlotParameters.mode

	PlotParameters.title

	PlotParameters.xlabel

	PlotParameters.ylabel

	PlotParameters.xlim

	PlotParameters.ylim

	PlotParameters.metric_multiplier

	PlotParameters.convert_to_min

	PlotParameters.tick_params

	PlotParameters.aggregate_mode

	PlotParameters.dpi

	PlotParameters.grid

	PlotParameters.subplots

	PlotParameters.show_init_trials

	PlotParameters.merge_defaults()





	SubplotParameters
	SubplotParameters.nrows

	SubplotParameters.ncols

	SubplotParameters.titles

	SubplotParameters.title_each_figure

	SubplotParameters.kwargs

	SubplotParameters.legend_no

	SubplotParameters.xlims

	SubplotParameters.subplot_indices

	SubplotParameters.merge_defaults()





	ShowTrialParameters
	ShowTrialParameters.setup_name

	ShowTrialParameters.trial_id

	ShowTrialParameters.new_setup_name

	ShowTrialParameters.merge_defaults()





	TrialsOfExperimentResults
	TrialsOfExperimentResults.plot()





	MultiFidelityParameters
	MultiFidelityParameters.rung_levels

	MultiFidelityParameters.multifidelity_setups

	MultiFidelityParameters.check_params()





	hypervolume_indicator_column_generator()

	Subpackages
	syne_tune.experiments.benchmark_definitions package
	Submodules





	syne_tune.experiments.launchers package
	Submodules





	syne_tune.experiments.visualization package
	Submodules









	Submodules
	syne_tune.experiments.baselines module
	MethodArguments

	default_arguments()

	convert_categorical_to_ordinal()

	convert_categorical_to_ordinal_numeric()





	syne_tune.experiments.default_baselines module
	RandomSearch()

	GridSearch()

	BayesianOptimization()

	KDE()

	BORE()

	BoTorch()

	REA()

	ConstrainedBayesianOptimization()

	ASHA()

	MOBSTER()

	HyperTune()

	BOHB()

	DyHPO()

	ASHABORE()

	SyncHyperband()

	SyncBOHB()

	DEHB()

	SyncMOBSTER()

	MOREA()

	LSOBO()

	NSGA2()

	MORandomScalarizationBayesOpt()





	syne_tune.experiments.experiment_result module
	ExperimentResult

	download_single_experiment()

	load_experiment()

	get_metadata()

	list_experiments()

	load_experiments_df()





	syne_tune.experiments.util module









	syne_tune.optimizer package
	Subpackages
	syne_tune.optimizer.schedulers package
	FIFOScheduler

	HyperbandScheduler

	MedianStoppingRule

	PopulationBasedTraining

	RayTuneScheduler

	Subpackages

	Submodules









	Submodules
	syne_tune.optimizer.baselines module
	RandomSearch

	GridSearch

	BayesianOptimization

	ASHA

	MOBSTER

	HyperTune

	DyHPO

	PASHA

	BOHB

	SyncHyperband

	SyncBOHB

	DEHB

	SyncMOBSTER

	BORE

	ASHABORE

	BoTorch

	REA

	create_gaussian_process_estimator()

	MORandomScalarizationBayesOpt

	NSGA2

	MOREA

	MOLinearScalarizationBayesOpt

	ConstrainedBayesianOptimization

	ZeroShotTransfer

	ASHACTS

	KDE

	CQR

	ASHACQR





	syne_tune.optimizer.scheduler module
	SchedulerDecision

	TrialSuggestion

	TrialScheduler













	syne_tune.remote package
	Submodules
	syne_tune.remote.constants module

	syne_tune.remote.estimators module
	instance_sagemaker_estimator()

	basic_cpu_instance_sagemaker_estimator()

	pytorch_estimator()

	huggingface_estimator()

	sklearn_estimator()

	mxnet_estimator()





	syne_tune.remote.remote_launcher module
	RemoteLauncher

	syne_tune_image_uri()





	syne_tune.remote.remote_main module
	decode_bool()





	syne_tune.remote.remote_metrics_callback module
	RemoteTuningMetricsCallback





	syne_tune.remote.scheduling module
	backoff()













	syne_tune.utils package
	add_checkpointing_to_argparse()

	resume_from_checkpointed_model()

	checkpoint_model_at_rung_level()

	pytorch_load_save_functions()

	parse_bool()

	add_config_json_to_argparse()

	load_config_json()

	streamline_config_space()

	Submodules
	syne_tune.utils.checkpoint module
	add_checkpointing_to_argparse()

	resume_from_checkpointed_model()

	checkpoint_model_at_rung_level()

	pytorch_load_save_functions()





	syne_tune.utils.config_as_json module
	add_config_json_to_argparse()

	load_config_json()





	syne_tune.utils.convert_domain module
	fit_to_regular_grid()

	convert_choice_domain()

	convert_linear_to_log_domain()

	convert_domain()

	streamline_config_space()





	syne_tune.utils.parse_bool module
	parse_bool()



















Submodules



	syne_tune.config_space module
	Domain
	Domain.sampler

	Domain.default_sampler_cls

	Domain.value_type

	Domain.cast()

	Domain.set_sampler()

	Domain.get_sampler()

	Domain.sample()

	Domain.is_grid()

	Domain.is_function()

	Domain.is_valid()

	Domain.domain_str

	Domain.match_string()





	Sampler
	Sampler.sample()





	BaseSampler

	Uniform

	LogUniform

	Normal

	Grid
	Grid.sample()





	Float
	Float.default_sampler_cls

	Float.value_type

	Float.uniform()

	Float.loguniform()

	Float.reverseloguniform()

	Float.normal()

	Float.quantized()

	Float.is_valid()

	Float.domain_str

	Float.match_string()





	Integer
	Integer.default_sampler_cls

	Integer.value_type

	Integer.cast()

	Integer.quantized()

	Integer.uniform()

	Integer.loguniform()

	Integer.is_valid()

	Integer.domain_str

	Integer.match_string()





	Categorical
	Categorical.default_sampler_cls

	Categorical.uniform()

	Categorical.grid()

	Categorical.is_valid()

	Categorical.value_type

	Categorical.domain_str

	Categorical.cast()

	Categorical.match_string()





	Ordinal

	OrdinalNearestNeighbor
	OrdinalNearestNeighbor.lower_int

	OrdinalNearestNeighbor.upper_int

	OrdinalNearestNeighbor.categories_int

	OrdinalNearestNeighbor.cast_int()

	OrdinalNearestNeighbor.cast()

	OrdinalNearestNeighbor.set_sampler()

	OrdinalNearestNeighbor.get_sampler()

	OrdinalNearestNeighbor.sample()





	FiniteRange
	FiniteRange.values

	FiniteRange.value_type

	FiniteRange.cast()

	FiniteRange.set_sampler()

	FiniteRange.get_sampler()

	FiniteRange.sample()

	FiniteRange.domain_str

	FiniteRange.match_string()





	uniform()

	loguniform()

	randint()

	lograndint()

	choice()

	ordinal()

	logordinal()

	finrange()

	logfinrange()

	is_log_space()

	is_reverse_log_space()

	is_uniform_space()

	add_to_argparse()

	cast_config_values()

	non_constant_hyperparameter_keys()

	config_space_size()

	config_to_match_string()

	to_dict()

	from_dict()

	config_space_to_json_dict()

	config_space_from_json_dict()

	restrict_domain()

	Quantized
	Quantized.get_sampler()

	Quantized.sample()





	quniform()

	reverseloguniform()

	qloguniform()

	qrandint()

	qlograndint()





	syne_tune.constants module
	SYNE_TUNE_ENV_FOLDER

	SYNE_TUNE_DEFAULT_FOLDER

	ST_WORKER_ITER

	ST_WORKER_TIMESTAMP

	ST_WORKER_TIME

	ST_WORKER_COST

	ST_INSTANCE_TYPE

	ST_INSTANCE_COUNT

	ST_SAGEMAKER_METRIC_TAG

	ST_CHECKPOINT_DIR

	ST_CONFIG_JSON_FNAME_ARG

	ST_REMOTE_UPLOAD_DIR_NAME

	ST_RESULTS_DATAFRAME_FILENAME

	ST_METADATA_FILENAME

	ST_TUNER_DILL_FILENAME

	ST_DATETIME_FORMAT

	MAX_METRICS_SUPPORTED_BY_SAGEMAKER

	TUNER_DEFAULT_SLEEP_TIME





	syne_tune.num_gpu module
	get_num_gpus()





	syne_tune.report module
	Reporter
	Reporter.add_time

	Reporter.add_cost





	retrieve()





	syne_tune.results_callback module
	ExtraResultsComposer
	ExtraResultsComposer.keys()





	StoreResultsCallback
	StoreResultsCallback.on_trial_result()

	StoreResultsCallback.store_results()

	StoreResultsCallback.dataframe()

	StoreResultsCallback.on_tuning_start()

	StoreResultsCallback.on_tuning_end()









	syne_tune.stopping_criterion module
	StoppingCriterion
	StoppingCriterion.max_wallclock_time

	StoppingCriterion.max_num_evaluations

	StoppingCriterion.max_num_trials_started

	StoppingCriterion.max_num_trials_completed

	StoppingCriterion.max_cost

	StoppingCriterion.max_num_trials_finished

	StoppingCriterion.min_metric_value

	StoppingCriterion.max_metric_value





	PlateauStopper





	syne_tune.try_import module
	try_import_gpsearchers_message()

	try_import_kde_message()

	try_import_bore_message()

	try_import_raytune_message()

	try_import_benchmarks_message()

	try_import_aws_message()

	try_import_botorch_message()

	try_import_blackbox_repository_message()

	try_import_yahpo_message()

	try_import_moo_message()

	try_import_visual_message()

	try_import_sklearn_message()

	try_import_backends_message()





	syne_tune.tuner module
	Tuner
	Tuner.run()

	Tuner.save()

	Tuner.load()

	Tuner.best_config()









	syne_tune.tuner_callback module
	TunerCallback
	TunerCallback.on_tuning_start()

	TunerCallback.on_tuning_end()

	TunerCallback.on_loop_start()

	TunerCallback.on_loop_end()

	TunerCallback.on_fetch_status_results()

	TunerCallback.on_trial_complete()

	TunerCallback.on_trial_result()

	TunerCallback.on_tuning_sleep()

	TunerCallback.on_start_trial()

	TunerCallback.on_resume_trial()









	syne_tune.tuning_status module
	MetricsStatistics
	MetricsStatistics.add()





	TuningStatus
	TuningStatus.update()

	TuningStatus.mark_running_job_as_stopped()

	TuningStatus.num_trials_started

	TuningStatus.num_trials_completed

	TuningStatus.num_trials_failed

	TuningStatus.num_trials_finished

	TuningStatus.num_trials_running

	TuningStatus.wallclock_time

	TuningStatus.user_time

	TuningStatus.cost

	TuningStatus.get_dataframe()





	print_best_metric_found()





	syne_tune.util module
	RegularCallback

	experiment_path()

	s3_experiment_path()

	check_valid_sagemaker_name()

	sanitize_sagemaker_name()

	name_from_base()

	random_string()

	repository_root_path()

	script_checkpoint_example_path()

	script_height_example_path()

	catchtime()

	is_increasing()

	is_positive_integer()

	is_integer()

	dump_json_with_numpy()

	dict_get()

	recursive_merge()

	find_first_of_type()

	metric_name_mode()













            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend package


	
class syne_tune.backend.LocalBackend(entry_point, delete_checkpoints=False, pass_args_as_json=False, rotate_gpus=True, num_gpus_per_trial=1, gpus_to_use=None)

	Bases: TrialBackend

A backend running locally by spawning sub-process concurrently. Note that
no resource management is done so the concurrent number of trials should
be adjusted to the machine capacity.

Additional arguments on top of parent class
TrialBackend:


	Parameters:

	
	entry_point (str) – Path to Python main file to be tuned


	rotate_gpus (bool) – In case several GPUs are present, each trial is
scheduled on a different GPU. A new trial is preferentially
scheduled on a free GPU, and otherwise the GPU with least prior
assignments is chosen. If False, then all GPUs are used at the same
time for all trials. Defaults to True.


	num_gpus_per_trial (int) – Number of GPUs to be allocated to each trial.
Must be not larger than the total number of GPUs available.
Defaults to 1


	gpus_to_use (Optional[List[int]]) – If this is given, the backend only uses GPUs in this
lists (non-negative ints). Entries must be in
range(get_num_gpus()). Defaults to using all GPUs.









	
trial_path(trial_id)

	
	Parameters:

	trial_id (int) – ID of trial



	Return type:

	Path



	Returns:

	Directory where files related to trial are written to










	
checkpoint_trial_path(trial_id)

	
	Parameters:

	trial_id (int) – ID of trial



	Return type:

	Path



	Returns:

	Directory where checkpoints for trial are written to and
read from










	
copy_checkpoint(src_trial_id, tgt_trial_id)

	Copy the checkpoint folder from one trial to the other.


	Parameters:

	
	src_trial_id (int) – Source trial ID (copy from)


	tgt_trial_id (int) – Target trial ID (copy to)













	
delete_checkpoint(trial_id)

	Removes checkpoint folder for a trial. It is OK for the folder not to
exist.


	Parameters:

	trial_id (int) – ID of trial for which checkpoint files are deleted










	
busy_trial_ids()

	Returns list of ids for currently busy trials

A trial is busy if its status is
in_progress or
stopping.
If the execution setup is able to run n_workers jobs in parallel,
then if this method returns a list of size n, the tuner may start
n_workers - n new jobs.


	Return type:

	List[Tuple[int, str]]



	Returns:

	List of (trial_id, status)










	
stdout(trial_id)

	Fetch stdout log for trial


	Parameters:

	trial_id (int) – ID of trial



	Return type:

	List[str]



	Returns:

	Lines of the log of the trial (stdout)










	
stderr(trial_id)

	Fetch stderr log for trial


	Parameters:

	trial_id (int) – ID of trial



	Return type:

	List[str]



	Returns:

	Lines of the log of the trial (stderr)










	
set_path(results_root=None, tuner_name=None)

	
	Parameters:

	
	results_root (Optional[str]) – The local folder that should contain the results of
the tuning experiment. Used by Tuner to indicate
a desired path where the results should be written to. This is used
to unify the location of backend files and Tuner
results when possible (in the local backend). By default, the backend
does not do anything since not all backends may be able to unify their
file locations.


	tuner_name (Optional[str]) – Name of the tuner, can be used for instance to save
checkpoints on remote storage.













	
entrypoint_path()

	
	Return type:

	Path



	Returns:

	Entrypoint path of script to be executed










	
set_entrypoint(entry_point)

	Update the entrypoint.


	Parameters:

	entry_point (str) – New path of the entrypoint.














	
class syne_tune.backend.PythonBackend(tune_function, config_space, rotate_gpus=True, delete_checkpoints=False)

	Bases: LocalBackend

A backend that supports the tuning of Python functions (if you rather want to
tune an endpoint script such as “train.py”, then you should use
LocalBackend). The function tune_function should be serializable,
should not reference any global variable or module and should have as arguments
a subset of the keys of config_space. When deserializing, a md5 is checked to
ensure consistency.

For instance, the following function is a valid way of defining a backend on
top of a simple function:

from syne_tune.backend import PythonBackend
from syne_tune.config_space import uniform

def f(x, epochs):
    import logging
    import time
    from syne_tune import Reporter
    root = logging.getLogger()
    root.setLevel(logging.DEBUG)
    reporter = Reporter()
    for i in range(epochs):
        reporter(epoch=i + 1, y=x + i)

config_space = {
    "x": uniform(-10, 10),
    "epochs": 5,
}
backend = PythonBackend(tune_function=f, config_space=config_space)





See examples/launch_height_python_backend.py for a complete example.

Additional arguments on top of parent class
LocalBackend:


	Parameters:

	
	tune_function (Callable) – Python function to be tuned. The function must call
Syne Tune reporter to report metrics and be serializable, imports should
be performed inside the function body.


	config_space (Dict[str, object]) – Configuration space corresponding to arguments of
tune_function









	
property tune_function_path: Path

	




	
set_path(results_root=None, tuner_name=None)

	
	Parameters:

	
	results_root (Optional[str]) – The local folder that should contain the results of
the tuning experiment. Used by Tuner to indicate
a desired path where the results should be written to. This is used
to unify the location of backend files and Tuner
results when possible (in the local backend). By default, the backend
does not do anything since not all backends may be able to unify their
file locations.


	tuner_name (Optional[str]) – Name of the tuner, can be used for instance to save
checkpoints on remote storage.













	
save_tune_function(tune_function)

	








	
class syne_tune.backend.SageMakerBackend(sm_estimator, metrics_names=None, s3_path=None, delete_checkpoints=False, pass_args_as_json=False, **sagemaker_fit_kwargs)

	Bases: TrialBackend

This backend executes each trial evaluation as a separate SageMaker
training job, using sm_estimator as estimator.

Checkpoints are written to and loaded from S3, using checkpoint_s3_uri
of the estimator.

Compared to LocalBackend, this backend can run any number of
jobs in parallel (given sufficient resources), and any instance type can
be used.

This backend allows to select the instance type and count for a trial
evaluation, by passing values in the configuration, using names
ST_INSTANCE_TYPE and
ST_INSTANCE_COUNT. If these are given in the
configuration, they overwrite the default in sm_estimator. This allows
for tuning instance type and count along with the hyperparameter
configuration.

Additional arguments on top of parent class
TrialBackend:


	Parameters:

	
	sm_estimator (Framework) – SageMaker estimator for trial evaluations.


	metrics_names (Optional[List[str]]) – Names of metrics passed to report, used to plot
live curve in SageMaker (optional, only used for visualization)


	s3_path (Optional[str]) – S3 base path used for checkpointing. The full path
also involves the tuner name and the trial_id. The default base
path is the S3 bucket associated with the SageMaker account


	sagemaker_fit_kwargs – Extra arguments that passed to
sagemaker.estimator.Framework when fitting the job, for instance
{'train': 's3://my-data-bucket/path/to/my/training/data'}









	
property sm_client

	




	
add_metric_definitions_to_sagemaker_estimator(metrics_names)

	




	
busy_trial_ids()

	Returns list of ids for currently busy trials

A trial is busy if its status is
in_progress or
stopping.
If the execution setup is able to run n_workers jobs in parallel,
then if this method returns a list of size n, the tuner may start
n_workers - n new jobs.


	Return type:

	List[Tuple[int, str]]



	Returns:

	List of (trial_id, status)










	
stdout(trial_id)

	Fetch stdout log for trial


	Parameters:

	trial_id (int) – ID of trial



	Return type:

	List[str]



	Returns:

	Lines of the log of the trial (stdout)










	
stderr(trial_id)

	Fetch stderr log for trial


	Parameters:

	trial_id (int) – ID of trial



	Return type:

	List[str]



	Returns:

	Lines of the log of the trial (stderr)










	
property source_dir: str | None

	




	
set_entrypoint(entry_point)

	Update the entrypoint.


	Parameters:

	entry_point (str) – New path of the entrypoint.










	
entrypoint_path()

	
	Return type:

	Path



	Returns:

	Entrypoint path of script to be executed










	
initialize_sagemaker_session()

	




	
copy_checkpoint(src_trial_id, tgt_trial_id)

	Copy the checkpoint folder from one trial to the other.


	Parameters:

	
	src_trial_id (int) – Source trial ID (copy from)


	tgt_trial_id (int) – Target trial ID (copy to)













	
delete_checkpoint(trial_id)

	Removes checkpoint folder for a trial. It is OK for the folder not to
exist.


	Parameters:

	trial_id (int) – ID of trial for which checkpoint files are deleted










	
set_path(results_root=None, tuner_name=None)

	For this backend, it is mandatory to call this method passing tuner_name
before the backend is used. results_root is ignored here.






	
on_tuner_save()

	Called at the end of save().










Subpackages



	syne_tune.backend.python_backend package
	Submodules
	syne_tune.backend.python_backend.python_backend module
	file_md5()

	PythonBackend





	syne_tune.backend.python_backend.python_entrypoint module









	syne_tune.backend.sagemaker_backend package
	Submodules
	syne_tune.backend.sagemaker_backend.custom_framework module
	CustomFramework





	syne_tune.backend.sagemaker_backend.instance_info module
	InstanceInfo

	InstanceInfos

	select_instance_type()





	syne_tune.backend.sagemaker_backend.sagemaker_backend module
	SageMakerBackend





	syne_tune.backend.sagemaker_backend.sagemaker_utils module
	default_config()

	default_sagemaker_session()

	get_log()

	decode_sagemaker_hyperparameter()

	sagemaker_search()

	metric_definitions_from_names()

	add_metric_definitions_to_sagemaker_estimator()

	add_syne_tune_dependency()

	sagemaker_fit()

	get_execution_role()

	untar()

	download_sagemaker_results()

	map_identifier_limited_length()

	s3_copy_objects_recursively()

	s3_delete_objects_recursively()

	s3_download_files_recursively()

	backend_path_not_synced_to_s3()













	syne_tune.backend.simulator_backend package
	Submodules
	syne_tune.backend.simulator_backend.events module
	Event

	StartEvent

	CompleteEvent

	StopEvent

	OnTrialResultEvent

	SimulatorState





	syne_tune.backend.simulator_backend.simulator_backend module
	SimulatorConfig

	SimulatorBackend





	syne_tune.backend.simulator_backend.simulator_callback module
	SimulatorCallback





	syne_tune.backend.simulator_backend.time_keeper module
	SimulatedTimeKeeper



















Submodules



	syne_tune.backend.local_backend module
	LocalBackend
	LocalBackend.trial_path()

	LocalBackend.checkpoint_trial_path()

	LocalBackend.copy_checkpoint()

	LocalBackend.delete_checkpoint()

	LocalBackend.busy_trial_ids()

	LocalBackend.stdout()

	LocalBackend.stderr()

	LocalBackend.set_path()

	LocalBackend.entrypoint_path()

	LocalBackend.set_entrypoint()









	syne_tune.backend.time_keeper module
	TimeKeeper
	TimeKeeper.start_of_time()

	TimeKeeper.time()

	TimeKeeper.time_stamp()

	TimeKeeper.advance()





	RealTimeKeeper
	RealTimeKeeper.start_of_time()

	RealTimeKeeper.time()

	RealTimeKeeper.time_stamp()

	RealTimeKeeper.advance()









	syne_tune.backend.trial_backend module
	TrialBackend
	TrialBackend.start_trial()

	TrialBackend.copy_checkpoint()

	TrialBackend.delete_checkpoint()

	TrialBackend.resume_trial()

	TrialBackend.pause_trial()

	TrialBackend.stop_trial()

	TrialBackend.new_trial_id()

	TrialBackend.fetch_status_results()

	TrialBackend.busy_trial_ids()

	TrialBackend.stdout()

	TrialBackend.stderr()

	TrialBackend.stop_all()

	TrialBackend.set_path()

	TrialBackend.entrypoint_path()

	TrialBackend.set_entrypoint()

	TrialBackend.on_tuner_save()









	syne_tune.backend.trial_status module
	Status
	Status.completed

	Status.in_progress

	Status.failed

	Status.paused

	Status.stopped

	Status.stopping





	Trial
	Trial.trial_id

	Trial.config

	Trial.creation_time

	Trial.add_results()





	TrialResult
	TrialResult.metrics

	TrialResult.status

	TrialResult.training_end_time

	TrialResult.seconds

	TrialResult.cost

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend.python_backend package


Submodules



	syne_tune.backend.python_backend.python_backend module
	file_md5()

	PythonBackend
	PythonBackend.tune_function_path

	PythonBackend.set_path()

	PythonBackend.save_tune_function()









	syne_tune.backend.python_backend.python_entrypoint module









            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend.python_backend.python_backend module


	
syne_tune.backend.python_backend.python_backend.file_md5(filename)

	
	Return type:

	str










	
class syne_tune.backend.python_backend.python_backend.PythonBackend(tune_function, config_space, rotate_gpus=True, delete_checkpoints=False)

	Bases: LocalBackend

A backend that supports the tuning of Python functions (if you rather want to
tune an endpoint script such as “train.py”, then you should use
LocalBackend). The function tune_function should be serializable,
should not reference any global variable or module and should have as arguments
a subset of the keys of config_space. When deserializing, a md5 is checked to
ensure consistency.

For instance, the following function is a valid way of defining a backend on
top of a simple function:

from syne_tune.backend import PythonBackend
from syne_tune.config_space import uniform

def f(x, epochs):
    import logging
    import time
    from syne_tune import Reporter
    root = logging.getLogger()
    root.setLevel(logging.DEBUG)
    reporter = Reporter()
    for i in range(epochs):
        reporter(epoch=i + 1, y=x + i)

config_space = {
    "x": uniform(-10, 10),
    "epochs": 5,
}
backend = PythonBackend(tune_function=f, config_space=config_space)





See examples/launch_height_python_backend.py for a complete example.

Additional arguments on top of parent class
LocalBackend:


	Parameters:

	
	tune_function (Callable) – Python function to be tuned. The function must call
Syne Tune reporter to report metrics and be serializable, imports should
be performed inside the function body.


	config_space (Dict[str, object]) – Configuration space corresponding to arguments of
tune_function









	
property tune_function_path: Path

	




	
set_path(results_root=None, tuner_name=None)

	
	Parameters:

	
	results_root (Optional[str]) – The local folder that should contain the results of
the tuning experiment. Used by Tuner to indicate
a desired path where the results should be written to. This is used
to unify the location of backend files and Tuner
results when possible (in the local backend). By default, the backend
does not do anything since not all backends may be able to unify their
file locations.


	tuner_name (Optional[str]) – Name of the tuner, can be used for instance to save
checkpoints on remote storage.













	
save_tune_function(tune_function)

	










            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend.python_backend.python_entrypoint module

An entry point that loads a serialized function from PythonBackend and executes it with the provided hyperparameter.
The md5 hash of the file is first checked before executing the deserialized function.




            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend.sagemaker_backend package


Submodules



	syne_tune.backend.sagemaker_backend.custom_framework module
	CustomFramework
	CustomFramework.LATEST_VERSION

	CustomFramework.create_model()









	syne_tune.backend.sagemaker_backend.instance_info module
	InstanceInfo
	InstanceInfo.name

	InstanceInfo.num_cpu

	InstanceInfo.num_gpu

	InstanceInfo.cost_per_hour





	InstanceInfos

	select_instance_type()





	syne_tune.backend.sagemaker_backend.sagemaker_backend module
	SageMakerBackend
	SageMakerBackend.sm_client

	SageMakerBackend.add_metric_definitions_to_sagemaker_estimator()

	SageMakerBackend.busy_trial_ids()

	SageMakerBackend.stdout()

	SageMakerBackend.stderr()

	SageMakerBackend.source_dir

	SageMakerBackend.set_entrypoint()

	SageMakerBackend.entrypoint_path()

	SageMakerBackend.initialize_sagemaker_session()

	SageMakerBackend.copy_checkpoint()

	SageMakerBackend.delete_checkpoint()

	SageMakerBackend.set_path()

	SageMakerBackend.on_tuner_save()









	syne_tune.backend.sagemaker_backend.sagemaker_utils module
	default_config()

	default_sagemaker_session()

	get_log()

	decode_sagemaker_hyperparameter()

	sagemaker_search()

	metric_definitions_from_names()

	add_metric_definitions_to_sagemaker_estimator()

	add_syne_tune_dependency()

	sagemaker_fit()

	get_execution_role()

	untar()

	download_sagemaker_results()

	map_identifier_limited_length()

	s3_copy_objects_recursively()

	s3_delete_objects_recursively()

	s3_download_files_recursively()

	backend_path_not_synced_to_s3()













            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend.sagemaker_backend.custom_framework module


	
class syne_tune.backend.sagemaker_backend.custom_framework.CustomFramework(entry_point, image_uri, source_dir=None, hyperparameters=None, **kwargs)

	Bases: Framework


	
LATEST_VERSION = '0.1'

	




	
create_model(model_server_workers=None, role=None, vpc_config_override='VPC_CONFIG_DEFAULT')

	Create a SageMaker Model object that can be deployed to an Endpoint.


	Args:
	
	**kwargs: Keyword arguments used by the implemented method for
	creating the Model.







	Returns:
	sagemaker.model.Model: A SageMaker Model object. See
Model() for full details.
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend.sagemaker_backend.instance_info module


	
class syne_tune.backend.sagemaker_backend.instance_info.InstanceInfo(name, num_cpu, num_gpu, cost_per_hour)

	Bases: object


	
name: str

	




	
num_cpu: int

	




	
num_gpu: int

	




	
cost_per_hour: float

	








	
class syne_tune.backend.sagemaker_backend.instance_info.InstanceInfos

	Bases: object

Utility to get information of an instance type (num cpu/gpu, cost per hour).






	
syne_tune.backend.sagemaker_backend.instance_info.select_instance_type(min_gpu=0, max_gpu=16, min_cost_per_hour=None, max_cost_per_hour=None)

	
	Parameters:

	
	min_gpu (int) – 


	max_gpu (int) – 


	min_cost_per_hour (Optional[float]) – 


	max_cost_per_hour (Optional[float]) – 






	Return type:

	List[str]



	Returns:

	a list of instance type that met the required constrain on minimum/maximum number of GPU and





minimum/maximum cost per hour.








            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend.sagemaker_backend.sagemaker_backend module


	
class syne_tune.backend.sagemaker_backend.sagemaker_backend.SageMakerBackend(sm_estimator, metrics_names=None, s3_path=None, delete_checkpoints=False, pass_args_as_json=False, **sagemaker_fit_kwargs)

	Bases: TrialBackend

This backend executes each trial evaluation as a separate SageMaker
training job, using sm_estimator as estimator.

Checkpoints are written to and loaded from S3, using checkpoint_s3_uri
of the estimator.

Compared to LocalBackend, this backend can run any number of
jobs in parallel (given sufficient resources), and any instance type can
be used.

This backend allows to select the instance type and count for a trial
evaluation, by passing values in the configuration, using names
ST_INSTANCE_TYPE and
ST_INSTANCE_COUNT. If these are given in the
configuration, they overwrite the default in sm_estimator. This allows
for tuning instance type and count along with the hyperparameter
configuration.

Additional arguments on top of parent class
TrialBackend:


	Parameters:

	
	sm_estimator (Framework) – SageMaker estimator for trial evaluations.


	metrics_names (Optional[List[str]]) – Names of metrics passed to report, used to plot
live curve in SageMaker (optional, only used for visualization)


	s3_path (Optional[str]) – S3 base path used for checkpointing. The full path
also involves the tuner name and the trial_id. The default base
path is the S3 bucket associated with the SageMaker account


	sagemaker_fit_kwargs – Extra arguments that passed to
sagemaker.estimator.Framework when fitting the job, for instance
{'train': 's3://my-data-bucket/path/to/my/training/data'}









	
property sm_client

	




	
add_metric_definitions_to_sagemaker_estimator(metrics_names)

	




	
busy_trial_ids()

	Returns list of ids for currently busy trials

A trial is busy if its status is
in_progress or
stopping.
If the execution setup is able to run n_workers jobs in parallel,
then if this method returns a list of size n, the tuner may start
n_workers - n new jobs.


	Return type:

	List[Tuple[int, str]]



	Returns:

	List of (trial_id, status)










	
stdout(trial_id)

	Fetch stdout log for trial


	Parameters:

	trial_id (int) – ID of trial



	Return type:

	List[str]



	Returns:

	Lines of the log of the trial (stdout)










	
stderr(trial_id)

	Fetch stderr log for trial


	Parameters:

	trial_id (int) – ID of trial



	Return type:

	List[str]



	Returns:

	Lines of the log of the trial (stderr)










	
property source_dir: str | None

	




	
set_entrypoint(entry_point)

	Update the entrypoint.


	Parameters:

	entry_point (str) – New path of the entrypoint.










	
entrypoint_path()

	
	Return type:

	Path



	Returns:

	Entrypoint path of script to be executed










	
initialize_sagemaker_session()

	




	
copy_checkpoint(src_trial_id, tgt_trial_id)

	Copy the checkpoint folder from one trial to the other.


	Parameters:

	
	src_trial_id (int) – Source trial ID (copy from)


	tgt_trial_id (int) – Target trial ID (copy to)













	
delete_checkpoint(trial_id)

	Removes checkpoint folder for a trial. It is OK for the folder not to
exist.


	Parameters:

	trial_id (int) – ID of trial for which checkpoint files are deleted










	
set_path(results_root=None, tuner_name=None)

	For this backend, it is mandatory to call this method passing tuner_name
before the backend is used. results_root is ignored here.






	
on_tuner_save()

	Called at the end of save().












            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend.sagemaker_backend.sagemaker_utils module


	
syne_tune.backend.sagemaker_backend.sagemaker_utils.default_config()

	https://aws.amazon.com/premiumsupport/knowledge-center/sagemaker-python-throttlingexception/


	Return type:

	Config



	Returns:

	Default config which avoids throttling










	
syne_tune.backend.sagemaker_backend.sagemaker_utils.default_sagemaker_session()

	




	
syne_tune.backend.sagemaker_backend.sagemaker_utils.get_log(jobname, log_client=None)

	
	Parameters:

	
	jobname (str) – name of a sagemaker training job


	log_client – a log client, for instance boto3.client('logs') if None, the client is instantiated with the








default AWS configuration
:rtype: List[str]
:return: lines appearing in the log of the Sagemaker training job






	
syne_tune.backend.sagemaker_backend.sagemaker_utils.decode_sagemaker_hyperparameter(hp)

	




	
syne_tune.backend.sagemaker_backend.sagemaker_utils.sagemaker_search(trial_ids_and_names, sm_client=None, log_client=None)

	
	Parameters:

	
	trial_ids_and_names (List[Tuple[int, str]]) – Trial ids and sagemaker jobnames to retrieve information from


	sm_client – Sagemaker client used to search for jobs


	sm_client – Log client used to query lob logs






	Return type:

	List[TrialResult]



	Returns:

	list of dictionary containing job information (status, creation-time, metrics, hyperparameters etc).





In term of speed around 100 jobs can be retrieved per second.






	
syne_tune.backend.sagemaker_backend.sagemaker_utils.metric_definitions_from_names(metrics_names)

	
	Parameters:

	metrics_names (List[str]) – names of the metrics present in the log.





Metrics must be written in the log as [metric-name]: value, for instance [accuracy]: 0.23
:return: a list of metric dictionaries that can be passed to sagemaker so that metrics are parsed from logs, the
list can be passed to metric_definitions in sagemaker.






	
syne_tune.backend.sagemaker_backend.sagemaker_utils.add_metric_definitions_to_sagemaker_estimator(estimator, metrics_names)

	Adds metric definitions according to metric_definitions_from_names()
to estimator for each name in metrics_names. The regexp for each
name is compatible with how Reporter outputs metric
values.


	Parameters:

	
	estimator (EstimatorBase) – SageMaker estimator


	metrics_names (List[str]) – Names of metrics to be appended













	
syne_tune.backend.sagemaker_backend.sagemaker_utils.add_syne_tune_dependency(sm_estimator)

	




	
syne_tune.backend.sagemaker_backend.sagemaker_utils.sagemaker_fit(sm_estimator, hyperparameters, checkpoint_s3_uri=None, wait=False, job_name=None, *sagemaker_fit_args, **sagemaker_fit_kwargs)

	
	Parameters:

	
	sm_estimator (Framework) – sagemaker estimator to be fitted


	hyperparameters (Dict[str, object]) – dictionary of hyperparameters that are passed to entry_point_script


	checkpoint_s3_uri (Optional[str]) – checkpoint_s3_uri of Sagemaker Estimator


	wait (bool) – whether to wait for job completion


	metrics_names – names of metrics to track reported with report.py. In case those metrics are passed, their








learning curves will be shown in Sagemaker console.
:return: name of sagemaker job






	
syne_tune.backend.sagemaker_backend.sagemaker_utils.get_execution_role()

	
	Returns:

	sagemaker execution role that is specified with the environment variable AWS_ROLE, if not specified then





we infer it by searching for the role associated to Sagemaker. Note that
import sagemaker; sagemaker.get_execution_role()
does not return the right role outside of a Sagemaker notebook.






	
syne_tune.backend.sagemaker_backend.sagemaker_utils.untar(filename)

	




	
syne_tune.backend.sagemaker_backend.sagemaker_utils.download_sagemaker_results(s3_path=None)

	Download results obtained after running tuning remotely on Sagemaker,
e.g. when using RemoteLauncher.






	
syne_tune.backend.sagemaker_backend.sagemaker_utils.map_identifier_limited_length(name, max_length=63, rnd_digits=4)

	If name is longer than ‘max_length`` characters, it is mapped to a new
identifier of length max_length, being the concatenation of the first
max_length - rnd_digits characters of name, followed by a random
string of length hash_digits.


	Parameters:

	
	name (str) – Identifier to be limited in length


	max_length (int) – Maximum length for output


	rnd_digits (int) – See above






	Return type:

	str



	Returns:

	See above










	
syne_tune.backend.sagemaker_backend.sagemaker_utils.s3_copy_objects_recursively(s3_source_path, s3_target_path)

	Recursively copies objects from s3_source_path to s3_target_path.

We return a dict with ‘num_action_calls’, ‘num_successful_action_calls’,
‘first_error_message’ (the error message for the first failed action call
encountered).


Note

This function should not be used to copy a large number of objects, as
it is rather slow (one API call for object)




	Parameters:

	
	s3_source_path (str) – 


	s3_target_path (str) – 






	Return type:

	Dict[str, Any]



	Returns:

	See above










	
syne_tune.backend.sagemaker_backend.sagemaker_utils.s3_delete_objects_recursively(s3_path)

	Recursively deletes objects from s3_path.

We return a dict with ‘num_action_calls’, ‘num_successful_action_calls’,
‘first_error_message’ (the error message for the first failed action call
encountered).


Note

This function should not be used to delete a large number of objects, as
it is rather slow (one API call for object)




	Parameters:

	s3_path (str) – 



	Return type:

	Dict[str, Any]



	Returns:

	See above










	
syne_tune.backend.sagemaker_backend.sagemaker_utils.s3_download_files_recursively(s3_source_path, target_path, valid_postfixes=None)

	Recursively downloads objects from s3_source_path and stores them locally
as files below target_path

We return a dict with ‘num_action_calls’, ‘num_successful_action_calls’,
‘first_error_message’ (the error message for the first failed action call
encountered).

If valid_postfixes is given, only such objects are downloaded for which
object_key.endswith(postfix) for some postfix in valid_postfixes.


Note

This function should not be used to download a large number of objects,
as it is rather slow (one API call for object). In this case, running
aws s3 sync can be much faster.




	Parameters:

	
	s3_source_path (str) – See above


	target_path (str) – See above


	valid_postfixes (Optional[List[str]]) – See above, optional






	Return type:

	Dict[str, Any]



	Returns:

	See above










	
syne_tune.backend.sagemaker_backend.sagemaker_utils.backend_path_not_synced_to_s3()

	When an experiment with the local backend is run remotely (as SageMaker
training job), we do not want checkpoints to be synced to S3, since this
is expensive and error-prone (since several trials may write checkpoints
at the same time). Pass the returned path to trial_backend_path when
constructing the :class`~syne_tune.Tuner`.

Here, we direct checkpoint writing to /opt/ml/input/data/, which is mounted
on a partition with sufficient space. Different to /opt/ml/checkpoints, this
directory is not synced to S3.


	Return type:

	Path



	Returns:

	Path to set in local backend












            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend.simulator_backend package


Submodules



	syne_tune.backend.simulator_backend.events module
	Event
	Event.trial_id





	StartEvent
	StartEvent.trial_id





	CompleteEvent
	CompleteEvent.status





	StopEvent
	StopEvent.trial_id





	OnTrialResultEvent
	OnTrialResultEvent.result





	SimulatorState
	SimulatorState.push()

	SimulatorState.remove_events()

	SimulatorState.next_until()









	syne_tune.backend.simulator_backend.simulator_backend module
	SimulatorConfig
	SimulatorConfig.delay_on_trial_result

	SimulatorConfig.delay_complete_after_final_report

	SimulatorConfig.delay_complete_after_stop

	SimulatorConfig.delay_start

	SimulatorConfig.delay_stop





	SimulatorBackend
	SimulatorBackend.time_keeper

	SimulatorBackend.start_trial()

	SimulatorBackend.fetch_status_results()

	SimulatorBackend.busy_trial_ids()









	syne_tune.backend.simulator_backend.simulator_callback module
	SimulatorCallback
	SimulatorCallback.on_tuning_start()

	SimulatorCallback.on_tuning_sleep()

	SimulatorCallback.on_tuning_end()









	syne_tune.backend.simulator_backend.time_keeper module
	SimulatedTimeKeeper
	SimulatedTimeKeeper.start_time_stamp

	SimulatedTimeKeeper.start_of_time()

	SimulatedTimeKeeper.time()

	SimulatedTimeKeeper.time_stamp()

	SimulatedTimeKeeper.advance()

	SimulatedTimeKeeper.advance_to()

	SimulatedTimeKeeper.mark_exit()

	SimulatedTimeKeeper.real_time_since_last_recent_exit()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend.simulator_backend.events module


	
class syne_tune.backend.simulator_backend.events.Event(trial_id)

	Bases: object

Base class for events dealt with in the simulator.


	
trial_id: int

	








	
class syne_tune.backend.simulator_backend.events.StartEvent(trial_id)

	Bases: Event

Start training evaluation function for trial_id. In fact, the function
is run completely, and OnTrialResultEvent events and one CompleteEvent
are generated.


	
trial_id: int

	








	
class syne_tune.backend.simulator_backend.events.CompleteEvent(trial_id, status)

	Bases: Event

Job for trial trial_id completes with status status. This is registered
at the backend.


	
status: str

	








	
class syne_tune.backend.simulator_backend.events.StopEvent(trial_id)

	Bases: Event

Job for trial trial_id is stopped. This leads to all later events for
trial_id to be deleted, and a new CompleteEvent.


	
trial_id: int

	








	
class syne_tune.backend.simulator_backend.events.OnTrialResultEvent(trial_id, result)

	Bases: Event

Result reported by some worker arrives at the backend and is registered
there.


	
result: Dict[str, Any]

	








	
class syne_tune.backend.simulator_backend.events.SimulatorState(event_heap=None, events_added=0)

	Bases: object

Maintains the state of the simulator, in particular the event heap.

event_heap is the priority queue for events, the key being (time, cnt),
where time is the event time, and cnt is a non-negative int used to
break ties. When an event is added, the cnt value is taken from
events_added. This means that ties are broken first_in_first_out.


	
push(event, event_time)

	Push new event onto heap


	Parameters:

	
	event (Event) – 


	event_time (float) – 













	
remove_events(trial_id)

	Remove all events with trial_id equal to trial_id.


	Parameters:

	trial_id (int) – 










	
next_until(time_until)

	Returns (and pops) event on top of heap, if event time is <=
time_until. Otherwise, returns None.


	Parameters:

	time_until (float) – 



	Return type:

	Optional[Tuple[float, Event]]



	Returns:

	
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend.simulator_backend.simulator_backend module


	
class syne_tune.backend.simulator_backend.simulator_backend.SimulatorConfig(delay_on_trial_result=0.05, delay_complete_after_final_report=0.05, delay_complete_after_stop=0.05, delay_start=0.05, delay_stop=0.05)

	Bases: object

Configures the simulator:


	Parameters:

	
	delay_on_trial_result (float) – Time from report called on worker to result
registered at backend, defaults to DEFAULT_DELAY


	delay_complete_after_final_report (float) – Time from final report called
on worker to job completion being registered at backend. Defaults to
DEFAULT_DELAY


	delay_complete_after_stop (float) – Time from stop signal received at worker
to job completion being registered at backend. Defaults to
DEFAULT_DELAY


	delay_start (float) – Time from start command being sent at backend and job
starting on the worker (which is free). Defaults to DEFAULT_DELAY


	delay_stop (float) – Time from stop signal being sent at backend to signal
received at worker (which is running). Defaults to DEFAULT_DELAY









	
delay_on_trial_result: float = 0.05

	




	
delay_complete_after_final_report: float = 0.05

	




	
delay_complete_after_stop: float = 0.05

	




	
delay_start: float = 0.05

	




	
delay_stop: float = 0.05

	








	
class syne_tune.backend.simulator_backend.simulator_backend.SimulatorBackend(entry_point, elapsed_time_attr, simulator_config=None, tuner_sleep_time=5.0, debug_resource_attr=None)

	Bases: LocalBackend

This simulator backend drives experiments with tabulated training
evaluation functions, which return their computation time rather than
spend it. To this end, time (on the tuning instance) is simulated using
a time_keeper and an event priority queue in _simulator_state.

Time is advanced both by run() waiting, and by non-negligible
computations during the tuning loop (in particular, we take care of
scheduler.suggest and scheduler.on_trial_result there).

When the entry_point script is executed, we wait for all results to
be returned. In each result, the value for key elapsed_time_attr
contains the time since start of the script. These values are used
to place worker events on the simulated timeline (represented by
simulator_state).
NOTE: If a trial is resumed, the elapsed_time value contains the time
since start of the last recent resume, NOT the cumulative time used by
the trial.

Each method call starts by advancing time by what was spent outside,
since the last recent call to the backend. Then, all events in
simulator_state are processed whose time is before the current time
in time_keeper. The method ends by time_keeper.mark_exit().


Note

In this basic version of the simulator backend, we still call a
Python main function as a subprocess, which returns the requested
metrics by looking them up or running a surrogate. This is flexible,
but has the overhead of loading a table at every call. For fast and
convenient simulations, use
:BlackboxRepositoryBackend after
bringing your tabulated data or surrogate benchmark into the blackbox
repository.




	Parameters:

	
	entry_point (str) – Python main file to be tuned (this should
return all results directly, and report elapsed time in the
elapsed_time_attr field


	elapsed_time_attr (str) – See above


	simulator_config (Optional[SimulatorConfig]) – Parameters for simulator, optional


	tuner_sleep_time (float) – Effective sleep time in
run(). This information is needed in
SimulatorCallback.
Defaults to DEFAULT_SLEEP_TIME









	
property time_keeper: SimulatedTimeKeeper

	




	
start_trial(config, checkpoint_trial_id=None)

	Start new trial with new trial ID


	Parameters:

	
	config (Dict) – Configuration for new trial


	checkpoint_trial_id (Optional[int]) – If given, the new trial starts from the
checkpoint written by this previous trial






	Return type:

	Trial



	Returns:

	New trial, which includes new trial ID










	
fetch_status_results(trial_ids)

	
	Parameters:

	trial_ids (List[int]) – Trials whose information should be fetched.



	Return type:

	(Dict[int, Tuple[Trial, str]], List[Tuple[int, dict]])



	Returns:

	A tuple containing 1) a dictionary from trial-id to Trial and status
information; 2) a list of (trial-id, results) pairs for each new result
emitted since the last call. The list of results is sorted by the worker
time-stamp.










	
busy_trial_ids()

	Returns list of ids for currently busy trials

A trial is busy if its status is
in_progress or
stopping.
If the execution setup is able to run n_workers jobs in parallel,
then if this method returns a list of size n, the tuner may start
n_workers - n new jobs.


	Return type:

	List[Tuple[int, str]]



	Returns:

	List of (trial_id, status)
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend.simulator_backend.simulator_callback module


	
class syne_tune.backend.simulator_backend.simulator_callback.SimulatorCallback(extra_results_composer=None)

	Bases: StoreResultsCallback

Callback to be used in run() in order to support the
SimulatorBackend.

This is doing two things. First, on_tuning_sleep() is advancing the
time_keeper of the simulator backend by tuner_sleep_time (also
defined in the backend). The real sleep time in Tuner
must be 0.

Second, we need to make sure that results written out are annotated by
simulated time, not real time. This is already catered for by
SimulatorBackend adding ST_TUNER_TIME
entries to each result it receives.

Third (and most subtle), we need to make sure the stop criterion in
run() is using simulated time instead of real time when making
a decision based on max_wallclock_time. By default,
StoppingCriterion takes TuningStatus as an input,
which counts real time and knows nothing about simulated time. To this
end, we modify stop_criterion of the tuner to instead depend on the
ST_TUNER_TIME fields in the results received. This allows us to keep
both Tuner and TuningStatus independent of the time
keeper.


	Parameters:

	extra_results_composer (Optional[ExtraResultsComposer]) – Optional. If given, this is called in
on_trial_result(), and the resulting dictionary is appended as
extra columns to the results dataframe






	
on_tuning_start(tuner)

	Called at start of tuning loop


	Parameters:

	tuner (Tuner) – Tuner object










	
on_tuning_sleep(sleep_time)

	Called just after tuner has slept, because no worker was available


	Parameters:

	sleep_time (float) – Time (in secs) for which tuner has just slept










	
on_tuning_end()

	Called once the tuning loop terminates

This is called before Tuner object is serialized
(optionally), and also before running jobs are stopped.












            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend.simulator_backend.time_keeper module


	
class syne_tune.backend.simulator_backend.time_keeper.SimulatedTimeKeeper

	Bases: TimeKeeper

Here, time is simulated. It needs to be advanced explicitly.

In addition, mark_exit() and real_time_since_last_recent_exit()
are used to measure real time spent outside the backend (i.e., in the tuner
loop and scheduler). Namely, every method of
SimulatorBackend calls mark_exit() before
leaving, and real_time_since_last_recent_exit() at the start, advancing
the time counter accordingly.


	
property start_time_stamp: datetime

	
	Returns:

	Time stamp (datetime) of (last recent) call of start_of_time










	
start_of_time()

	Called at the start of the experiment. Can be called multiple times
if several experiments are run in sequence.






	
time()

	
	Return type:

	float



	Returns:

	Time elapsed since the start of the experiment










	
time_stamp()

	
	Return type:

	datetime



	Returns:

	Timestamp (datetime) corresponding to time()










	
advance(step)

	Advance time by step. For real time, this means we sleep for
step seconds.






	
advance_to(to_time)

	




	
mark_exit()

	




	
real_time_since_last_recent_exit()

	
	Return type:

	float
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend.local_backend module


	
class syne_tune.backend.local_backend.LocalBackend(entry_point, delete_checkpoints=False, pass_args_as_json=False, rotate_gpus=True, num_gpus_per_trial=1, gpus_to_use=None)

	Bases: TrialBackend

A backend running locally by spawning sub-process concurrently. Note that
no resource management is done so the concurrent number of trials should
be adjusted to the machine capacity.

Additional arguments on top of parent class
TrialBackend:


	Parameters:

	
	entry_point (str) – Path to Python main file to be tuned


	rotate_gpus (bool) – In case several GPUs are present, each trial is
scheduled on a different GPU. A new trial is preferentially
scheduled on a free GPU, and otherwise the GPU with least prior
assignments is chosen. If False, then all GPUs are used at the same
time for all trials. Defaults to True.


	num_gpus_per_trial (int) – Number of GPUs to be allocated to each trial.
Must be not larger than the total number of GPUs available.
Defaults to 1


	gpus_to_use (Optional[List[int]]) – If this is given, the backend only uses GPUs in this
lists (non-negative ints). Entries must be in
range(get_num_gpus()). Defaults to using all GPUs.









	
trial_path(trial_id)

	
	Parameters:

	trial_id (int) – ID of trial



	Return type:

	Path



	Returns:

	Directory where files related to trial are written to










	
checkpoint_trial_path(trial_id)

	
	Parameters:

	trial_id (int) – ID of trial



	Return type:

	Path



	Returns:

	Directory where checkpoints for trial are written to and
read from










	
copy_checkpoint(src_trial_id, tgt_trial_id)

	Copy the checkpoint folder from one trial to the other.


	Parameters:

	
	src_trial_id (int) – Source trial ID (copy from)


	tgt_trial_id (int) – Target trial ID (copy to)













	
delete_checkpoint(trial_id)

	Removes checkpoint folder for a trial. It is OK for the folder not to
exist.


	Parameters:

	trial_id (int) – ID of trial for which checkpoint files are deleted










	
busy_trial_ids()

	Returns list of ids for currently busy trials

A trial is busy if its status is
in_progress or
stopping.
If the execution setup is able to run n_workers jobs in parallel,
then if this method returns a list of size n, the tuner may start
n_workers - n new jobs.


	Return type:

	List[Tuple[int, str]]



	Returns:

	List of (trial_id, status)










	
stdout(trial_id)

	Fetch stdout log for trial


	Parameters:

	trial_id (int) – ID of trial



	Return type:

	List[str]



	Returns:

	Lines of the log of the trial (stdout)










	
stderr(trial_id)

	Fetch stderr log for trial


	Parameters:

	trial_id (int) – ID of trial



	Return type:

	List[str]



	Returns:

	Lines of the log of the trial (stderr)










	
set_path(results_root=None, tuner_name=None)

	
	Parameters:

	
	results_root (Optional[str]) – The local folder that should contain the results of
the tuning experiment. Used by Tuner to indicate
a desired path where the results should be written to. This is used
to unify the location of backend files and Tuner
results when possible (in the local backend). By default, the backend
does not do anything since not all backends may be able to unify their
file locations.


	tuner_name (Optional[str]) – Name of the tuner, can be used for instance to save
checkpoints on remote storage.













	
entrypoint_path()

	
	Return type:

	Path



	Returns:

	Entrypoint path of script to be executed










	
set_entrypoint(entry_point)

	Update the entrypoint.


	Parameters:

	entry_point (str) – New path of the entrypoint.
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend.time_keeper module


	
class syne_tune.backend.time_keeper.TimeKeeper

	Bases: object

To be used by tuner, backend, and scheduler to measure time differences
and wait for a specified amount of time. By centralizing this
functionality here, we can support simulating experiments much faster than
real time if the training evaluation function corresponds to a tabulated
benchmark.


	
start_of_time()

	Called at the start of the experiment. Can be called multiple times
if several experiments are run in sequence.






	
time()

	
	Return type:

	float



	Returns:

	Time elapsed since the start of the experiment










	
time_stamp()

	
	Return type:

	datetime



	Returns:

	Timestamp (datetime) corresponding to time()










	
advance(step)

	Advance time by step. For real time, this means we sleep for
step seconds.










	
class syne_tune.backend.time_keeper.RealTimeKeeper

	Bases: TimeKeeper


	
start_of_time()

	Called at the start of the experiment. Can be called multiple times
if several experiments are run in sequence.






	
time()

	
	Return type:

	float



	Returns:

	Time elapsed since the start of the experiment










	
time_stamp()

	
	Return type:

	datetime



	Returns:

	Timestamp (datetime) corresponding to time()










	
advance(step)

	Advance time by step. For real time, this means we sleep for
step seconds.












            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend.trial_backend module


	
class syne_tune.backend.trial_backend.TrialBackend(delete_checkpoints=False, pass_args_as_json=False)

	Bases: object

Interface for backend to execute evaluations of trials.


	Parameters:

	
	delete_checkpoints (bool) – If True, the checkpoints written by a trial
are deleted once the trial is stopped or is registered as
completed. Checkpoints of paused trials may also be removed, if the
scheduler supports early checkpoint removal. Also, as part of
stop_all() called at the end of the tuning loop, all remaining
checkpoints are deleted. Defaults to False (no checkpoints are
removed).


	pass_args_as_json (bool) – Normally, the hyperparameter configuration is
passed as command line arguments to the trial evaluation script. This
works if all hyperparameters have elementary types. If
pass_args_as_json == True, the configuration is instead written into
a JSON file, whose name is passed as command line argument
ST_CONFIG_JSON_FNAME_ARG. The trial
evaluation script then loads the configuration from this file. This allows
the configuration to contain entries with complex types (e.g., lists or
dictionaries), as long as they are JSON-serializable.
Defaults to False.









	
start_trial(config, checkpoint_trial_id=None)

	Start new trial with new trial ID


	Parameters:

	
	config (Dict[str, Any]) – Configuration for new trial


	checkpoint_trial_id (Optional[int]) – If given, the new trial starts from the
checkpoint written by this previous trial






	Return type:

	TrialResult



	Returns:

	New trial, which includes new trial ID










	
copy_checkpoint(src_trial_id, tgt_trial_id)

	Copy the checkpoint folder from one trial to the other.


	Parameters:

	
	src_trial_id (int) – Source trial ID (copy from)


	tgt_trial_id (int) – Target trial ID (copy to)













	
delete_checkpoint(trial_id)

	Removes checkpoint folder for a trial. It is OK for the folder not to
exist.


	Parameters:

	trial_id (int) – ID of trial for which checkpoint files are deleted










	
resume_trial(trial_id, new_config=None)

	Resume paused trial


	Parameters:

	
	trial_id (int) – ID of (paused) trial to be resumed


	new_config (Optional[dict]) – If given, the config maintained in trial.config is
replaced by new_config






	Return type:

	TrialResult



	Returns:

	Information for resumed trial










	
pause_trial(trial_id, result=None)

	Pauses a running trial

Checks that the operation is valid and calls backend internal
implementation to actually pause the trial.
If the status is queried after this function, it should be "paused".


	Parameters:

	
	trial_id (int) – ID of trial to pause


	result (Optional[dict]) – Result dict based on which scheduler decided to pause the
trial













	
stop_trial(trial_id, result=None)

	Stops (and terminates) a running trial

Checks that the operation is valid and calls backend internal
implementation to actually stop the trial. f the status is queried after
this function, it should be "stopped".


	Parameters:

	
	trial_id (int) – ID of trial to stop


	result (Optional[dict]) – Result dict based on which scheduler decided to stop the
trial













	
new_trial_id()

	
	Return type:

	int










	
fetch_status_results(trial_ids)

	
	Parameters:

	trial_ids (List[int]) – Trials whose information should be fetched.



	Return type:

	(Dict[int, Tuple[Trial, str]], List[Tuple[int, dict]])



	Returns:

	A tuple containing 1) a dictionary from trial-id to Trial and status
information; 2) a list of (trial-id, results) pairs for each new result
emitted since the last call. The list of results is sorted by the worker
time-stamp.










	
busy_trial_ids()

	Returns list of ids for currently busy trials

A trial is busy if its status is
in_progress or
stopping.
If the execution setup is able to run n_workers jobs in parallel,
then if this method returns a list of size n, the tuner may start
n_workers - n new jobs.


	Return type:

	List[Tuple[int, str]]



	Returns:

	List of (trial_id, status)










	
stdout(trial_id)

	Fetch stdout log for trial


	Parameters:

	trial_id (int) – ID of trial



	Return type:

	List[str]



	Returns:

	Lines of the log of the trial (stdout)










	
stderr(trial_id)

	Fetch stderr log for trial


	Parameters:

	trial_id (int) – ID of trial



	Return type:

	List[str]



	Returns:

	Lines of the log of the trial (stderr)










	
stop_all()

	Stop all trials which are in progress.






	
set_path(results_root=None, tuner_name=None)

	
	Parameters:

	
	results_root (Optional[str]) – The local folder that should contain the results of
the tuning experiment. Used by Tuner to indicate
a desired path where the results should be written to. This is used
to unify the location of backend files and Tuner
results when possible (in the local backend). By default, the backend
does not do anything since not all backends may be able to unify their
file locations.


	tuner_name (Optional[str]) – Name of the tuner, can be used for instance to save
checkpoints on remote storage.













	
entrypoint_path()

	
	Return type:

	Path



	Returns:

	Entrypoint path of script to be executed










	
set_entrypoint(entry_point)

	Update the entrypoint.


	Parameters:

	entry_point (str) – New path of the entrypoint.










	
on_tuner_save()

	Called at the end of save().












            

          

      

      

    

  

    
      
          
            
  
syne_tune.backend.trial_status module


	
class syne_tune.backend.trial_status.Status

	Bases: object


	
completed: str = 'Completed'

	




	
in_progress: str = 'InProgress'

	




	
failed: str = 'Failed'

	




	
paused: str = 'Paused'

	




	
stopped: str = 'Stopped'

	




	
stopping: str = 'Stopping'

	








	
class syne_tune.backend.trial_status.Trial(trial_id, config, creation_time)

	Bases: object


	
trial_id: int

	




	
config: Dict[str, object]

	




	
creation_time: datetime

	




	
add_results(metrics, status, training_end_time)

	








	
class syne_tune.backend.trial_status.TrialResult(trial_id, config, creation_time, metrics, status, training_end_time=None)

	Bases: Trial


	
metrics: List[Dict[str, object]]

	




	
status: Literal['Completed', 'InProgress', 'Failed', 'Stopped', 'Stopping']

	




	
training_end_time: Optional[datetime] = None

	




	
property seconds

	




	
property cost

	










            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository package


	
class syne_tune.blackbox_repository.BlackboxOffline(df_evaluations, configuration_space, fidelity_space=None, objectives_names=None, seed_col=None)

	Bases: Blackbox

A blackbox obtained given offline evaluations. Each row of the dataframe
should contain one evaluation given a fixed configuration, fidelity and
seed. The columns must correspond to the provided configuration and fidelity
space, by default all columns that are prefixed by "metric_" are assumed
to be metrics but this can be overridden by providing metric columns.

Additional arguments on top of parent class
Blackbox:


	Parameters:

	
	df_evaluations (DataFrame) – Data frame with evaluations data


	seed_col (Optional[str]) – optional, can be used when multiple seeds are recorded









	
hyperparameter_objectives_values(predict_curves=False)

	If predict_curves is False, the shape of X is
(num_evals * num_seeds * num_fidelities, num_hps + 1), the shape of y
is (num_evals * num_seeds * num_fidelities, num_objectives).
This can be reshaped to (num_fidelities, num_seeds, num_evals, *).
The final column of X is the fidelity value (only a single fidelity
attribute is supported).

If predict_curves is True, the shape of X is
(num_evals * num_seeds, num_hps), the shape of y is
(num_evals * num_seeds, num_fidelities * num_objectives). The latter
can be reshaped to (num_seeds, num_evals, num_fidelities,
num_objectives).


	Returns:

	a tuple of two dataframes (X, y), where X contains
hyperparameters values and y contains objective values, this is
used when fitting a surrogate model.














	
syne_tune.blackbox_repository.deserialize(path)

	
	Parameters:

	
	path (str) – where to find blackbox serialized information (at least data.csv.zip and configspace.json)


	groupby_col – separate evaluations into a list of blackbox with different task if the column is provided






	Return type:

	Union[Dict[str, BlackboxOffline], BlackboxOffline]



	Returns:

	list of blackboxes per task, or single blackbox in the case of a single task










	
syne_tune.blackbox_repository.load_blackbox(name, skip_if_present=True, s3_root=None, generate_if_not_found=True, yahpo_kwargs=None, ignore_hash=True)

	
	Parameters:

	
	name (str) – name of a blackbox present in the repository, see
blackbox_list() to get list of available blackboxes. Syne Tune
currently provides the following blackboxes evaluations:


	”nasbench201”: 15625 multi-fidelity configurations of computer vision
architectures evaluated on 3 datasets.
NAS-Bench-201: Extending the scope of reproducible neural architecture search.
Dong, X. and Yang, Y. 2020.


	”fcnet”: 62208 multi-fidelity configurations of MLP evaluated on 4 datasets.
Tabular benchmarks for joint architecture and hyperparameter optimization.
Klein, A. and Hutter, F. 2019.


	”lcbench”: 2000 multi-fidelity Pytorch model configurations evaluated on many datasets.
Reference: Auto-PyTorch: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL.
Lucas Zimmer, Marius Lindauer, Frank Hutter. 2020.


	”icml-deepar”: 2420 single-fidelity configurations of DeepAR forecasting algorithm evaluated on 10 datasets.
A quantile-based approach for hyperparameter transfer learning.
Salinas, D., Shen, H., and Perrone, V. 2021.


	”icml-xgboost”: 5O00 single-fidelity configurations of XGBoost evaluated on 9 datasets.
A quantile-based approach for hyperparameter transfer learning.
Salinas, D., Shen, H., and Perrone, V. 2021.


	”yahpo-*”: Number of different benchmarks from YAHPO Gym. Note that these
blackboxes come with surrogates already, so no need to wrap them into
SurrogateBlackbox







	skip_if_present (bool) – skip the download if the file locally exists


	s3_root (Optional[str]) – S3 root directory for blackbox repository. Defaults to
S3 bucket name of SageMaker session


	generate_if_not_found (bool) – If the blackbox file is not present locally
or on S3, should it be generated using its conversion script?


	yahpo_kwargs (Optional[dict]) – For a YAHPO blackbox (name == "yahpo-*"), these are
additional arguments to instantiate_yahpo


	ignore_hash (bool) – do not check if hash of currently stored files matches the
pre-computed hash. Be careful with this option. If hashes do not match, results
might not be reproducible.






	Return type:

	Union[Dict[str, Blackbox], Blackbox]



	Returns:

	blackbox with the given name, download it if not present.










	
syne_tune.blackbox_repository.blackbox_list()

	
	Return type:

	List[str]



	Returns:

	list of blackboxes available










	
syne_tune.blackbox_repository.add_surrogate(blackbox, surrogate=None, configuration_space=None, predict_curves=None, separate_seeds=False, fit_differences=None)

	Fits a blackbox surrogates that can be evaluated anywhere, which can be useful
for supporting interpolation/extrapolation.


	Parameters:

	
	blackbox (Blackbox) – the blackbox must implement
hyperparameter_objectives_values()
so that input/output are passed to estimate the model


	surrogate – the model that is fitted to predict objectives given any
configuration. Possible examples: KNeighborsRegressor(n_neighbors=1),
MLPRegressor() or any estimator obeying Scikit-learn API.
The model is fit on top of pipeline that applies basic feature-processing
to convert rows in X to vectors. We use configuration_space to deduce
the types of columns in X (categorical parameters are one-hot encoded).


	configuration_space (Optional[dict]) – configuration space for the resulting blackbox
surrogate. The default is blackbox.configuration_space. But note that
if blackbox is tabular, the domains in blackbox.configuration_space
are typically categorical even for numerical parameters.


	predict_curves (Optional[bool]) – If True, the surrogate uses multivariate regression
to predict metric curves over fidelities. If False, fidelity is used
as input. The latter can lead to inconsistent predictions along
fidelity and is typically more expensive.
If not given, the default value is False if blackbox is of type
BlackboxOffline, otherwise True.


	separate_seeds (bool) – If True, seeds in blackbox map to seeds in the
surrogate blackbox, which fits different models to each seed. If False,
the data from blackbox is merged for all seeds, and the surrogate
represents a single seed. The latter provides more data for the surrogate
model to be fit, but the variation between seeds is lost in the
surrogate. Defaults to False.


	fit_differences (Optional[List[str]]) – Names of objectives which are cumulative sums. For
these objectives, the y data is transformed to finite differences
before fitting the model. This is recommended for elapsed_time
objectives.






	Returns:

	a blackbox where the output is obtained through the fitted surrogate










	
class syne_tune.blackbox_repository.BlackboxRepositoryBackend(blackbox_name, elapsed_time_attr, max_resource_attr=None, seed=None, support_checkpointing=True, dataset=None, surrogate=None, surrogate_kwargs=None, add_surrogate_kwargs=None, config_space_surrogate=None, **simulatorbackend_kwargs)

	Bases: _BlackboxSimulatorBackend

Allows to simulate a blackbox from blackbox-repository, selected by
blackbox_name. See examples/launch_simulated_benchmark.py for an
example on how to use. If you want to add a new dataset, see the Adding a
new dataset section of syne_tune/blackbox_repository/README.md.

In each result reported to the simulator backend, the value for key
elapsed_time_attr must be the time since the start of the
evaluation. For example, if resource (or fidelity) equates to epochs
trained, this would be the time from start of training until the end
of the epoch. If the blackbox contains this information in a column,
elapsed_time_attr should be its key.

If this backend is used with pause-and-resume multi-fidelity
scheduling, it needs to track at which resource level each trial is
paused. Namely, once a trial is resumed, all results for resources
smaller or equal to that level are ignored, which simulates the
situation that training is resumed from a checkpoint. This feature
relies on result to be passed to pause_trial(). If this is not
done, the backend cannot know from which resource level to resume
a trial, so it starts the trial from scratch (which is equivalent to
no checkpointing). The same happens if support_checkpointing is
False.


Note

If the blackbox maintains cumulative time (elapsed_time), this is
different from what
SimulatorBackend requires
for elapsed_time_attr, if a pause-and-resume scheduler is used. Namely,
the backend requires the time since the start of the last recent
resume. This conversion is done here internally in
_run_job_and_collect_results(), which is called for each resume.
This means that the field elapsed_time_attr is not what is received
from the blackbox table, but instead what the backend needs.



max_resource_attr plays the same role as in
HyperbandScheduler.
If given, it is the key in a configuration config for the maximum
resource. This is used by schedulers which limit each evaluation by
setting this argument (e.g., promotion-based Hyperband).

If seed is given, entries of the blackbox are queried for this
seed. Otherwise, a seed is drawn at random for every trial, but the
same seed is used for all _run_job_and_collect_results() calls for
the same trial. This is important for pause and resume scheduling.


	Parameters:

	
	blackbox_name (str) – Name of a blackbox, must have been registered in
blackbox repository.


	elapsed_time_attr (str) – Name of the column containing cumulative time


	max_resource_attr (Optional[str]) – See above


	seed (Optional[int]) – If given, this seed is used for all trial evaluations.
Otherwise, seed is sampled at random for each trial. Only relevant
for blackboxes with multiple seeds


	support_checkpointing (bool) – If False, the simulation does not do
checkpointing, so resumed trials are started from scratch. Defaults
to True


	dataset (Optional[str]) – Selects different versions of the blackbox (typically, the
same ML model has been trained on different datasets)


	surrogate (Optional[str]) – Optionally, a model that is fitted to predict objectives
given any configuration.
Examples: “KNeighborsRegressor”, “MLPRegressor”, “XGBRegressor”,
which would enable using the corresponding scikit-learn estimator, see
also make_surrogate().
The model is fit on top of pipeline that applies basic feature-processing
to convert hyperparameter rows in X to vectors. The configuration_space
hyperparameter types are used to deduce the types of columns in X (for
instance, categorical hyperparameters are one-hot encoded).


	surrogate_kwargs (Optional[dict]) – Arguments for the scikit-learn estimator, for
instance {"n_neighbors": 1} can be used if
surrogate="KNeighborsRegressor" is chosen.
If blackbox_name is a YAHPO blackbox, then surrogate_kwargs is passed
as yahpo_kwargs to
load_blackbox(). In this case,
surrogate is ignored (YAHPO always uses surrogates).


	config_space_surrogate (Optional[dict]) – If surrogate is given, this is the
configuration space for the surrogate blackbox. If not given, the
space of the original blackbox is used. However, its numerical parameters
have finite domains (categorical or ordinal), which is usually not what
we want for a surrogate.


	simulatorbackend_kwargs – Additional arguments to parent
SimulatorBackend









	
property blackbox: Blackbox

	








	
class syne_tune.blackbox_repository.UserBlackboxBackend(blackbox, elapsed_time_attr, max_resource_attr=None, seed=None, support_checkpointing=True, **simulatorbackend_kwargs)

	Bases: _BlackboxSimulatorBackend

Version of _BlackboxSimulatorBackend, where the blackbox is
given as explicit Blackbox object.
See examples/launch_simulated_benchmark.py for an example on how to use.

Additional arguments on top of parent _BlackboxSimulatorBackend:


	Parameters:

	blackbox (Blackbox) – Blackbox to be used for simulation






	
property blackbox: Blackbox
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syne_tune.blackbox_repository.conversion_scripts package
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syne_tune.blackbox_repository.conversion_scripts.scripts package
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syne_tune.blackbox_repository.conversion_scripts.blackbox_recipe module


	
class syne_tune.blackbox_repository.conversion_scripts.blackbox_recipe.BlackboxRecipe(name, cite_reference, hash=None)

	Bases: object


	
generate(s3_root=None)

	Generates the blackbox on disk then upload it on s3 if AWS is available.
:type s3_root: Optional[str]
:param s3_root: s3 root where to upload to s3, default to s3://{sagemaker-bucket}/blackbox-repository.
If AWS is not available, this step is skipped and the dataset is just persisted locally.
:return:












            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.conversion_scripts.recipes module




            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.conversion_scripts.utils module


	
syne_tune.blackbox_repository.conversion_scripts.utils.s3_blackbox_folder(s3_root=None)

	




	
syne_tune.blackbox_repository.conversion_scripts.utils.get_sub_directory_and_name(name)

	Blackboxes are either stored under “{blackbox-repository}/{name}” (such as fcnet, nas201, …) or
“{blackbox-repository}/{subdir}/{subname}” for all yahpo benchmark. In the Yahpo case, “yahpo-rbv2_xgboost”
is for instance stored on “{blackbox-repository}/yahpo/rbv2_xgboost/”.
:type name: str
:param name: name of the blackbox, for instance “fcnet”, “lcbench” or “yahpo-rbv2_xgboost”.
:return: subdirectory and subname such that the blackbox should be stored on {blackbox_repository}/{subdir}/{name}.






	
syne_tune.blackbox_repository.conversion_scripts.utils.blackbox_local_path(name)

	
	Return type:

	Path










	
syne_tune.blackbox_repository.conversion_scripts.utils.blackbox_s3_path(name, s3_root=None)

	
	Return type:

	Path










	
syne_tune.blackbox_repository.conversion_scripts.utils.upload_blackbox(name, s3_root=None)

	Uploads a blackbox locally present in repository_path to S3.
:type name: str
:param name: folder must be available in repository_path/name






	
syne_tune.blackbox_repository.conversion_scripts.utils.download_file(source, destination)

	




	
syne_tune.blackbox_repository.conversion_scripts.utils.compute_hash_binary(filename)

	




	
syne_tune.blackbox_repository.conversion_scripts.utils.compute_hash_benchmark(tgt_folder)

	




	
syne_tune.blackbox_repository.conversion_scripts.utils.validate_hash(tgt_folder, original_hash)

	Computes hash of the files in tgt_folder and validates it with the original hash
:type tgt_folder: 
:param tgt_folder: target folder that contains the files of the original benchmark
:type original_hash: 
:param original_hash: original sha256 hash
:return:








            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.blackbox module


	
class syne_tune.blackbox_repository.blackbox.Blackbox(configuration_space, fidelity_space=None, objectives_names=None)

	Bases: object

Interface designed to be compatible with



HPOBench

https://github.com/automl/HPOBench







	Parameters:

	
	configuration_space (Dict[str, Any]) – Configuration space of blackbox.


	fidelity_space (Optional[dict]) – Fidelity space for blackbox, optional.


	objectives_names (Optional[List[str]]) – Names of the metrics, by default consider all
metrics prefixed by "metric_" to be metrics









	
objective_function(configuration, fidelity=None, seed=None)

	Returns an evaluation of the blackbox.

First perform data check and then call _objective_function() that
should be overriden in the child class.


	Parameters:

	
	configuration (Dict[str, Any]) – configuration to be evaluated, should belong to
configuration_space


	fidelity (Union[dict, Number, None]) – not passing a fidelity is possible if either the blackbox
does not have a fidelity space or if it has a single fidelity in its
fidelity space. In the latter case, all fidelities are returned in
form of a tensor with shape (num_fidelities, num_objectives).


	seed (Optional[int]) – Only used if the blackbox defines multiple seeds






	Return type:

	Union[Dict[str, float], ndarray]



	Returns:

	dictionary of objectives evaluated or tensor with shape
(num_fidelities, num_objectives) if no fidelity was given.










	
hyperparameter_objectives_values(predict_curves=False)

	If predict_curves is False, the shape of X is
(num_evals * num_seeds * num_fidelities, num_hps + 1), the shape of y
is (num_evals * num_seeds * num_fidelities, num_objectives).
This can be reshaped to (num_fidelities, num_seeds, num_evals, *).
The final column of X is the fidelity value (only a single fidelity
attribute is supported).

If predict_curves is True, the shape of X is
(num_evals * num_seeds, num_hps), the shape of y is
(num_evals * num_seeds, num_fidelities * num_objectives). The latter
can be reshaped to (num_seeds, num_evals, num_fidelities,
num_objectives).


	Return type:

	Tuple[DataFrame, DataFrame]



	Returns:

	a tuple of two dataframes (X, y), where X contains
hyperparameters values and y contains objective values, this is
used when fitting a surrogate model.










	
property fidelity_values: array | None

	
	Returns:

	Fidelity values; or None if the blackbox has none










	
fidelity_name()

	Can only be used for blackboxes with a single fidelity attribute.


	Return type:

	str



	Returns:

	Name of fidelity attribute (must be single one)










	
configuration_space_with_max_resource_attr(max_resource_attr)

	It is best practice to have one attribute in the configuration space to
represent the maximum fidelity value used for evaluation (e.g., the
maximum number of epochs).


	Parameters:

	max_resource_attr (str) – Name of new attribute for maximum resource



	Return type:

	Dict[str, Any]



	Returns:

	Configuration space augmented by the new attribute














	
syne_tune.blackbox_repository.blackbox.from_function(configuration_space, eval_fun, fidelity_space=None, objectives_names=None)

	Helper to create a blackbox from a function, useful for test or to wrap-up
real blackbox functions.


	Parameters:

	
	configuration_space (Dict[str, Any]) – Configuration space for blackbox


	eval_fun (Callable) – Function that returns dictionary of objectives given
configuration and fidelity


	fidelity_space (Optional[dict]) – Fidelity space for blackbox


	objectives_names (Optional[List[str]]) – Objectives returned by blackbox






	Return type:

	Blackbox



	Returns:

	Resulting blackbox wrapping eval_fun












            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.blackbox_offline module


	
class syne_tune.blackbox_repository.blackbox_offline.BlackboxOffline(df_evaluations, configuration_space, fidelity_space=None, objectives_names=None, seed_col=None)

	Bases: Blackbox

A blackbox obtained given offline evaluations. Each row of the dataframe
should contain one evaluation given a fixed configuration, fidelity and
seed. The columns must correspond to the provided configuration and fidelity
space, by default all columns that are prefixed by "metric_" are assumed
to be metrics but this can be overridden by providing metric columns.

Additional arguments on top of parent class
Blackbox:


	Parameters:

	
	df_evaluations (DataFrame) – Data frame with evaluations data


	seed_col (Optional[str]) – optional, can be used when multiple seeds are recorded









	
hyperparameter_objectives_values(predict_curves=False)

	If predict_curves is False, the shape of X is
(num_evals * num_seeds * num_fidelities, num_hps + 1), the shape of y
is (num_evals * num_seeds * num_fidelities, num_objectives).
This can be reshaped to (num_fidelities, num_seeds, num_evals, *).
The final column of X is the fidelity value (only a single fidelity
attribute is supported).

If predict_curves is True, the shape of X is
(num_evals * num_seeds, num_hps), the shape of y is
(num_evals * num_seeds, num_fidelities * num_objectives). The latter
can be reshaped to (num_seeds, num_evals, num_fidelities,
num_objectives).


	Returns:

	a tuple of two dataframes (X, y), where X contains
hyperparameters values and y contains objective values, this is
used when fitting a surrogate model.














	
syne_tune.blackbox_repository.blackbox_offline.serialize(bb_dict, path, categorical_cols=[])

	
	Parameters:

	
	bb_dict (Dict[str, BlackboxOffline]) – 


	path (str) – 


	categorical_cols (List[str]) – optional, allow to retrieve columns as categories, lower drastically the memory
footprint when few values are present






	Returns:

	










	
syne_tune.blackbox_repository.blackbox_offline.deserialize(path)

	
	Parameters:

	
	path (str) – where to find blackbox serialized information (at least data.csv.zip and configspace.json)


	groupby_col – separate evaluations into a list of blackbox with different task if the column is provided






	Return type:

	Union[Dict[str, BlackboxOffline], BlackboxOffline]



	Returns:

	list of blackboxes per task, or single blackbox in the case of a single task












            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.blackbox_surrogate module


	
class syne_tune.blackbox_repository.blackbox_surrogate.Columns(names=None)

	Bases: BaseEstimator, TransformerMixin


	
fit(*args, **kwargs)

	




	
transform(X)

	








	
class syne_tune.blackbox_repository.blackbox_surrogate.BlackboxSurrogate(X, y, configuration_space, objectives_names, fidelity_space=None, fidelity_values=None, surrogate=None, predict_curves=False, num_seeds=1, fit_differences=None, max_fit_samples=None, name=None)

	Bases: Blackbox

Fits a blackbox surrogates that can be evaluated anywhere, which can be
useful for supporting interpolation/extrapolation. To wrap an existing
blackbox with a surrogate estimator, use add_surrogate() which
automatically extract X, y matrices from available blackbox evaluations.

The surrogate regression model is provided by surrogate, it has to
conform to the scikit-learn fit-predict API. If predict_curves is True,
the model maps features of the configuration to the whole curve over
fidelities, separate for each metric and seed. This has several advantages.
First, predictions are consistent: if all curves in the data respect a certain
property which is retained under convex combinations, predictions have this
property as well (examples: positivity, monotonicity). This is important for
elapsed_time metrics. The regression models are also fairly compact, and
prediction is fast, max_fit_samples is normally not needed.

If predict_curves is False, the model maps features from configuration and
fidelity to metric values (univariate regression). In this case, properties
like monotonicity are not retained. Also, training can take long and the
trained models can be large.

This difference only matters if there are fidelities. Otherwise, regression
is always univariate.

If num_seeds is given, we maintain different surrogate models for each
seed. Otherwise, a single surrogate model is fit to data across all seeds.

If fit_differences is given, it contains names of objectives which
are cumulative sums. For these objectives, the y data is transformed
to finite differences before fitting the model. This is recommended for
elapsed_time objectives. This feature only matters if there are
fidelities.

Additional arguments on top of parent class
Blackbox:


	Parameters:

	
	X (DataFrame) – dataframe containing hyperparameters values. Shape is
(num_seeds * num_evals, num_hps) if predict_curves is True,
(num_fidelities * num_seeds * num_evals, num_hps) otherwise


	y (DataFrame) – dataframe containing objectives values. Shape is
(num_seeds * num_evals, num_fidelities * num_objectives) if
predict_curves is True, and
(num_fidelities * num_seeds * num_evals, num_objectives) otherwise


	surrogate – the model that is fitted to predict objectives given any
configuration, default to KNeighborsRegressor(n_neighbors=1). If
predict_curves is True, this must be multi-variate regression, i.e.
accept target matrices in fit, where columns correspond to fidelities.
Regression models from scikit-learn allow for that.
Possible examples: KNeighborsRegressor(n_neighbors=1),
MLPRegressor() or any estimator obeying Scikit-learn API.
The model is fit on top of pipeline that applies basic feature-processing
to convert rows in X to vectors. We use the configuration_space
hyperparameters types to deduce the types of columns in X (for instance,
Categorical values are one-hot encoded).


	predict_curves (bool) – See above. Default is False (backwards compatible)


	num_seeds (int) – See above


	fit_differences (Optional[List[str]]) – See above


	max_fit_samples (Optional[int]) – maximum number of samples to be fed to the surrogate
estimator, if the more data points than this number are passed, then they
are subsampled without replacement. If num_seeds is used, this is a
limit on the data per seed


	name (Optional[str]) – 









	
property fidelity_values: array | None

	
	Returns:

	Fidelity values; or None if the blackbox has none










	
property num_fidelities: int

	




	
static make_model_pipeline(configuration_space, fidelity_space, model, predict_curves=False)

	Create feature pipeline for scikit-learn model


	Parameters:

	
	configuration_space – Configuration space


	fidelity_space – Fidelity space


	model – Scikit-learn model


	predict_curves – Predict full curves?






	Returns:

	Feature pipeline










	
fit_surrogate(X, y)

	Fits a surrogate model to data from a blackbox. Here, the targets y can
be a matrix with the number of columns equal to the number of fidelity
values (the predict_curves = True case).


	Return type:

	Blackbox










	
hyperparameter_objectives_values(predict_curves=False)

	If predict_curves is False, the shape of X is
(num_evals * num_seeds * num_fidelities, num_hps + 1), the shape of y
is (num_evals * num_seeds * num_fidelities, num_objectives).
This can be reshaped to (num_fidelities, num_seeds, num_evals, *).
The final column of X is the fidelity value (only a single fidelity
attribute is supported).

If predict_curves is True, the shape of X is
(num_evals * num_seeds, num_hps), the shape of y is
(num_evals * num_seeds, num_fidelities * num_objectives). The latter
can be reshaped to (num_seeds, num_evals, num_fidelities,
num_objectives).


	Return type:

	Tuple[DataFrame, DataFrame]



	Returns:

	a tuple of two dataframes (X, y), where X contains
hyperparameters values and y contains objective values, this is
used when fitting a surrogate model.














	
syne_tune.blackbox_repository.blackbox_surrogate.add_surrogate(blackbox, surrogate=None, configuration_space=None, predict_curves=None, separate_seeds=False, fit_differences=None)

	Fits a blackbox surrogates that can be evaluated anywhere, which can be useful
for supporting interpolation/extrapolation.


	Parameters:

	
	blackbox (Blackbox) – the blackbox must implement
hyperparameter_objectives_values()
so that input/output are passed to estimate the model


	surrogate – the model that is fitted to predict objectives given any
configuration. Possible examples: KNeighborsRegressor(n_neighbors=1),
MLPRegressor() or any estimator obeying Scikit-learn API.
The model is fit on top of pipeline that applies basic feature-processing
to convert rows in X to vectors. We use configuration_space to deduce
the types of columns in X (categorical parameters are one-hot encoded).


	configuration_space (Optional[dict]) – configuration space for the resulting blackbox
surrogate. The default is blackbox.configuration_space. But note that
if blackbox is tabular, the domains in blackbox.configuration_space
are typically categorical even for numerical parameters.


	predict_curves (Optional[bool]) – If True, the surrogate uses multivariate regression
to predict metric curves over fidelities. If False, fidelity is used
as input. The latter can lead to inconsistent predictions along
fidelity and is typically more expensive.
If not given, the default value is False if blackbox is of type
BlackboxOffline, otherwise True.


	separate_seeds (bool) – If True, seeds in blackbox map to seeds in the
surrogate blackbox, which fits different models to each seed. If False,
the data from blackbox is merged for all seeds, and the surrogate
represents a single seed. The latter provides more data for the surrogate
model to be fit, but the variation between seeds is lost in the
surrogate. Defaults to False.


	fit_differences (Optional[List[str]]) – Names of objectives which are cumulative sums. For
these objectives, the y data is transformed to finite differences
before fitting the model. This is recommended for elapsed_time
objectives.






	Returns:

	a blackbox where the output is obtained through the fitted surrogate












            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.blackbox_tabular module


	
class syne_tune.blackbox_repository.blackbox_tabular.BlackboxTabular(hyperparameters, configuration_space, fidelity_space, objectives_evaluations, fidelity_values=None, objectives_names=None)

	Bases: Blackbox

Blackbox that contains tabular evaluations (e.g. all hyperparameters
evaluated on all fidelities). We use a separate class than
BlackboxOffline, as performance
improvement can be made by avoiding to repeat hyperparameters and by storing
all evaluations in a single table.

Additional arguments on top of parent class
Blackbox:


	Parameters:

	
	hyperparameters (DataFrame) – dataframe of hyperparameters, shape
(num_evals, num_hps), columns must match hyperparameter names of
configuration_space


	objectives_evaluations (array) – values of recorded objectives, must have
shape (num_evals, num_seeds, num_fidelities, num_objectives)


	fidelity_values (Optional[array]) – values of the num_fidelities fidelities, default
to [1, ..., num_fidelities]









	
property fidelity_values: array

	
	Returns:

	Fidelity values; or None if the blackbox has none










	
hyperparameter_objectives_values(predict_curves=False)

	If predict_curves is False, the shape of X is
(num_evals * num_seeds * num_fidelities, num_hps + 1), the shape of y
is (num_evals * num_seeds * num_fidelities, num_objectives).
This can be reshaped to (num_fidelities, num_seeds, num_evals, *).
The final column of X is the fidelity value (only a single fidelity
attribute is supported).

If predict_curves is True, the shape of X is
(num_evals * num_seeds, num_hps), the shape of y is
(num_evals * num_seeds, num_fidelities * num_objectives). The latter
can be reshaped to
(num_seeds, num_evals, num_fidelities, num_objectives).


	Parameters:

	predict_curves (bool) – See above. Default is False



	Return type:

	Tuple[DataFrame, DataFrame]



	Returns:

	Dataframes corresponding to X and y










	
rename_objectives(objective_name_mapping)

	
	Parameters:

	objective_name_mapping (Dict[str, str]) – dictionary from old objective name to
new one, old objective name must be present in the blackbox



	Return type:

	BlackboxTabular



	Returns:

	a blackbox with as many objectives as objective_name_mapping










	
all_configurations()

	This method is useful in order to set restrict_configurations in
StochasticAndFilterDuplicatesSearcher
or
GPFIFOSearcher,
which restricts the searcher to only return configurations in this set.
This allows you to use a tabular blackbox without a surrogate.


	Return type:

	List[Dict[str, Any]]



	Returns:

	List of all hyperparameter configurations for which objective
values can be returned














	
syne_tune.blackbox_repository.blackbox_tabular.serialize(bb_dict, path, metadata=None)

	




	
syne_tune.blackbox_repository.blackbox_tabular.deserialize(path)

	Deserialize blackboxes contained in a path that were saved with serialize()
above.

TODO: the API is currently dissonant with serialize(),
deserialize() for BlackboxOffline
as serialize is a member function there. A possible way to unify is to
have serialize also be a free function for BlackboxOffline.


	Parameters:

	path (str) – a path that contains blackboxes that were saved with
serialize()



	Return type:

	Dict[str, BlackboxTabular]



	Returns:

	a dictionary from task name to blackbox












            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.repository module


	
syne_tune.blackbox_repository.repository.blackbox_list()

	
	Return type:

	List[str]



	Returns:

	list of blackboxes available










	
syne_tune.blackbox_repository.repository.load_blackbox(name, skip_if_present=True, s3_root=None, generate_if_not_found=True, yahpo_kwargs=None, ignore_hash=True)

	
	Parameters:

	
	name (str) – name of a blackbox present in the repository, see
blackbox_list() to get list of available blackboxes. Syne Tune
currently provides the following blackboxes evaluations:


	”nasbench201”: 15625 multi-fidelity configurations of computer vision
architectures evaluated on 3 datasets.
NAS-Bench-201: Extending the scope of reproducible neural architecture search.
Dong, X. and Yang, Y. 2020.


	”fcnet”: 62208 multi-fidelity configurations of MLP evaluated on 4 datasets.
Tabular benchmarks for joint architecture and hyperparameter optimization.
Klein, A. and Hutter, F. 2019.


	”lcbench”: 2000 multi-fidelity Pytorch model configurations evaluated on many datasets.
Reference: Auto-PyTorch: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL.
Lucas Zimmer, Marius Lindauer, Frank Hutter. 2020.


	”icml-deepar”: 2420 single-fidelity configurations of DeepAR forecasting algorithm evaluated on 10 datasets.
A quantile-based approach for hyperparameter transfer learning.
Salinas, D., Shen, H., and Perrone, V. 2021.


	”icml-xgboost”: 5O00 single-fidelity configurations of XGBoost evaluated on 9 datasets.
A quantile-based approach for hyperparameter transfer learning.
Salinas, D., Shen, H., and Perrone, V. 2021.


	”yahpo-*”: Number of different benchmarks from YAHPO Gym. Note that these
blackboxes come with surrogates already, so no need to wrap them into
SurrogateBlackbox







	skip_if_present (bool) – skip the download if the file locally exists


	s3_root (Optional[str]) – S3 root directory for blackbox repository. Defaults to
S3 bucket name of SageMaker session


	generate_if_not_found (bool) – If the blackbox file is not present locally
or on S3, should it be generated using its conversion script?


	yahpo_kwargs (Optional[dict]) – For a YAHPO blackbox (name == "yahpo-*"), these are
additional arguments to instantiate_yahpo


	ignore_hash (bool) – do not check if hash of currently stored files matches the
pre-computed hash. Be careful with this option. If hashes do not match, results
might not be reproducible.






	Return type:

	Union[Dict[str, Blackbox], Blackbox]



	Returns:

	blackbox with the given name, download it if not present.










	
syne_tune.blackbox_repository.repository.check_blackbox_local_files(tgt_folder)

	checks whether the file of the blackbox name are present in repository_path


	Return type:

	bool












            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.serialize module


	
syne_tune.blackbox_repository.serialize.serialize_configspace(path, configuration_space, fidelity_space=None)

	




	
syne_tune.blackbox_repository.serialize.deserialize_configspace(path)

	




	
syne_tune.blackbox_repository.serialize.serialize_metadata(path, metadata)

	




	
syne_tune.blackbox_repository.serialize.deserialize_metadata(path)

	






            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.simulated_tabular_backend module


	
syne_tune.blackbox_repository.simulated_tabular_backend.make_surrogate(surrogate=None, surrogate_kwargs=None)

	Creates surrogate model (scikit-learn estimater)


	Parameters:

	
	surrogate (Optional[str]) – A model that is fitted to predict objectives given any
configuration. Possible examples: “KNeighborsRegressor”, MLPRegressor”,
“XGBRegressor”, which would enable using the corresponding scikit-learn
estimator.
The model is fit on top of pipeline that applies basic feature-processing
to convert hyperparameters rows in X to vectors. The configuration_space
hyperparameters types are used to deduce the types of columns in X (for
instance, categorical hyperparameters are one-hot encoded).


	surrogate_kwargs (Optional[dict]) – Arguments for the scikit-learn estimator, for
instance {"n_neighbors": 1} can be used if
surrogate="KNeighborsRegressor" is chosen.






	Returns:

	Scikit-learn estimator representing surrogate model










	
class syne_tune.blackbox_repository.simulated_tabular_backend.BlackboxRepositoryBackend(blackbox_name, elapsed_time_attr, max_resource_attr=None, seed=None, support_checkpointing=True, dataset=None, surrogate=None, surrogate_kwargs=None, add_surrogate_kwargs=None, config_space_surrogate=None, **simulatorbackend_kwargs)

	Bases: _BlackboxSimulatorBackend

Allows to simulate a blackbox from blackbox-repository, selected by
blackbox_name. See examples/launch_simulated_benchmark.py for an
example on how to use. If you want to add a new dataset, see the Adding a
new dataset section of syne_tune/blackbox_repository/README.md.

In each result reported to the simulator backend, the value for key
elapsed_time_attr must be the time since the start of the
evaluation. For example, if resource (or fidelity) equates to epochs
trained, this would be the time from start of training until the end
of the epoch. If the blackbox contains this information in a column,
elapsed_time_attr should be its key.

If this backend is used with pause-and-resume multi-fidelity
scheduling, it needs to track at which resource level each trial is
paused. Namely, once a trial is resumed, all results for resources
smaller or equal to that level are ignored, which simulates the
situation that training is resumed from a checkpoint. This feature
relies on result to be passed to pause_trial(). If this is not
done, the backend cannot know from which resource level to resume
a trial, so it starts the trial from scratch (which is equivalent to
no checkpointing). The same happens if support_checkpointing is
False.


Note

If the blackbox maintains cumulative time (elapsed_time), this is
different from what
SimulatorBackend requires
for elapsed_time_attr, if a pause-and-resume scheduler is used. Namely,
the backend requires the time since the start of the last recent
resume. This conversion is done here internally in
_run_job_and_collect_results(), which is called for each resume.
This means that the field elapsed_time_attr is not what is received
from the blackbox table, but instead what the backend needs.



max_resource_attr plays the same role as in
HyperbandScheduler.
If given, it is the key in a configuration config for the maximum
resource. This is used by schedulers which limit each evaluation by
setting this argument (e.g., promotion-based Hyperband).

If seed is given, entries of the blackbox are queried for this
seed. Otherwise, a seed is drawn at random for every trial, but the
same seed is used for all _run_job_and_collect_results() calls for
the same trial. This is important for pause and resume scheduling.


	Parameters:

	
	blackbox_name (str) – Name of a blackbox, must have been registered in
blackbox repository.


	elapsed_time_attr (str) – Name of the column containing cumulative time


	max_resource_attr (Optional[str]) – See above


	seed (Optional[int]) – If given, this seed is used for all trial evaluations.
Otherwise, seed is sampled at random for each trial. Only relevant
for blackboxes with multiple seeds


	support_checkpointing (bool) – If False, the simulation does not do
checkpointing, so resumed trials are started from scratch. Defaults
to True


	dataset (Optional[str]) – Selects different versions of the blackbox (typically, the
same ML model has been trained on different datasets)


	surrogate (Optional[str]) – Optionally, a model that is fitted to predict objectives
given any configuration.
Examples: “KNeighborsRegressor”, “MLPRegressor”, “XGBRegressor”,
which would enable using the corresponding scikit-learn estimator, see
also make_surrogate().
The model is fit on top of pipeline that applies basic feature-processing
to convert hyperparameter rows in X to vectors. The configuration_space
hyperparameter types are used to deduce the types of columns in X (for
instance, categorical hyperparameters are one-hot encoded).


	surrogate_kwargs (Optional[dict]) – Arguments for the scikit-learn estimator, for
instance {"n_neighbors": 1} can be used if
surrogate="KNeighborsRegressor" is chosen.
If blackbox_name is a YAHPO blackbox, then surrogate_kwargs is passed
as yahpo_kwargs to
load_blackbox(). In this case,
surrogate is ignored (YAHPO always uses surrogates).


	config_space_surrogate (Optional[dict]) – If surrogate is given, this is the
configuration space for the surrogate blackbox. If not given, the
space of the original blackbox is used. However, its numerical parameters
have finite domains (categorical or ordinal), which is usually not what
we want for a surrogate.


	simulatorbackend_kwargs – Additional arguments to parent
SimulatorBackend









	
property blackbox: Blackbox

	








	
class syne_tune.blackbox_repository.simulated_tabular_backend.UserBlackboxBackend(blackbox, elapsed_time_attr, max_resource_attr=None, seed=None, support_checkpointing=True, **simulatorbackend_kwargs)

	Bases: _BlackboxSimulatorBackend

Version of _BlackboxSimulatorBackend, where the blackbox is
given as explicit Blackbox object.
See examples/launch_simulated_benchmark.py for an example on how to use.

Additional arguments on top of parent _BlackboxSimulatorBackend:


	Parameters:

	blackbox (Blackbox) – Blackbox to be used for simulation






	
property blackbox: Blackbox

	










            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.utils module


	
syne_tune.blackbox_repository.utils.metrics_for_configuration(blackbox, config, resource_attr, fidelity_range=None, seed=None)

	Returns all results for configuration config at fidelities in range
fidelity_range.


	Parameters:

	
	blackbox (Blackbox) – Blackbox


	config (Dict[str, Any]) – Configuration


	resource_attr (str) – Name of resource attribute


	fidelity_range (Optional[Tuple[float, float]]) – Range [min_f, max_f], only fidelities in this range
(both ends inclusive) are returned. Default is no filtering


	seed (Optional[int]) – Seed for queries to blackbox. Drawn at random if not
given






	Return type:

	List[dict]



	Returns:

	List of result dicts












            

          

      

      

    

  

    
      
          
            
  
syne_tune.callbacks package


	
class syne_tune.callbacks.TensorboardCallback(ignore_metrics=None, target_metric=None, mode=None, log_hyperparameters=True)

	Bases: TunerCallback

Logs relevant metrics reported from trial evaluations, so they can be
visualized with Tensorboard.


	Parameters:

	
	ignore_metrics (Optional[List[str]]) – Defines which metrics should be ignored. If None,
all metrics are reported to Tensorboard.


	target_metric (Optional[str]) – Defines the metric we aim to optimize. If this
argument is set, we report the cumulative optimum of this metric as
well as the optimal hyperparameters we have found so far.


	mode (Optional[str]) – Determined whether we maximize (“max”) or minimize (“min”)
the target metric.


	log_hyperparameters (bool) – If set to True, we also log all hyperparameters
specified in the configurations space.









	
on_trial_result(trial, status, result, decision)

	Called when a new result (reported by a trial) is observed

The arguments here are inputs or outputs of scheduler.on_trial_result
(called just before).


	Parameters:

	
	trial (Trial) – Trial whose report has been received


	status (str) – Status of trial before scheduler.on_trial_result has
been called


	result (Dict[str, Any]) – Result dict received


	decision (str) – Decision returned by scheduler.on_trial_result













	
on_tuning_start(tuner)

	Called at start of tuning loop


	Parameters:

	tuner – Tuner object










	
on_tuning_end()

	Called once the tuning loop terminates

This is called before Tuner object is serialized
(optionally), and also before running jobs are stopped.










Submodules



	syne_tune.callbacks.hyperband_remove_checkpoints_callback module
	TrialStatus
	TrialStatus.RUNNING

	TrialStatus.PAUSED_WITH_CHECKPOINT

	TrialStatus.PAUSED_NO_CHECKPOINT

	TrialStatus.STOPPED_OR_COMPLETED





	BetaBinomialEstimator
	BetaBinomialEstimator.update()

	BetaBinomialEstimator.num_one

	BetaBinomialEstimator.num_total

	BetaBinomialEstimator.posterior_mean()





	TrialInformation
	TrialInformation.trial_id

	TrialInformation.level

	TrialInformation.rank

	TrialInformation.rung_len

	TrialInformation.score_val





	HyperbandRemoveCheckpointsCommon
	HyperbandRemoveCheckpointsCommon.on_tuning_start()

	HyperbandRemoveCheckpointsCommon.num_checkpoints_removed

	HyperbandRemoveCheckpointsCommon.on_loop_end()

	HyperbandRemoveCheckpointsCommon.on_trial_complete()

	HyperbandRemoveCheckpointsCommon.on_trial_result()

	HyperbandRemoveCheckpointsCommon.on_start_trial()

	HyperbandRemoveCheckpointsCommon.on_resume_trial()

	HyperbandRemoveCheckpointsCommon.trials_resumed_without_checkpoint()

	HyperbandRemoveCheckpointsCommon.extra_results()

	HyperbandRemoveCheckpointsCommon.extra_results_keys()





	HyperbandRemoveCheckpointsCallback
	HyperbandRemoveCheckpointsCallback.on_tuning_start()

	HyperbandRemoveCheckpointsCallback.estimator_for_rung()

	HyperbandRemoveCheckpointsCallback.on_trial_result()





	HyperbandRemoveCheckpointsBaselineCallback





	syne_tune.callbacks.hyperband_remove_checkpoints_score module
	compute_probabilities_of_getting_resumed()





	syne_tune.callbacks.remove_checkpoints_callback module
	RemoveCheckpointsCallback
	RemoveCheckpointsCallback.on_tuning_start()

	RemoveCheckpointsCallback.on_loop_end()





	DefaultRemoveCheckpointsSchedulerMixin
	DefaultRemoveCheckpointsSchedulerMixin.trials_checkpoints_can_be_removed()

	DefaultRemoveCheckpointsSchedulerMixin.callback_for_checkpoint_removal()









	syne_tune.callbacks.tensorboard_callback module
	TensorboardCallback
	TensorboardCallback.on_trial_result()

	TensorboardCallback.on_tuning_start()

	TensorboardCallback.on_tuning_end()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.callbacks.hyperband_remove_checkpoints_callback module


	
class syne_tune.callbacks.hyperband_remove_checkpoints_callback.TrialStatus

	Bases: object


	
RUNNING = 'RUNNING'

	




	
PAUSED_WITH_CHECKPOINT = 'PAUSED-WITH-CP'

	




	
PAUSED_NO_CHECKPOINT = 'PAUSED-NO-CP'

	




	
STOPPED_OR_COMPLETED = 'STOPPED-COMPLETED'

	








	
class syne_tune.callbacks.hyperband_remove_checkpoints_callback.BetaBinomialEstimator(beta_mean, beta_size)

	Bases: object

Estimator of the probability \(p = P(X = 1)\) for a variable \(X\)
with Bernoulli distribution. This is using a Beta prior, which is
conjugate to the binomial likelihood. The prior is parameterized by
effective sample size beta_size (\(a + b\)) and mean beta_mean
(\(a / (a + b)\)).


	
update(data)

	




	
property num_one: int

	




	
property num_total

	




	
posterior_mean()

	
	Return type:

	float














	
class syne_tune.callbacks.hyperband_remove_checkpoints_callback.TrialInformation(trial_id, level, rank, rung_len, score_val=None)

	Bases: object


	
trial_id: str

	




	
level: int

	




	
rank: int

	




	
rung_len: int

	




	
score_val: Optional[float] = None

	








	
class syne_tune.callbacks.hyperband_remove_checkpoints_callback.HyperbandRemoveCheckpointsCommon(max_num_checkpoints, max_wallclock_time, metric, resource_attr, mode)

	Bases: TunerCallback

Common base class for HyperbandRemoveCheckpointsCallback and
HyperbandRemoveCheckpointsBaselineCallback.


	
on_tuning_start(tuner)

	Called at start of tuning loop


	Parameters:

	tuner – Tuner object










	
property num_checkpoints_removed: int

	




	
on_loop_end()

	Called at end of each tuning loop iteration

This is done before the loop stopping condition is checked and acted
upon.






	
on_trial_complete(trial, result)

	Called when a trial completes (Status.completed)

The arguments here also have been passed to scheduler.on_trial_complete,
before this call here.


	Parameters:

	
	trial (Trial) – Trial that just completed.


	result (Dict[str, Any]) – Last result obtained.













	
on_trial_result(trial, status, result, decision)

	Called when a new result (reported by a trial) is observed

The arguments here are inputs or outputs of scheduler.on_trial_result
(called just before).


	Parameters:

	
	trial (Trial) – Trial whose report has been received


	status (str) – Status of trial before scheduler.on_trial_result has
been called


	result (Dict[str, Any]) – Result dict received


	decision (str) – Decision returned by scheduler.on_trial_result













	
on_start_trial(trial)

	Called just after a new trials is started


	Parameters:

	trial (Trial) – Trial which has just been started










	
on_resume_trial(trial)

	Called just after a trial is resumed


	Parameters:

	trial (Trial) – Trial which has just been resumed










	
trials_resumed_without_checkpoint()

	
	Return type:

	List[Tuple[str, int]]



	Returns:

	List of (trial_id, level) for trials which were resumed, even
though their checkpoint was removed










	
extra_results()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary containing information which can be appended to
results written out










	
static extra_results_keys()

	
	Return type:

	List[str]














	
class syne_tune.callbacks.hyperband_remove_checkpoints_callback.HyperbandRemoveCheckpointsCallback(max_num_checkpoints, max_wallclock_time, metric, resource_attr, mode, approx_steps=25, prior_beta_mean=0.33, prior_beta_size=2, min_data_at_rung=5)

	Bases: HyperbandRemoveCheckpointsCommon

Implements speculative early removal of checkpoints of paused trials for
HyperbandScheduler (only for
types which pause trials at rung levels).

In this scheduler, any paused trial can in principle be resumed in the
future, which is why we remove checkpoints speculatively. The idea is to
keep the total number of checkpoints no larger than max_num_checkpoints.
If this limit is reached, we rank all currently paused trials which still
have a checkpoint and remove checkpoints for those with lowest scores. If a
trial is resumed whose checkpoint has been removed, we have to train from
scratch, at a cost proportional to the rung level the trial is paused at.
The score is an approximation to this expected cost, the product of rung
level and probability of getting resumed. This probability depends on the
current rung size, the rank of the trial in the rung, and both the time
spent and remaining for the experiment, so we need max_wallclock_time.
Details are given in a technical report.

The probability of getting resumed also depends on the probability
\(p_r\) that a new trial arriving at rung \(r\) ranks better than
an existing paused one with a checkpoint. These probabilities are estimated
here. For each new arrival at a rung, we obtain one datapoint for every
paused trial with checkpoint there. We use Bayesian estimators with Beta
prior given by mean prior_beta_mean and sample size prior_beta_size.
The mean should be \(< 1/2\)). We also run an estimator for an overall
probability \(p\), which is fed by all datapoints. This estimator is
used as long as there are less than \(min_data_at_rung\) datapoints at
rung \(r\).


	Parameters:

	
	max_num_checkpoints (int) – Once the total number of checkpoints surpasses
this number, we remove some.


	max_wallclock_time (int) – Maximum time of the experiment


	metric (str) – Name of metric in result of on_trial_result()


	resource_attr (str) – Name of resource attribute in result of
on_trial_result()


	mode (str) – “min” or “max”


	approx_steps (int) – Number of approximation steps in score computation.
Computations scale cubically in this number. Defaults to 25


	prior_beta_mean (float) – Parameter of Beta prior for estimators. Defaults
to 0.33


	prior_beta_size (float) – Parameter of Beta prior for estimators. Defaults
to 2


	min_data_at_rung (int) – See above. Defaults to 5









	
on_tuning_start(tuner)

	Called at start of tuning loop


	Parameters:

	tuner – Tuner object










	
estimator_for_rung(level)

	
	Return type:

	BetaBinomialEstimator










	
on_trial_result(trial, status, result, decision)

	Called when a new result (reported by a trial) is observed

The arguments here are inputs or outputs of scheduler.on_trial_result
(called just before).


	Parameters:

	
	trial (Trial) – Trial whose report has been received


	status (str) – Status of trial before scheduler.on_trial_result has
been called


	result (Dict[str, Any]) – Result dict received


	decision (str) – Decision returned by scheduler.on_trial_result

















	
class syne_tune.callbacks.hyperband_remove_checkpoints_callback.HyperbandRemoveCheckpointsBaselineCallback(max_num_checkpoints, max_wallclock_time, metric, resource_attr, mode, baseline=None)

	Bases: HyperbandRemoveCheckpointsCommon

Implements some simple baselines to compare with
HyperbandRemoveCheckpointsCallback.


	Parameters:

	
	max_num_checkpoints (int) – Once the total number of checkpoints surpasses
this number, we remove some.


	max_wallclock_time (int) – Maximum time of the experiment


	metric (str) – Name of metric in result of on_trial_result()


	resource_attr (str) – Name of resource attribute in result of
on_trial_result()


	mode (str) – “min” or “max”


	baseline (Optional[str]) – Type of baseline. Defaults to “by_level”


	”random”: Select random paused trial with checkpoint


	
	”by_level”: Select paused trial (with checkpoint) on lowest rung level,
	and then of worst rank

























            

          

      

      

    

  

    
      
          
            
  
syne_tune.callbacks.hyperband_remove_checkpoints_score module


	
syne_tune.callbacks.hyperband_remove_checkpoints_score.compute_probabilities_of_getting_resumed(ranks, rung_lens, prom_quants, p_vals, time_ratio, approx_steps)

	Computes an approximation to the probability of getting resumed under our
independence assumptions. This approximation improves with larger
approx_steps, but its cost scales cubically in this number.


	Parameters:

	
	ranks (ndarray) – Ranks \(k\), starting from 1 (smaller is better)


	rung_lens (ndarray) – Rung lengths \(n_r\)


	prom_quants (ndarray) – Promotion quantiles \(\alpha_r\)


	p_vals (ndarray) – Probabilities \(p_r\)


	time_ratio (float) – Ratio \(\beta\) between time left and time spent


	approx_steps (int) – Number of approximation steps, see above






	Return type:

	ndarray



	Returns:

	Approximations of probability to get resumed












            

          

      

      

    

  

    
      
          
            
  
syne_tune.callbacks.remove_checkpoints_callback module


	
class syne_tune.callbacks.remove_checkpoints_callback.RemoveCheckpointsCallback

	Bases: TunerCallback

This implements early removal of checkpoints of paused trials. In order
for this to work, the scheduler needs to implement
trials_checkpoints_can_be_removed().


	
on_tuning_start(tuner)

	Called at start of tuning loop


	Parameters:

	tuner – Tuner object










	
on_loop_end()

	Called at end of each tuning loop iteration

This is done before the loop stopping condition is checked and acted
upon.










	
class syne_tune.callbacks.remove_checkpoints_callback.DefaultRemoveCheckpointsSchedulerMixin

	Bases: RemoveCheckpointsSchedulerMixin

Implements general case of
RemoveCheckpointsSchedulerMixin,
where the callback is of type RemoveCheckpointsCallback. This means
scheduler has to implement trials_checkpoints_can_be_removed().


	
trials_checkpoints_can_be_removed()

	Supports the general case (see header comment).
This method returns IDs of paused trials for which checkpoints can safely
be removed. These trials either cannot be resumed anymore, or it is very
unlikely they will be resumed. Any trial ID needs to be returned only once,
not over and over. If a trial gets stopped (by returning
SchedulerDecision.STOP in on_trial_result()), its checkpoint
is removed anyway, so its ID does not have to be returned here.


	Return type:

	List[int]



	Returns:

	IDs of paused trials for which checkpoints can be removed










	
callback_for_checkpoint_removal(stop_criterion)

	
	Parameters:

	stop_criterion (Callable[[TuningStatus], bool]) – Stopping criterion, as passed to
Tuner



	Return type:

	Optional[TunerCallback]



	Returns:

	CP removal callback, or None if CP removal is not activated
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.callbacks.tensorboard_callback module


	
class syne_tune.callbacks.tensorboard_callback.TensorboardCallback(ignore_metrics=None, target_metric=None, mode=None, log_hyperparameters=True)

	Bases: TunerCallback

Logs relevant metrics reported from trial evaluations, so they can be
visualized with Tensorboard.


	Parameters:

	
	ignore_metrics (Optional[List[str]]) – Defines which metrics should be ignored. If None,
all metrics are reported to Tensorboard.


	target_metric (Optional[str]) – Defines the metric we aim to optimize. If this
argument is set, we report the cumulative optimum of this metric as
well as the optimal hyperparameters we have found so far.


	mode (Optional[str]) – Determined whether we maximize (“max”) or minimize (“min”)
the target metric.


	log_hyperparameters (bool) – If set to True, we also log all hyperparameters
specified in the configurations space.









	
on_trial_result(trial, status, result, decision)

	Called when a new result (reported by a trial) is observed

The arguments here are inputs or outputs of scheduler.on_trial_result
(called just before).


	Parameters:

	
	trial (Trial) – Trial whose report has been received


	status (str) – Status of trial before scheduler.on_trial_result has
been called


	result (Dict[str, Any]) – Result dict received


	decision (str) – Decision returned by scheduler.on_trial_result













	
on_tuning_start(tuner)

	Called at start of tuning loop


	Parameters:

	tuner – Tuner object










	
on_tuning_end()

	Called once the tuning loop terminates

This is called before Tuner object is serialized
(optionally), and also before running jobs are stopped.












            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments package


	
class syne_tune.experiments.ExperimentResult(name, results, metadata, tuner, path)

	Bases: object

Wraps results dataframe and provides retrieval services.


	Parameters:

	
	name (str) – Name of experiment


	results (DataFrame) – Dataframe containing results of experiment


	metadata (Dict[str, Any]) – Metadata stored along with results


	tuner (Tuner) – Tuner object stored along with results


	path (Path) – local path where the experiment is stored









	
name: str

	




	
results: DataFrame

	




	
metadata: Dict[str, Any]

	




	
tuner: Tuner

	




	
path: Path

	




	
creation_date()

	
	Returns:

	Timestamp when Tuner was created










	
plot_hypervolume(metrics_to_plot=None, reference_point=None, figure_path=None, **plt_kwargs)

	Plot best hypervolume value as function of wallclock time


	Parameters:

	
	reference_point (Optional[ndarray]) – Reference point for hypervolume calculations.
If None, the maximum values of each metric is used.


	figure_path (Optional[str]) – If specified, defines the path where the figure will be saved.
If None, the figure is shown


	plt_kwargs – Arguments to matplotlib.pyplot.plot()













	
plot(metric_to_plot=0, figure_path=None, **plt_kwargs)

	Plot best metric value as function of wallclock time


	Parameters:

	
	metric_to_plot (Union[str, int]) – Indicates which metric to plot, can be the index or a name of the metric.
default to 0 - first metric defined


	figure_path (Optional[str]) – If specified, defines the path where the figure will be saved.
If None, the figure is shown


	plt_kwargs – Arguments to matplotlib.pyplot.plot()













	
plot_trials_over_time(metric_to_plot=0, figure_path=None, figsize=None)

	Plot trials results over as function of wallclock time


	Parameters:

	
	metric_to_plot (Union[str, int]) – Indicates which metric to plot, can be the index or a name of the metric.
default to 0 - first metric defined


	figure_path (Optional[str]) – If specified, defines the path where the figure will be saved.
If None, the figure is shown


	figsize – width and height of figure













	
metric_mode()

	
	Return type:

	Union[str, List[str]]










	
metric_names()

	
	Return type:

	List[str]










	
entrypoint_name()

	
	Return type:

	str










	
best_config(metric=0)

	Return the best config found for the specified metric
:type metric: Union[str, int]
:param metric: Indicates which metric to use, can be the index or a name of the metric.


default to 0 - first metric defined in the Scheduler





	Return type:

	Dict[str, Any]



	Returns:

	Configuration corresponding to best metric value














	
syne_tune.experiments.load_experiment(tuner_name, download_if_not_found=True, load_tuner=False, local_path=None, experiment_name=None)

	Load results from an experiment


	Parameters:

	
	tuner_name (str) – Name of a tuning experiment previously run


	download_if_not_found (bool) – If True, fetch results from S3 if not found locally


	load_tuner (bool) – Whether to load the tuner in addition to metadata and results


	local_path (Optional[str]) – Path containing the experiment to load. If not specified,
~/{SYNE_TUNE_FOLDER}/ is used.


	experiment_name (Optional[str]) – If given, this is used as first directory.






	Return type:

	ExperimentResult



	Returns:

	Result object










	
syne_tune.experiments.get_metadata(path_filter=None, root=PosixPath('/home/docs/syne-tune'))

	Load meta-data for a number of experiments


	Parameters:

	
	path_filter (Optional[Callable[[str], bool]]) – If passed then only experiments whose path matching
the filter are kept. This allows rapid filtering in the presence of many
experiments.


	root (Path) – Root path for experiment results. Default is
experiment_path()






	Return type:

	Dict[str, dict]



	Returns:

	Dictionary from tuner name to metadata dict










	
syne_tune.experiments.list_experiments(path_filter=None, experiment_filter=None, root=PosixPath('/home/docs/syne-tune'), load_tuner=False)

	List experiments for which results are found


	Parameters:

	
	path_filter (Optional[Callable[[str], bool]]) – If passed then only experiments whose path matching
the filter are kept. This allows rapid filtering in the presence of many
experiments.


	experiment_filter (Optional[Callable[[ExperimentResult], bool]]) – Filter on ExperimentResult, optional


	root (Path) – Root path for experiment results. Default is result of
experiment_path()


	load_tuner (bool) – Whether to load the tuner in addition to metadata and results






	Return type:

	List[ExperimentResult]



	Returns:

	List of result objects










	
syne_tune.experiments.load_experiments_df(path_filter=None, experiment_filter=None, root=PosixPath('/home/docs/syne-tune'), load_tuner=False)

	
	Parameters:

	
	path_filter (Optional[Callable[[str], bool]]) – If passed then only experiments whose path matching
the filter are kept. This allows rapid filtering in the presence of many
experiments.


	experiment_filter (Optional[Callable[[ExperimentResult], bool]]) – Filter on ExperimentResult


	root (Path) – Root path for experiment results. Default is
experiment_path()


	load_tuner (bool) – Whether to load the tuner in addition to metadata and results






	Return type:

	DataFrame



	Returns:

	Dataframe that contains all evaluations reported by tuners according
to the filter given. The columns contain trial-id, hyperparameter
evaluated, metrics reported via Reporter. These metrics
are collected automatically:


	st_worker_time (indicating time spent in the worker when report was
seen)


	time (indicating wallclock time measured by the tuner)


	decision decision taken by the scheduler when observing the result


	status status of the trial that was shown to the tuner


	config_{xx} configuration value for the hyperparameter {xx}


	tuner_name named passed when instantiating the Tuner


	entry_point_name, entry_point_path name and path of the entry
point that was tuned















	
class syne_tune.experiments.ComparativeResults(experiment_names, setups, num_runs, metadata_to_setup, plot_params=None, metadata_to_subplot=None, benchmark_key='benchmark', with_subdirs='*', datetime_bounds=None, metadata_keys=None, metadata_subplot_level=False, download_from_s3=False, s3_bucket=None)

	Bases: object

This class loads, processes, and plots results of a comparative study,
combining several experiments for different methods, seeds, and
benchmarks (optional). Note that an experiment corresponds to one run
of HPO, resulting in files ST_METADATA_FILENAME
for metadata, and ST_RESULTS_DATAFRAME_FILENAME
for time-stamped results.

There is one comparative plot per benchmark (aggregation of results
across benchmarks are not supported here). Results are grouped by
setup (which usually equates to method), and then summary statistics are
shown for each setup as function of wall-clock time. The plot can also
have several subplots, in which case results are first grouped into
subplot number, then setup.

If benchmark_key is None, there is only a single benchmark, and all
results are merged together.

Both setup name and subplot number (optional) can be configured by the
user, as function of metadata written for each experiment. The functions
metadata_to_setup and metadata_to_subplot (optional) can also be
used for filtering: results of experiments for which any of them returns
None, are not used.

When grouping results w.r.t. benchmark name and setup name, we should end
up with num_runs experiments. These are (typically) random repetitions
with different seeds. If after grouping, a different number of experiments
is found for some setup, a warning message is printed. In this case, we
recommend to check the completeness of result files. Common reasons:


	Less than num_runs experiments found. Experiments failed, or files
were not properly synced.


	More than num_runs experiments found. This happens if initial
experiments for the study failed, but ended up writing results. This can
be fixed by either removing the result files, or by using
datetime_bounds (since initial failed experiments ran first).




Result files have the path
f"{experiment_path()}{ename}/{patt}/{ename}-*/", where path is from
with_subdirs, and ename from experiment_names. The default is
with_subdirs="*". If with_subdirs is None, result files have
the path f"{experiment_path()}{ename}-*/". Use this if your experiments
have been run locally.

If datetime_bounds is given, it contains a tuple of strings
(lower_time, upper_time), or a dictionary mapping names from
experiment_names to such tuples. Both strings are time-stamps in the
format ST_DATETIME_FORMAT (example:
“2023-03-19-22-01-57”), and each can be None as well. This serves to
filter out any result whose time-stamp does not fall within the interval
(both sides are inclusive), where None means the interval is open on
that side. This feature is useful to filter out results of erroneous
attempts.

If metadata_keys is given, it contains a list of keys into the
metadata. In this case, metadata values for these keys are extracted and
can be retrieved with metadata_values(). In fact,
metadata_values(benchmark_name) returns a nested dictionary, where
result[key][setup_name] is a list of values. If
metadata_subplot_level is True and metadata_to_subplot is
given, the result structure is result[key][setup_name][subplot_no].
This should be set if different subplots share the same setup names,
since otherwise metadata values are only grouped by setup name.


	Parameters:

	
	experiment_names (Tuple[str, ...]) – Tuple of experiment names (prefixes, without the
timestamps)


	setups (Iterable[str]) – Possible values of setup names


	num_runs (int) – When grouping results w.r.t. benchmark name and setup
name, we should end up with this many experiments. See above


	metadata_to_setup (Union[Callable[[Dict[str, Any]], Optional[str]], Dict[str, Callable[[Dict[str, Any]], Optional[str]]]]) – See above


	plot_params (Optional[PlotParameters]) – Parameters controlling the plot. Can be overwritten
in plot(). See PlotParameters


	metadata_to_subplot (Optional[Callable[[Dict[str, Any]], Optional[int]]]) – See above. Optional


	benchmark_key (Optional[str]) – Key for benchmark in metadata files. Defaults to
“benchmark”. If this is None, there is only a single benchmark,
and all results are merged together


	with_subdirs (Union[str, List[str], None]) – See above. Defaults to “*”


	datetime_bounds (Union[Tuple[Optional[str], Optional[str]], Dict[str, Tuple[Optional[str], Optional[str]]], None]) – See above


	metadata_keys (Optional[List[str]]) – See above


	metadata_subplot_level (bool) – See above. Defaults to False


	download_from_s3 (bool) – Should result files be downloaded from S3? This
is supported only if with_subdirs


	s3_bucket (Optional[str]) – Only if download_from_s3 == True. If not given, the
default bucket for the SageMaker session is used









	
metadata_values(benchmark_name=None)

	The nested dictionary returned has the structure
result[key][setup_name], or result[key][setup_name][subplot_no]
if metadata_subplot_level == True.


	Parameters:

	benchmark_name (Optional[str]) – Name of benchmark



	Return type:

	Dict[str, Any]



	Returns:

	Nested dictionary with meta-data values










	
plot(benchmark_name=None, plot_params=None, file_name=None, extra_results_keys=None, dataframe_column_generator=None, one_result_per_trial=False)

	Create comparative plot from results of all experiments collected at
construction, for benchmark benchmark_name (if there is a single
benchmark only, this need not be given).

If plot_params.show_init_trials is given, the best metric value
curve for the data from trials <=  plot_params.show_init_trials.trial_id
in a particular setup plot_params.show_init_trials.setup_name is
shown in all subplots the setup is contained in. This is useful to
contrast the performance of methods against the performance for one
particular trial, for example the initial configuration (i.e., to show
how much this can be improved upon). The final metric value of this extra
curve is extended until the end of the horizontal range, in order to make
it visible. The corresponding curve is labeled with
plot_params.show_init_trials.new_setup_name in the legend.

If extra_results_keys is given, these are column names in the result
dataframe. For each setup and seed, we collect the values for the
largest time stamp. We return a nested dictionary extra_results, so
that extra_results[setup_name][key] contains values (over seeds),
where key is in extra_results_keys. If metadata_subplot_level
is True and metadata_to_subplot is given, the structure is
extra_results[setup_name][subplot_no][key].

If dataframe_column_generator is given, it maps a result dataframe
for a single experiment to a new column named plot_params.metric.
This is applied before computing cumulative maximum or minimum and
aggregation over seeds. This way, we can plot derived metrics which are
not contained in the results as columns. Note that the transformed
dataframe is not retained.


	Parameters:

	
	benchmark_name (Optional[str]) – Name of benchmark for which to plot results.
Not needed if there is only one benchmark


	plot_params (Optional[PlotParameters]) – Parameters controlling the plot. Values provided
here overwrite values provided at construction.


	file_name (Optional[str]) – If given, the figure is stored in a file of this name


	extra_results_keys (Optional[List[str]]) – See above, optional


	dataframe_column_generator (Optional[Callable[[DataFrame], Series]]) – See above, optional


	one_result_per_trial (bool) – If True, results for each experiment
are filtered down to one row per trial (the one with the largest
time stamp). This is useful for results from a single-fidelity
method, where the training script reported results after every
epoch.






	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with “fig”, “axs” (for further processing). If
extra_results_keys, “extra_results” entry as stated above














	
class syne_tune.experiments.PlotParameters(metric=None, mode=None, title=None, xlabel=None, ylabel=None, xlim=None, ylim=None, metric_multiplier=None, convert_to_min=None, tick_params=None, aggregate_mode=None, dpi=None, grid=None, subplots=None, show_init_trials=None)

	Bases: object

Parameters specifying the figure.

If convert_to_min == True, then smaller is better in plots. An original
metric value metric_val is converted as
metric_multiplier * metric_val if mode == "min",
and as 1 - metric_multiplier * metric_val if mode == "max".
If convert_to_min == False`, we always convert as
metric_multiplier * metric_val, so that larger is better if
mode == "max".


	Parameters:

	
	metric (Optional[str]) – Name of metric, mandatory


	mode (Optional[str]) – See above, “min” or “max”. Defaults to “min” if not given


	title (Optional[str]) – Title of plot. If subplots is used, see
SubplotParameters


	xlabel (Optional[str]) – Label for x axis. If subplots is used, this is
printed below each column. Defaults to DEFAULT_XLABEL


	ylabel (Optional[str]) – Label for y axis. If subplots is used, this is
printed left of each row


	xlim (Optional[Tuple[float, float]]) – (x_min, x_max) for x axis. If subplots is used, see
SubplotParameters


	ylim (Optional[Tuple[float, float]]) – (y_min, y_max) for y axis.


	metric_multiplier (Optional[float]) – See above. Defaults to 1


	convert_to_min (Optional[bool]) – See above. Defaults to True


	tick_params (Optional[Dict[str, Any]]) – Params for ax.tick_params


	aggregate_mode (Optional[str]) – How are values across seeds aggregated?


	”mean_and_ci”: Mean and 0.95 normal confidence interval


	”median_percentiles”: Mean and 25, 75 percentiles


	”iqm_bootstrap”: Interquartile mean and 0.95 confidence interval
based on the bootstrap variance estimate




Defaults to DEFAULT_AGGREGATE_MODE




	dpi (Optional[int]) – Resolution of figure in DPI. Defaults to 200


	grid (Optional[bool]) – Figure with grid? Defaults to False


	subplots (Optional[SubplotParameters]) – If given, the figure consists of several subplots. See
SubplotParameters


	show_init_trials (Optional[ShowTrialParameters]) – See ShowTrialParameters









	
metric: str = None

	




	
mode: str = None

	




	
title: str = None

	




	
xlabel: str = None

	




	
ylabel: str = None

	




	
xlim: Tuple[float, float] = None

	




	
ylim: Tuple[float, float] = None

	




	
metric_multiplier: float = None

	




	
convert_to_min: bool = None

	




	
tick_params: Dict[str, Any] = None

	




	
aggregate_mode: str = None

	




	
dpi: int = None

	




	
grid: bool = None

	




	
subplots: SubplotParameters = None

	




	
show_init_trials: ShowTrialParameters = None

	




	
merge_defaults(default_params)

	
	Return type:

	PlotParameters














	
class syne_tune.experiments.SubplotParameters(nrows=None, ncols=None, titles=None, title_each_figure=None, kwargs=None, legend_no=None, xlims=None, subplot_indices=None)

	Bases: object

Parameters specifying an arrangement of subplots. kwargs is mandatory.


	Parameters:

	
	nrows (Optional[int]) – Number of rows of subplot matrix


	ncols (Optional[int]) – Number of columns of subplot matrix


	titles (Optional[List[str]]) – If given, these are titles for each column in the
arrangement of subplots. If title_each_figure == True, these
are titles for each subplot. If titles is not given, then
PlotParameters.title is printed on top of the leftmost column


	title_each_figure (Optional[bool]) – See titles, defaults to False


	kwargs (Optional[Dict[str, Any]]) – Extra arguments for plt.subplots, apart from “nrows” and “ncols”


	legend_no (Optional[List[int]]) – Subplot indices where legend is to be shown. Defaults
to [] (no legends shown). This is not relative to subplot_indices


	xlims (Optional[List[int]]) – If this is given, must be a list with one entry per subfigure.
In this case, the global xlim is overwritten by
(0, xlims[subplot_no]). If subplot_indices is given, xlims
must have the same length, and xlims[j] refers to subplot index
subplot_indices[j] then


	subplot_indices (Optional[List[int]]) – If this is given, we only plot subfigures with indices
in this list, and in this order. Otherwise, we plot subfigures 0, 1, 2, …









	
nrows: int = None

	




	
ncols: int = None

	




	
titles: List[str] = None

	




	
title_each_figure: bool = None

	




	
kwargs: Dict[str, Any] = None

	




	
legend_no: List[int] = None

	




	
xlims: List[int] = None

	




	
subplot_indices: List[int] = None

	




	
merge_defaults(default_params)

	
	Return type:

	SubplotParameters














	
class syne_tune.experiments.ShowTrialParameters(setup_name=None, trial_id=None, new_setup_name=None)

	Bases: object

Parameters specifying the show_init_trials feature. This features adds
one more curve to each subplot where setup_name features. This curve
shows best metric value found for trials with ID <= trial_id. The
right-most value is extended as constant line across the remainder of the
x-axis, for better visibility.


	Parameters:

	
	setup_name (Optional[str]) – Setup from which the trial performance is taken


	trial_id (Optional[int]) – ID of trial. Defaults to 0. If this is positive, data
from trials with IDs <= trial_id are shown


	new_setup_name (Optional[str]) – Name of the additional curve in legends









	
setup_name: str = None

	




	
trial_id: int = None

	




	
new_setup_name: str = None

	




	
merge_defaults(default_params)

	
	Return type:

	ShowTrialParameters














	
class syne_tune.experiments.TrialsOfExperimentResults(experiment_names, setups, metadata_to_setup, plot_params=None, multi_fidelity_params=None, benchmark_key='benchmark', seed_key='seed', with_subdirs='*', datetime_bounds=None, download_from_s3=False, s3_bucket=None)

	Bases: object

This class loads, processes, and plots metric results for single experiments,
where the curves for different trials have different colours.

Compared to ComparativeResults, each subfigure
uses data from a single experiment (one benchmark, one seed, one setup). Both
benchmark and seed need to be chosen in plot(). If there are different
setups, they give rise to subfigures.

If plot_params.subplots is not given, the arrangement is one row with
columns corresponding to setups, and setup names as titles. Specify
plot_params.subplots in order to change this arrangement (e.g., to have
more than one row). Setups can be selected by using
plot_params.subplots.subplot_indices. Also, if
plot_params.subplots.titles is not given, we use setup names, and each
subplot gets its own title (plot_params.subplots.title_each_figure is
ignored).

For plot_params, we use the same
PlotParameters as in
ComparativeResults, but some fields are not
used here (title, aggregate_mode, show_one_trial,
subplots.legend_no, subplots.xlims).


	Parameters:

	
	experiment_names (Tuple[str, ...]) – Tuple of experiment names (prefixes, without the
timestamps)


	setups (Iterable[str]) – Possible values of setup names


	metadata_to_setup (Union[Callable[[Dict[str, Any]], Optional[str]], Dict[str, Callable[[Dict[str, Any]], Optional[str]]]]) – See above


	plot_params (Optional[PlotParameters]) – Parameters controlling the plot. Can be overwritten
in plot(). See PlotParameters


	multi_fidelity_params (Optional[MultiFidelityParameters]) – If given, we use a special variant tailored
to multi-fidelity methods (see plot()).


	benchmark_key (Optional[str]) – Key for benchmark in metadata files. Defaults to
“benchmark”. If this is None, there is only a single benchmark,
and all results are merged together


	seed_key (str) – Key for seed in metadata files. Defaults to “seed”.


	with_subdirs (Union[str, List[str], None]) – See above. Defaults to “*”


	datetime_bounds (Union[Tuple[Optional[str], Optional[str]], Dict[str, Tuple[Optional[str], Optional[str]]], None]) – See above


	download_from_s3 (bool) – Should result files be downloaded from S3? This
is supported only if with_subdirs


	s3_bucket (Optional[str]) – Only if download_from_s3 == True. If not given, the
default bucket for the SageMaker session is used









	
plot(benchmark_name=None, seed=0, plot_params=None, file_name=None)

	Creates a plot, whose subfigures should metric data from single
experiments. In general:


	Each trial has its own color, which is cycled through periodically.
The cycling depends on the largest rung level for the trial. This
is to avoid neighboring curves to have the same color




For single-fidelity methods (default, multi_fidelity_params not
given):


	The learning curve for a trial ends with ‘o’. If it reports only
once at the end, this is all that is shown for the trial




For multi-fidelity methods:


	Learning curves are plotted in contiguous chunks of execution. For
pause and resume setups (those in
``multi_fidelity_params.pause_resume_setups), they are interrupted.
Each chunk starts at the epoch after resume and ends at the epoch
where the trial is paused


	Values at rung levels are marked as ‘o’. If this is the furthest
the trial got to, the marker is ‘D’ (diamond)




Results for different setups are plotted as subfigures, either using
the setup in plot_params.subplots, or as columns of a single row.


	Parameters:

	
	benchmark_name (Optional[str]) – Name of benchmark for which to plot results.
Not needed if there is only one benchmark


	seed (int) – Seed number. Defaults to 0


	plot_params (Optional[PlotParameters]) – Parameters controlling the plot. Values provided
here overwrite values provided at construction.


	file_name (Optional[str]) – If given, the figure is stored in a file of this name

















	
class syne_tune.experiments.MultiFidelityParameters(rung_levels, multifidelity_setups)

	Bases: object

Parameters configuring the multi-fidelity version of
TrialsOfExperimentResults.

multifidelity_setups contains names of setups which are multi-fidelity,
the remaining ones are single-fidelity. It can also be a dictionary,
mapping a multi-fidelity setup name to True if this is a pause-and-resume
method (these are visualized differently), False otherwise (early
stopping method).


	Parameters:

	
	rung_levels (List[int]) – See above. Positive integers, increasing


	multifidelity_setups (Union[List[str], Dict[str, bool]]) – See above









	
rung_levels: List[int]

	




	
multifidelity_setups: Union[List[str], Dict[str, bool]]

	




	
check_params(setups)

	








	
syne_tune.experiments.hypervolume_indicator_column_generator(metrics_and_modes, reference_point=None, increment=1)

	Returns generator for new dataframe column containing the best hypervolume
indicator as function of wall-clock time, based on the metrics in
metrics_and_modes (metric names correspond to column names in the
dataframe). For a metric with mode == "max", we use its negative.

This mapping is used to create the dataframe_column_generator argument
of plot(). Since the
current implementation is not incremental and quite slow, if you plot
results for single-fidelity HPO methods, it is strongly recommended to
also use one_result_per_trial=True:

results = ComparativeResults(...)
dataframe_column_generator = hypervolume_indicator_column_generator(
    metrics_and_modes
)
plot_params = PlotParameters(
    metric="hypervolume_indicator",
    mode="max",
)
results.plot(
    benchmark_name=benchmark_name,
    plot_params=plot_params,
    dataframe_column_generator=dataframe_column_generator,
    one_result_per_trial=True,
)






	Parameters:

	
	metrics_and_modes (List[Tuple[str, str]]) – List of (metric, mode), see above


	reference_point (Optional[ndarray]) – Reference point for hypervolume computation. If not
given, a default value is used


	increment (int) – If > 1, the HV indicator is linearly interpolated, this
is faster. Defaults to 1 (no interpolation)






	Returns:

	Dataframe column generator
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syne_tune.experiments.benchmark_definitions.common module


	
class syne_tune.experiments.benchmark_definitions.common.SurrogateBenchmarkDefinition(max_wallclock_time, n_workers, elapsed_time_attr, metric, mode, blackbox_name, dataset_name, max_num_evaluations=None, surrogate=None, surrogate_kwargs=None, add_surrogate_kwargs=None, max_resource_attr=None, datasets=None, fidelities=None, points_to_evaluate=None)

	Bases: object

Meta-data for tabulated benchmark, served by the blackbox repository.

For a standard benchmark, metric and mode are scalars, and there is
a single metric. For a multi-objective benchmark (e.g., constrained HPO,
cost-aware HPO, sampling of Pareto front), metric must be a list with
the names of the different objectives. In this case, mode is a list of
the same size or a scalar.


Note

In Syne Tune experimentation, a benchmark is simply a tuning problem
(training and evaluation code or blackbox, together with defaults).
They are useful beyond benchmarking (i.e., comparing different HPO
methods with each other), in that many experimental studies compare
setups with a single HPO method, but different variations of the
tuning problem of the backend.




	Parameters:

	
	max_wallclock_time (float) – Default value for stopping criterion


	n_workers (int) – Default value for tuner


	elapsed_time_attr (str) – Name of metric reported


	metric (Union[str, List[str]]) – Name of metric reported (or list of several)


	mode (Union[str, List[str]]) – “max” or “min” (or list of several)


	blackbox_name (str) – Name of blackbox, see load_blackbox()


	dataset_name (str) – Dataset (or instance) for blackbox


	max_num_evaluations (Optional[int]) – Default value for stopping criterion


	surrogate (Optional[str]) – Default value for surrogate to be used, see
make_surrogate(). Otherwise: use no surrogate


	surrogate_kwargs (Optional[dict]) – Default value for arguments of surrogate,
see make_surrogate()


	add_surrogate_kwargs (Optional[dict]) – Arguments passed to add_surrogate(). Optional.


	max_resource_attr (Optional[str]) – Internal name between backend and scheduler


	datasets (Optional[List[str]]) – Used in transfer tuning


	fidelities (Optional[List[int]]) – If given, this is a strictly increasing subset of
the fidelity values provided by the surrogate, and only those
will be reported


	points_to_evaluate (Optional[List[Dict[str, Any]]]) – Initial configurations to be suggested
by the scheduler. If your benchmark training code suggests default
values for the hyperparameters, it is good practice serving this
default configuration here.









	
max_wallclock_time: float

	




	
n_workers: int

	




	
elapsed_time_attr: str

	




	
metric: Union[str, List[str]]

	




	
mode: Union[str, List[str]]

	




	
blackbox_name: str

	




	
dataset_name: str

	




	
max_num_evaluations: Optional[int] = None

	




	
surrogate: Optional[str] = None

	




	
surrogate_kwargs: Optional[dict] = None

	




	
add_surrogate_kwargs: Optional[dict] = None

	




	
max_resource_attr: Optional[str] = None

	




	
datasets: Optional[List[str]] = None

	




	
fidelities: Optional[List[int]] = None

	




	
points_to_evaluate: Optional[List[Dict[str, Any]]] = None

	








	
class syne_tune.experiments.benchmark_definitions.common.RealBenchmarkDefinition(script, config_space, max_wallclock_time, n_workers, instance_type, metric, mode, max_resource_attr, framework, resource_attr=None, estimator_kwargs=None, max_num_evaluations=None, points_to_evaluate=None)

	Bases: object

Meta-data for real benchmark, given by code.

For a standard benchmark, metric and mode are scalars, and there is
a single metric. For a multi-objective benchmark (e.g., constrained HPO,
cost-aware HPO, sampling of Pareto front), metric must be a list with
the names of the different objectives. In this case, mode is a list of
the same size or a scalar.


Note

In Syne Tune experimentation, a benchmark is simply a tuning problem
(training and evaluation code or blackbox, together with defaults).
They are useful beyond benchmarking (i.e., comparing different HPO
methods with each other), in that many experimental studies compare
setups with a single HPO method, but different variations of the
tuning problem of the backend.




	Parameters:

	
	script (Path) – Absolute filename of training script


	config_space (Dict[str, Any]) – Default value for configuration space, must include
max_resource_attr


	max_wallclock_time (float) – Default value for stopping criterion


	n_workers (int) – Default value for tuner


	instance_type (str) – Default value for instance type


	metric (str) – Name of metric reported (or list of several)


	mode (str) – “max” or “min” (or list of several)


	max_resource_attr (str) – Name of config_space entry


	framework (str) – SageMaker framework to be used for script. Additional
dependencies in requirements.txt in script.parent









	:param resource_attr Name of attribute reported (required for
	multi-fidelity)






	Parameters:

	
	estimator_kwargs (Optional[dict]) – Additional arguments to SageMaker
estimator, e.g. framework_version


	max_num_evaluations (Optional[int]) – Default value for stopping criterion


	points_to_evaluate (Optional[List[Dict[str, Any]]]) – Initial configurations to be suggested
by the scheduler. If your benchmark training code suggests default
values for the hyperparameters, it is good practice serving this
default configuration here.









	
script: Path

	




	
config_space: Dict[str, Any]

	




	
max_wallclock_time: float

	




	
n_workers: int

	




	
instance_type: str

	




	
metric: str

	




	
mode: str

	




	
max_resource_attr: str

	




	
framework: str

	




	
resource_attr: Optional[str] = None

	




	
estimator_kwargs: Optional[dict] = None

	




	
max_num_evaluations: Optional[int] = None

	




	
points_to_evaluate: Optional[List[Dict[str, Any]]] = None

	










            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.benchmark_definitions.fcnet module


	
syne_tune.experiments.benchmark_definitions.fcnet.fcnet_benchmark(dataset_name)

	






            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.benchmark_definitions.lcbench module


	
syne_tune.experiments.benchmark_definitions.lcbench.lcbench_benchmark(dataset_name, datasets=None)

	The default is to use nearest neighbour regression with K=1. If
you use a more sophisticated surrogate, it is recommended to also
define add_surrogate_kwargs, for example:

surrogate="RandomForestRegressor",
add_surrogate_kwargs={
    "predict_curves": True,
    "fit_differences": ["time"],
},






	Parameters:

	
	dataset_name (str) – Value for dataset_name


	datasets – Used for transfer learning






	Return type:

	SurrogateBenchmarkDefinition



	Returns:

	Definition of benchmark












            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.benchmark_definitions.nas201 module


	
syne_tune.experiments.benchmark_definitions.nas201.nas201_benchmark(dataset_name)

	






            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.benchmark_definitions.yahpo module




            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.launchers package


Submodules



	syne_tune.experiments.launchers.hpo_main_common module
	str2bool()

	Parameter
	Parameter.name

	Parameter.type

	Parameter.help

	Parameter.default

	Parameter.required





	ConfigDict
	ConfigDict.check_if_all_paremeters_present()

	ConfigDict.extra_parameters()

	ConfigDict.expand_base_arguments()

	ConfigDict.from_argparse()

	ConfigDict.from_dict()





	set_logging_level()

	get_metadata()

	extra_metadata()

	config_from_argparse()





	syne_tune.experiments.launchers.hpo_main_local module
	get_benchmark()

	create_objects_for_tuner()

	start_experiment_local_backend()

	main()





	syne_tune.experiments.launchers.hpo_main_sagemaker module
	start_experiment_sagemaker_backend()

	main()
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syne_tune.experiments.launchers.hpo_main_common module


	
syne_tune.experiments.launchers.hpo_main_common.str2bool(v)

	
	Return type:

	bool










	
class syne_tune.experiments.launchers.hpo_main_common.Parameter(name, type, help, default, required=False)

	Bases: object


	
name: str

	




	
type: Any

	




	
help: str

	




	
default: Any

	




	
required: bool = False

	








	
class syne_tune.experiments.launchers.hpo_main_common.ConfigDict(**kwargs)

	Bases: object

Dictinary with arguments for launcher scripts.
Expected params as Parameter(name, type, default value)


	
check_if_all_paremeters_present(desired_parameters)

	Verify that all the parameers present in desired_parameters can be found in this ConfigDict






	
extra_parameters()

	Return all parameters beyond those required
Required are the defauls and those requested in argparse


	Return type:

	List[Dict[str, Any]]










	
expand_base_arguments(extra_base_arguments)

	Expand the list of base argument for this experiment with those in extra_base_arguments






	
static from_argparse(extra_args=None)

	Build the configuration dict from command line arguments


	Parameters:

	extra_args (Optional[List[Dict[str, Any]]]) – Extra arguments for command line parser. Optional



	Return type:

	ConfigDict










	
static from_dict(loaded_config=None)

	Read the config from a dictionary


	Return type:

	ConfigDict














	
syne_tune.experiments.launchers.hpo_main_common.set_logging_level(args)

	




	
syne_tune.experiments.launchers.hpo_main_common.get_metadata(seed, method, experiment_tag, benchmark_name, random_seed, max_size_data_for_model=None, benchmark=None, extra_metadata=None)

	Returns default value for metadata passed to Tuner.


	Parameters:

	
	seed (int) – Seed of repetition


	method (str) – Name of method


	experiment_tag (str) – Tag of experiment


	benchmark_name (str) – Name of benchmark


	random_seed (int) – Master random seed


	max_size_data_for_model (Optional[int]) – Limits number of datapoints for surrogate
model of BO, MOBSTER or HyperTune


	benchmark (Union[SurrogateBenchmarkDefinition, RealBenchmarkDefinition, None]) – Optional. Take n_workers, max_wallclock_time
from there


	extra_metadata (Optional[Dict[str, Any]]) – metadata updated by these at the end. Optional






	Return type:

	Dict[str, Any]



	Returns:

	Default metadata dictionary










	
syne_tune.experiments.launchers.hpo_main_common.extra_metadata(args, extra_args)

	
	Return type:

	Dict[str, Any]










	
syne_tune.experiments.launchers.hpo_main_common.config_from_argparse(extra_args, backend_specific_args)

	Define the configuration directory based on extra arguments


	Return type:

	ConfigDict












            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.launchers.hpo_main_local module


	
syne_tune.experiments.launchers.hpo_main_local.get_benchmark(configuration, benchmark_definitions, **benchmark_kwargs)

	If configuration.benchmark is None and benchmark_definitions maps
to a single benchmark, configuration.benchmark is set to its key.


	Return type:

	RealBenchmarkDefinition










	
syne_tune.experiments.launchers.hpo_main_local.create_objects_for_tuner(configuration, methods, method, benchmark, master_random_seed, seed, verbose, extra_tuning_job_metadata=None, map_method_args=None, extra_results=None, num_gpus_per_trial=1)

	
	Return type:

	Dict[str, Any]










	
syne_tune.experiments.launchers.hpo_main_local.start_experiment_local_backend(configuration, methods, benchmark_definitions, extra_results=None, map_method_args=None, extra_tuning_job_metadata=None)

	Runs sequence of experiments with local backend sequentially.
The loop runs over methods selected from methods and repetitions,

map_method_args can be used to modify method_kwargs for constructing
MethodArguments, depending on
configuration and the method. This allows for extra flexibility to specify specific arguments for chosen methods
Its signature is method_kwargs = map_method_args(configuration, method, method_kwargs),
where method is the name of the baseline.


Note

When this is launched remotely as entry point of a SageMaker training
job (command line --launched_remotely 1), the backend is configured
to write logs and checkpoints to a directory which is not synced to S3.
This is different to the tuner path, which is “/opt/ml/checkpoints”, so
that tuning results are synced to S3. Syncing checkpoints to S3 is not
recommended (it is slow and can lead to failures, since several worker
processes write to the same synced directory).




	Parameters:

	
	configuration (ConfigDict) – ConfigDict with parameters of the experiment.
Must contain all parameters from LOCAL_BACKEND_EXTRA_PARAMETERS


	methods (Dict[str, Callable[[MethodArguments], TrialScheduler]]) – Dictionary with method constructors.


	benchmark_definitions (Callable[..., Dict[str, RealBenchmarkDefinition]]) – Definitions of benchmarks; one is selected from
command line arguments


	extra_results (Optional[ExtraResultsComposer]) – If given, this is used to append extra information to the
results dataframe


	map_method_args (Optional[Callable[[ConfigDict, str, Dict[str, Any]], Dict[str, Any]]]) – See above, optional


	extra_tuning_job_metadata (Optional[Dict[str, Any]]) – Metadata added to the tuner, can be used to manage results













	
syne_tune.experiments.launchers.hpo_main_local.main(methods, benchmark_definitions, extra_args=None, map_method_args=None, extra_results=None)

	Runs sequence of experiments with local backend sequentially. The loop runs
over methods selected from methods and repetitions, both controlled by
command line arguments.

map_method_args can be used to modify method_kwargs for constructing
MethodArguments, depending on
configuration returned by parse_args() and the method. Its
signature is
method_kwargs = map_method_args(configuration, method, method_kwargs),
where method is the name of the baseline. It is called just before the
method is created.


	Parameters:

	
	methods (Dict[str, Callable[[MethodArguments], TrialScheduler]]) – Dictionary with method constructors


	benchmark_definitions (Callable[..., Dict[str, RealBenchmarkDefinition]]) – Definitions of benchmarks; one is selected from
command line arguments


	extra_args (Optional[List[Dict[str, Any]]]) – Extra arguments for command line parser. Optional


	map_method_args (Optional[Callable[[ConfigDict, str, Dict[str, Any]], Dict[str, Any]]]) – See above, optional


	extra_results (Optional[ExtraResultsComposer]) – If given, this is used to append extra information to the
results dataframe















            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.launchers.hpo_main_sagemaker module


	
syne_tune.experiments.launchers.hpo_main_sagemaker.start_experiment_sagemaker_backend(configuration, methods, benchmark_definitions, extra_results=None, map_method_args=None, extra_tuning_job_metadata=None)

	Runs experiment with SageMaker backend.

map_method_args can be used to modify method_kwargs for constructing
MethodArguments, depending on
configuration and the method. This allows for extra flexibility to specify specific arguments for chosen methods
Its signature is method_kwargs = map_method_args(configuration, method, method_kwargs),
where method is the name of the baseline.


	Parameters:

	
	configuration (ConfigDict) – ConfigDict with parameters of the experiment.
Must contain all parameters from SAGEMAKER_BACKEND_EXTRA_PARAMETERS


	methods (Dict[str, Callable[[MethodArguments], TrialScheduler]]) – Dictionary with method constructors.


	benchmark_definitions (Callable[..., Dict[str, RealBenchmarkDefinition]]) – Definitions of benchmarks; one is selected from
command line arguments


	extra_results (Optional[ExtraResultsComposer]) – If given, this is used to append extra information to the
results dataframe


	map_method_args (Optional[Callable[[ConfigDict, str, Dict[str, Any]], Dict[str, Any]]]) – See above, optional


	extra_tuning_job_metadata (Optional[Dict[str, Any]]) – Metadata added to the tuner, can be used to manage results













	
syne_tune.experiments.launchers.hpo_main_sagemaker.main(methods, benchmark_definitions, extra_args=None, map_method_args=None, extra_results=None)

	Runs experiment with SageMaker backend.

Command line arguments must specify a single benchmark, method, and seed,
for example --method ASHA --num_seeds 5 --start_seed 4 starts experiment
with seed=4, or --method ASHA --num_seeds 1 starts experiment with
seed=0. Here, ASHA must be key in methods.

map_method_args can be used to modify method_kwargs for constructing
MethodArguments, depending on
configuration returned by parse_args() and the method. Its
signature is
method_kwargs = map_method_args(configuration, method, method_kwargs),
where method is the name of the baseline. It is called just before the
method is created.


	Parameters:

	
	methods (Dict[str, Callable[[MethodArguments], TrialScheduler]]) – Dictionary with method constructors


	benchmark_definitions (Callable[..., Dict[str, RealBenchmarkDefinition]]) – Definitions of benchmark; one is selected from
command line arguments


	extra_args (Optional[List[Dict[str, Any]]]) – Extra arguments for command line parser. Optional


	map_method_args (Optional[Callable[[ConfigDict, str, Dict[str, Any]], Dict[str, Any]]]) – See above. Needed if extra_args is given


	extra_results (Optional[ExtraResultsComposer]) – If given, this is used to append extra information to the
results dataframe















            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.launchers.hpo_main_simulator module


	
syne_tune.experiments.launchers.hpo_main_simulator.is_dict_of_dict(benchmark_definitions)

	
	Return type:

	bool










	
syne_tune.experiments.launchers.hpo_main_simulator.get_transfer_learning_evaluations(blackbox_name, test_task, datasets, n_evals=None)

	
	Parameters:

	
	blackbox_name (str) – name of blackbox


	test_task (str) – task where the performance would be tested, it is excluded from transfer-learning evaluations


	datasets (Optional[List[str]]) – subset of datasets to consider, only evaluations from those datasets are provided to








transfer-learning methods. If none, all datasets are used.
:type n_evals: Optional[int]
:param n_evals: maximum number of evaluations to be returned
:rtype: Dict[str, Any]
:return:






	
syne_tune.experiments.launchers.hpo_main_simulator.start_experiment_simulated_backend(configuration, methods, benchmark_definitions, extra_results=None, map_method_args=None, extra_tuning_job_metadata=None, use_transfer_learning=False)

	Runs sequence of experiments with simulator backend sequentially. The loop
runs over methods selected from methods, repetitions and benchmarks
selected from benchmark_definitions

map_method_args can be used to modify method_kwargs for constructing
MethodArguments, depending on
configuration and the method. This allows for extra flexibility to specify specific arguments for chosen methods
Its signature is method_kwargs = map_method_args(configuration, method, method_kwargs),
where method is the name of the baseline.


	Parameters:

	
	configuration (ConfigDict) – ConfigDict with parameters of the experiment.
Must contain all parameters from LOCAL_LOCAL_SIMULATED_BENCHMARK_REQUIRED_PARAMETERS


	methods (Dict[str, Callable[[MethodArguments], TrialScheduler]]) – Dictionary with method constructors.


	benchmark_definitions (Union[Dict[str, SurrogateBenchmarkDefinition], Dict[str, Dict[str, SurrogateBenchmarkDefinition]]]) – Definitions of benchmarks; one is selected from
command line arguments


	extra_results (Optional[ExtraResultsComposer]) – If given, this is used to append extra information to the
results dataframe


	map_method_args (Optional[Callable[[ConfigDict, str, Dict[str, Any]], Dict[str, Any]]]) – See above, optional


	extra_tuning_job_metadata (Optional[Dict[str, Any]]) – Metadata added to the tuner, can be used to manage results


	use_transfer_learning (bool) – If True, we use transfer tuning. Defaults to
False













	
syne_tune.experiments.launchers.hpo_main_simulator.main(methods, benchmark_definitions, extra_args=None, map_method_args=None, extra_results=None, use_transfer_learning=False)

	Runs sequence of experiments with simulator backend sequentially. The loop
runs over methods selected from methods, repetitions and benchmarks
selected from benchmark_definitions, with the range being controlled by
command line arguments.

map_method_args can be used to modify method_kwargs for constructing
MethodArguments, depending on
configuration returned by parse_args() and the method. Its
signature is
method_kwargs = map_method_args(configuration, method, method_kwargs),
where method is the name of the baseline. It is called just before the
method is created.


	Parameters:

	
	methods (Dict[str, Callable[[MethodArguments], TrialScheduler]]) – Dictionary with method constructors


	benchmark_definitions (Union[Dict[str, SurrogateBenchmarkDefinition], Dict[str, Dict[str, SurrogateBenchmarkDefinition]]]) – Definitions of benchmarks


	extra_args (Optional[List[Dict[str, Any]]]) – Extra arguments for command line parser. Optional


	map_method_args (Optional[Callable[[ConfigDict, str, Dict[str, Any]], Dict[str, Any]]]) – See above. Needed if extra_args given


	extra_results (Optional[ExtraResultsComposer]) – If given, this is used to append extra information to the
results dataframe


	use_transfer_learning (bool) – If True, we use transfer tuning. Defaults to
False















            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.launchers.launch_remote_common module


	
syne_tune.experiments.launchers.launch_remote_common.sagemaker_estimator_args(entry_point, experiment_tag, tuner_name, benchmark=None, sagemaker_backend=False, source_dependencies=None)

	Returns SageMaker estimator keyword arguments for remote tuning job.

Note: We switch off SageMaker profiler and debugger, as both are not needed
and consume extra resources and may introduce instabilities.


	Parameters:

	
	entry_point (Path) – Script for running HPO experiment, used for entry_point
and source_dir arguments


	experiment_tag (str) – Tag of experiment, used to create checkpoint_s3_uri


	tuner_name (str) – Name of tuner, used to create checkpoint_s3_uri


	benchmark (Union[SurrogateBenchmarkDefinition, RealBenchmarkDefinition, None]) – Benchmark definition, optional


	sagemaker_backend (bool) – Is remote tuning job running the SageMaker backend?
If not, it either runs local or simulator backend. Defaults to False


	source_dependencies (Optional[List[str]]) – If given, these are additional source dependencies
passed to the SageMaker estimator






	Return type:

	Dict[str, Any]



	Returns:

	Keyword arguments for SageMaker estimator










	
syne_tune.experiments.launchers.launch_remote_common.fit_sagemaker_estimator(backoff_wait_time, estimator, ntimes_resource_wait=100, **kwargs)

	Runs estimator.fit(**kwargs). If backoff_wait_time > 0, we make sure
that if fit fails with ClientError of type “ResourceLimitExceeded”,
we wait for backoff_wait_time seconds and try again (up to
ntimes_resource_wait times).

If backoff_wait_time <= 0, the call of fit is not wrapped.


	Parameters:

	
	backoff_wait_time (int) – See above.


	estimator (EstimatorBase) – SageMaker estimator to call fit for


	ntimes_resource_wait (int) – Maximum number of retries


	kwargs – Arguments for estimator.fit















            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.launchers.launch_remote_local module




            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.launchers.launch_remote_sagemaker module




            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.launchers.launch_remote_simulator module


	
syne_tune.experiments.launchers.launch_remote_simulator.get_hyperparameters(seed, method, experiment_tag, random_seed, configuration)

	Compose hyperparameters for SageMaker training job


	Parameters:

	
	seed (int) – Seed of repetition


	method (str) – Method name


	experiment_tag (str) – Tag of experiment


	random_seed (int) – Master random seed


	configuration (ConfigDict) – Configuration for the job






	Return type:

	Dict[str, Any]



	Returns:

	Dictionary of hyperparameters










	
syne_tune.experiments.launchers.launch_remote_simulator.launch_remote(entry_point, methods, benchmark_definitions, source_dependencies=None, extra_args=None, is_expensive_method=None)

	Launches sequence of SageMaker training jobs, each running an experiment
with the simulator backend.

The loop runs over methods selected from methods. Different repetitions
(seeds) are run sequentially in the remote job. However, if
is_expensive_method(method_name) is true, we launch different remote
jobs for every seed for this particular method. This is to cater for
methods which are themselves expensive to run (e.g., involving Gaussian
process based Bayesian optimization).

If benchmark_definitions is a single-level dictionary and no benchmark
is selected on the command line, then all benchmarks are run sequentially
in the remote job. However, if benchmark_definitions is two-level nested,
we loop over the outer level and start separate remote jobs, each of which
iterates over its inner level of benchmarks. This is useful if the number
of benchmarks to iterate over is large.


	Parameters:

	
	entry_point (Path) – Script for running the experiment


	methods (Dict[str, Any]) – Dictionary with method constructors; one is selected from
command line arguments


	benchmark_definitions (Union[Dict[str, SurrogateBenchmarkDefinition], Dict[str, Dict[str, SurrogateBenchmarkDefinition]]]) – Definitions of benchmarks, can be nested
(see above)


	source_dependencies (Optional[List[str]]) – If given, these are source dependencies for the
SageMaker estimator, on top of Syne Tune itself


	extra_args (Optional[List[Dict[str, Any]]]) – Extra arguments for command line parser, optional


	is_expensive_method (Optional[Callable[[str], bool]]) – See above. The default is a predicative always
returning False (no method is expensive)













	
syne_tune.experiments.launchers.launch_remote_simulator.launch_remote_experiments_simulator(configuration, entry_point, methods, benchmark_definitions, source_dependencies, is_expensive_method=None)

	Launches sequence of SageMaker training jobs, each running an experiment
with the simulator backend.

The loop runs over methods selected from methods. Different repetitions
(seeds) are run sequentially in the remote job. However, if
is_expensive_method(method_name) is true, we launch different remote
jobs for every seed for this particular method. This is to cater for
methods which are themselves expensive to run (e.g., involving Gaussian
process based Bayesian optimization).

If benchmark_definitions is a single-level dictionary and no benchmark
is selected on the command line, then all benchmarks are run sequentially
in the remote job. However, if benchmark_definitions is two-level nested,
we loop over the outer level and start separate remote jobs, each of which
iterates over its inner level of benchmarks. This is useful if the number
of benchmarks to iterate over is large.


	Parameters:

	
	configuration (ConfigDict) – ConfigDict with parameters of the benchmark.
Must contain all parameters from
hpo_main_simulator.LOCAL_LOCAL_SIMULATED_BENCHMARK_REQUIRED_PARAMETERS


	entry_point (Path) – Script for running the experiment


	methods (Dict[str, Callable[[MethodArguments], TrialScheduler]]) – Dictionary with method constructors; one is selected from
command line arguments


	benchmark_definitions (Union[Dict[str, SurrogateBenchmarkDefinition], Dict[str, Dict[str, SurrogateBenchmarkDefinition]]]) – Definitions of benchmarks; one is selected from
command line arguments


	is_expensive_method (Optional[Callable[[str], bool]]) – See above. The default is a predicative always
returning False (no method is expensive)















            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.launchers.utils module


	
syne_tune.experiments.launchers.utils.filter_none(a)

	
	Return type:

	dict










	
syne_tune.experiments.launchers.utils.sync_from_s3_command(experiment_name, s3_bucket=None)

	
	Return type:

	str










	
syne_tune.experiments.launchers.utils.message_sync_from_s3(experiment_tag)

	
	Return type:

	str










	
syne_tune.experiments.launchers.utils.combine_requirements_txt(synetune_requirements_file, script)

	
	Return type:

	Path










	
syne_tune.experiments.launchers.utils.ERR_MSG(fname)

	
	Return type:

	str










	
syne_tune.experiments.launchers.utils.find_or_create_requirements_txt(entry_point, requirements_fname=None)

	
	Return type:

	Path










	
syne_tune.experiments.launchers.utils.get_master_random_seed(random_seed)

	
	Return type:

	int










	
syne_tune.experiments.launchers.utils.effective_random_seed(master_random_seed, seed)

	
	Return type:

	int












            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.visualization package


Submodules



	syne_tune.experiments.visualization.aggregate_results module
	fill_trajectory()

	compute_mean_and_ci()

	compute_median_percentiles()

	compute_iqm_bootstrap()

	aggregate_and_errors_over_time()





	syne_tune.experiments.visualization.multiobjective module
	hypervolume_indicator_column_generator()





	syne_tune.experiments.visualization.pareto_set module
	get_pareto_optimal()

	get_pareto_set()





	syne_tune.experiments.visualization.plot_per_trial module
	MultiFidelityParameters
	MultiFidelityParameters.rung_levels

	MultiFidelityParameters.multifidelity_setups

	MultiFidelityParameters.check_params()





	TrialsOfExperimentResults
	TrialsOfExperimentResults.plot()









	syne_tune.experiments.visualization.plotting module
	SubplotParameters
	SubplotParameters.nrows

	SubplotParameters.ncols

	SubplotParameters.titles

	SubplotParameters.title_each_figure

	SubplotParameters.kwargs

	SubplotParameters.legend_no

	SubplotParameters.xlims

	SubplotParameters.subplot_indices

	SubplotParameters.merge_defaults()





	ShowTrialParameters
	ShowTrialParameters.setup_name

	ShowTrialParameters.trial_id

	ShowTrialParameters.new_setup_name

	ShowTrialParameters.merge_defaults()





	PlotParameters
	PlotParameters.metric

	PlotParameters.mode

	PlotParameters.title

	PlotParameters.xlabel

	PlotParameters.ylabel

	PlotParameters.xlim

	PlotParameters.ylim

	PlotParameters.metric_multiplier

	PlotParameters.convert_to_min

	PlotParameters.tick_params

	PlotParameters.aggregate_mode

	PlotParameters.dpi

	PlotParameters.grid

	PlotParameters.subplots

	PlotParameters.show_init_trials

	PlotParameters.merge_defaults()





	group_results_dataframe()

	filter_final_row_per_trial()

	enrich_results()

	ComparativeResults
	ComparativeResults.metadata_values()

	ComparativeResults.plot()









	syne_tune.experiments.visualization.results_utils module
	create_index_for_result_files()

	load_results_dataframe_per_benchmark()

	download_result_files_from_s3()













            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.visualization.aggregate_results module


	
syne_tune.experiments.visualization.aggregate_results.fill_trajectory(performance_list, time_list, replace_nan=nan)

	
	Return type:

	(ndarray, ndarray)










	
syne_tune.experiments.visualization.aggregate_results.compute_mean_and_ci(metrics_runs, time)

	Aggregate is the mean, error bars are empirical estimate of 95% confidence
interval for the true mean.

Note: Error bar scale depends on number of runs n via 1 / sqrt(n).


	Return type:

	Dict[str, ndarray]










	
syne_tune.experiments.visualization.aggregate_results.compute_median_percentiles(metrics_runs, time)

	Aggregate is the median, error bars are 25 and 75 percentiles.

Note: Error bar scale does not depend on number of runs.


	Return type:

	Dict[str, ndarray]










	
syne_tune.experiments.visualization.aggregate_results.compute_iqm_bootstrap(metrics_runs, time)

	The aggregate is the interquartile mean (IQM). Error bars are bootstrap
estimate of 95% confidence interval for true IQM. This is the normal
interval, based on the bootstrap variance estimate. While other bootstrap
CI estimates are available, they are more expensive to compute.

Note: Error bar scale depends on number of runs n via 1 / sqrt(n).


	Return type:

	Dict[str, ndarray]










	
syne_tune.experiments.visualization.aggregate_results.aggregate_and_errors_over_time(errors, runtimes, mode='mean_and_ci')

	
	Return type:

	Dict[str, ndarray]












            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.visualization.multiobjective module


	
syne_tune.experiments.visualization.multiobjective.hypervolume_indicator_column_generator(metrics_and_modes, reference_point=None, increment=1)

	Returns generator for new dataframe column containing the best hypervolume
indicator as function of wall-clock time, based on the metrics in
metrics_and_modes (metric names correspond to column names in the
dataframe). For a metric with mode == "max", we use its negative.

This mapping is used to create the dataframe_column_generator argument
of plot(). Since the
current implementation is not incremental and quite slow, if you plot
results for single-fidelity HPO methods, it is strongly recommended to
also use one_result_per_trial=True:

results = ComparativeResults(...)
dataframe_column_generator = hypervolume_indicator_column_generator(
    metrics_and_modes
)
plot_params = PlotParameters(
    metric="hypervolume_indicator",
    mode="max",
)
results.plot(
    benchmark_name=benchmark_name,
    plot_params=plot_params,
    dataframe_column_generator=dataframe_column_generator,
    one_result_per_trial=True,
)






	Parameters:

	
	metrics_and_modes (List[Tuple[str, str]]) – List of (metric, mode), see above


	reference_point (Optional[ndarray]) – Reference point for hypervolume computation. If not
given, a default value is used


	increment (int) – If > 1, the HV indicator is linearly interpolated, this
is faster. Defaults to 1 (no interpolation)






	Returns:

	Dataframe column generator












            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.visualization.pareto_set module


	
syne_tune.experiments.visualization.pareto_set.get_pareto_optimal(costs)

	Find the pareto-optimal points
:type costs: ndarray
:param costs: (n_points, m_cost_values) array
:return: (n_points, 1) indicator if point is on pareto front or not.






	
syne_tune.experiments.visualization.pareto_set.get_pareto_set(results, metrics, mode='min')

	Returns a subset of the results frame consisting of all Pareto optimal points.
:type results: DataFrame
:param results: pandas.DataFrame Experiment results dataframe generated by the Tuner object
:type metrics: List[str]
:param metrics: List that contains all metrics that should be optimized
:type mode: Union[str, List[str], None]
:param mode: Defines for each metric whether to maximize or minimize
:return: DataFrame with Pareto set








            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.visualization.plot_per_trial module


	
class syne_tune.experiments.visualization.plot_per_trial.MultiFidelityParameters(rung_levels, multifidelity_setups)

	Bases: object

Parameters configuring the multi-fidelity version of
TrialsOfExperimentResults.

multifidelity_setups contains names of setups which are multi-fidelity,
the remaining ones are single-fidelity. It can also be a dictionary,
mapping a multi-fidelity setup name to True if this is a pause-and-resume
method (these are visualized differently), False otherwise (early
stopping method).


	Parameters:

	
	rung_levels (List[int]) – See above. Positive integers, increasing


	multifidelity_setups (Union[List[str], Dict[str, bool]]) – See above









	
rung_levels: List[int]

	




	
multifidelity_setups: Union[List[str], Dict[str, bool]]

	




	
check_params(setups)

	








	
class syne_tune.experiments.visualization.plot_per_trial.TrialsOfExperimentResults(experiment_names, setups, metadata_to_setup, plot_params=None, multi_fidelity_params=None, benchmark_key='benchmark', seed_key='seed', with_subdirs='*', datetime_bounds=None, download_from_s3=False, s3_bucket=None)

	Bases: object

This class loads, processes, and plots metric results for single experiments,
where the curves for different trials have different colours.

Compared to ComparativeResults, each subfigure
uses data from a single experiment (one benchmark, one seed, one setup). Both
benchmark and seed need to be chosen in plot(). If there are different
setups, they give rise to subfigures.

If plot_params.subplots is not given, the arrangement is one row with
columns corresponding to setups, and setup names as titles. Specify
plot_params.subplots in order to change this arrangement (e.g., to have
more than one row). Setups can be selected by using
plot_params.subplots.subplot_indices. Also, if
plot_params.subplots.titles is not given, we use setup names, and each
subplot gets its own title (plot_params.subplots.title_each_figure is
ignored).

For plot_params, we use the same
PlotParameters as in
ComparativeResults, but some fields are not
used here (title, aggregate_mode, show_one_trial,
subplots.legend_no, subplots.xlims).


	Parameters:

	
	experiment_names (Tuple[str, ...]) – Tuple of experiment names (prefixes, without the
timestamps)


	setups (Iterable[str]) – Possible values of setup names


	metadata_to_setup (Union[Callable[[Dict[str, Any]], Optional[str]], Dict[str, Callable[[Dict[str, Any]], Optional[str]]]]) – See above


	plot_params (Optional[PlotParameters]) – Parameters controlling the plot. Can be overwritten
in plot(). See PlotParameters


	multi_fidelity_params (Optional[MultiFidelityParameters]) – If given, we use a special variant tailored
to multi-fidelity methods (see plot()).


	benchmark_key (Optional[str]) – Key for benchmark in metadata files. Defaults to
“benchmark”. If this is None, there is only a single benchmark,
and all results are merged together


	seed_key (str) – Key for seed in metadata files. Defaults to “seed”.


	with_subdirs (Union[str, List[str], None]) – See above. Defaults to “*”


	datetime_bounds (Union[Tuple[Optional[str], Optional[str]], Dict[str, Tuple[Optional[str], Optional[str]]], None]) – See above


	download_from_s3 (bool) – Should result files be downloaded from S3? This
is supported only if with_subdirs


	s3_bucket (Optional[str]) – Only if download_from_s3 == True. If not given, the
default bucket for the SageMaker session is used









	
plot(benchmark_name=None, seed=0, plot_params=None, file_name=None)

	Creates a plot, whose subfigures should metric data from single
experiments. In general:


	Each trial has its own color, which is cycled through periodically.
The cycling depends on the largest rung level for the trial. This
is to avoid neighboring curves to have the same color




For single-fidelity methods (default, multi_fidelity_params not
given):


	The learning curve for a trial ends with ‘o’. If it reports only
once at the end, this is all that is shown for the trial




For multi-fidelity methods:


	Learning curves are plotted in contiguous chunks of execution. For
pause and resume setups (those in
``multi_fidelity_params.pause_resume_setups), they are interrupted.
Each chunk starts at the epoch after resume and ends at the epoch
where the trial is paused


	Values at rung levels are marked as ‘o’. If this is the furthest
the trial got to, the marker is ‘D’ (diamond)




Results for different setups are plotted as subfigures, either using
the setup in plot_params.subplots, or as columns of a single row.


	Parameters:

	
	benchmark_name (Optional[str]) – Name of benchmark for which to plot results.
Not needed if there is only one benchmark


	seed (int) – Seed number. Defaults to 0


	plot_params (Optional[PlotParameters]) – Parameters controlling the plot. Values provided
here overwrite values provided at construction.


	file_name (Optional[str]) – If given, the figure is stored in a file of this name



















            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.visualization.plotting module


	
class syne_tune.experiments.visualization.plotting.SubplotParameters(nrows=None, ncols=None, titles=None, title_each_figure=None, kwargs=None, legend_no=None, xlims=None, subplot_indices=None)

	Bases: object

Parameters specifying an arrangement of subplots. kwargs is mandatory.


	Parameters:

	
	nrows (Optional[int]) – Number of rows of subplot matrix


	ncols (Optional[int]) – Number of columns of subplot matrix


	titles (Optional[List[str]]) – If given, these are titles for each column in the
arrangement of subplots. If title_each_figure == True, these
are titles for each subplot. If titles is not given, then
PlotParameters.title is printed on top of the leftmost column


	title_each_figure (Optional[bool]) – See titles, defaults to False


	kwargs (Optional[Dict[str, Any]]) – Extra arguments for plt.subplots, apart from “nrows” and “ncols”


	legend_no (Optional[List[int]]) – Subplot indices where legend is to be shown. Defaults
to [] (no legends shown). This is not relative to subplot_indices


	xlims (Optional[List[int]]) – If this is given, must be a list with one entry per subfigure.
In this case, the global xlim is overwritten by
(0, xlims[subplot_no]). If subplot_indices is given, xlims
must have the same length, and xlims[j] refers to subplot index
subplot_indices[j] then


	subplot_indices (Optional[List[int]]) – If this is given, we only plot subfigures with indices
in this list, and in this order. Otherwise, we plot subfigures 0, 1, 2, …









	
nrows: int = None

	




	
ncols: int = None

	




	
titles: List[str] = None

	




	
title_each_figure: bool = None

	




	
kwargs: Dict[str, Any] = None

	




	
legend_no: List[int] = None

	




	
xlims: List[int] = None

	




	
subplot_indices: List[int] = None

	




	
merge_defaults(default_params)

	
	Return type:

	SubplotParameters














	
class syne_tune.experiments.visualization.plotting.ShowTrialParameters(setup_name=None, trial_id=None, new_setup_name=None)

	Bases: object

Parameters specifying the show_init_trials feature. This features adds
one more curve to each subplot where setup_name features. This curve
shows best metric value found for trials with ID <= trial_id. The
right-most value is extended as constant line across the remainder of the
x-axis, for better visibility.


	Parameters:

	
	setup_name (Optional[str]) – Setup from which the trial performance is taken


	trial_id (Optional[int]) – ID of trial. Defaults to 0. If this is positive, data
from trials with IDs <= trial_id are shown


	new_setup_name (Optional[str]) – Name of the additional curve in legends









	
setup_name: str = None

	




	
trial_id: int = None

	




	
new_setup_name: str = None

	




	
merge_defaults(default_params)

	
	Return type:

	ShowTrialParameters














	
class syne_tune.experiments.visualization.plotting.PlotParameters(metric=None, mode=None, title=None, xlabel=None, ylabel=None, xlim=None, ylim=None, metric_multiplier=None, convert_to_min=None, tick_params=None, aggregate_mode=None, dpi=None, grid=None, subplots=None, show_init_trials=None)

	Bases: object

Parameters specifying the figure.

If convert_to_min == True, then smaller is better in plots. An original
metric value metric_val is converted as
metric_multiplier * metric_val if mode == "min",
and as 1 - metric_multiplier * metric_val if mode == "max".
If convert_to_min == False`, we always convert as
metric_multiplier * metric_val, so that larger is better if
mode == "max".


	Parameters:

	
	metric (Optional[str]) – Name of metric, mandatory


	mode (Optional[str]) – See above, “min” or “max”. Defaults to “min” if not given


	title (Optional[str]) – Title of plot. If subplots is used, see
SubplotParameters


	xlabel (Optional[str]) – Label for x axis. If subplots is used, this is
printed below each column. Defaults to DEFAULT_XLABEL


	ylabel (Optional[str]) – Label for y axis. If subplots is used, this is
printed left of each row


	xlim (Optional[Tuple[float, float]]) – (x_min, x_max) for x axis. If subplots is used, see
SubplotParameters


	ylim (Optional[Tuple[float, float]]) – (y_min, y_max) for y axis.


	metric_multiplier (Optional[float]) – See above. Defaults to 1


	convert_to_min (Optional[bool]) – See above. Defaults to True


	tick_params (Optional[Dict[str, Any]]) – Params for ax.tick_params


	aggregate_mode (Optional[str]) – How are values across seeds aggregated?


	”mean_and_ci”: Mean and 0.95 normal confidence interval


	”median_percentiles”: Mean and 25, 75 percentiles


	”iqm_bootstrap”: Interquartile mean and 0.95 confidence interval
based on the bootstrap variance estimate




Defaults to DEFAULT_AGGREGATE_MODE




	dpi (Optional[int]) – Resolution of figure in DPI. Defaults to 200


	grid (Optional[bool]) – Figure with grid? Defaults to False


	subplots (Optional[SubplotParameters]) – If given, the figure consists of several subplots. See
SubplotParameters


	show_init_trials (Optional[ShowTrialParameters]) – See ShowTrialParameters









	
metric: str = None

	




	
mode: str = None

	




	
title: str = None

	




	
xlabel: str = None

	




	
ylabel: str = None

	




	
xlim: Tuple[float, float] = None

	




	
ylim: Tuple[float, float] = None

	




	
metric_multiplier: float = None

	




	
convert_to_min: bool = None

	




	
tick_params: Dict[str, Any] = None

	




	
aggregate_mode: str = None

	




	
dpi: int = None

	




	
grid: bool = None

	




	
subplots: SubplotParameters = None

	




	
show_init_trials: ShowTrialParameters = None

	




	
merge_defaults(default_params)

	
	Return type:

	PlotParameters














	
syne_tune.experiments.visualization.plotting.group_results_dataframe(df)

	
	Return type:

	Dict[Tuple[int, str], List[Tuple[str, DataFrame]]]










	
syne_tune.experiments.visualization.plotting.filter_final_row_per_trial(grouped_dfs)

	We filter rows such that only one row per trial ID remains, namely the
one with the largest time stamp. This makes sense for single-fidelity
methods, where reports have still been done after every epoch.


	Return type:

	Dict[Tuple[int, str], List[Tuple[str, DataFrame]]]










	
syne_tune.experiments.visualization.plotting.enrich_results(grouped_dfs, column_name, dataframe_column_generator)

	
	Return type:

	Dict[Tuple[int, str], List[Tuple[str, DataFrame]]]










	
class syne_tune.experiments.visualization.plotting.ComparativeResults(experiment_names, setups, num_runs, metadata_to_setup, plot_params=None, metadata_to_subplot=None, benchmark_key='benchmark', with_subdirs='*', datetime_bounds=None, metadata_keys=None, metadata_subplot_level=False, download_from_s3=False, s3_bucket=None)

	Bases: object

This class loads, processes, and plots results of a comparative study,
combining several experiments for different methods, seeds, and
benchmarks (optional). Note that an experiment corresponds to one run
of HPO, resulting in files ST_METADATA_FILENAME
for metadata, and ST_RESULTS_DATAFRAME_FILENAME
for time-stamped results.

There is one comparative plot per benchmark (aggregation of results
across benchmarks are not supported here). Results are grouped by
setup (which usually equates to method), and then summary statistics are
shown for each setup as function of wall-clock time. The plot can also
have several subplots, in which case results are first grouped into
subplot number, then setup.

If benchmark_key is None, there is only a single benchmark, and all
results are merged together.

Both setup name and subplot number (optional) can be configured by the
user, as function of metadata written for each experiment. The functions
metadata_to_setup and metadata_to_subplot (optional) can also be
used for filtering: results of experiments for which any of them returns
None, are not used.

When grouping results w.r.t. benchmark name and setup name, we should end
up with num_runs experiments. These are (typically) random repetitions
with different seeds. If after grouping, a different number of experiments
is found for some setup, a warning message is printed. In this case, we
recommend to check the completeness of result files. Common reasons:


	Less than num_runs experiments found. Experiments failed, or files
were not properly synced.


	More than num_runs experiments found. This happens if initial
experiments for the study failed, but ended up writing results. This can
be fixed by either removing the result files, or by using
datetime_bounds (since initial failed experiments ran first).




Result files have the path
f"{experiment_path()}{ename}/{patt}/{ename}-*/", where path is from
with_subdirs, and ename from experiment_names. The default is
with_subdirs="*". If with_subdirs is None, result files have
the path f"{experiment_path()}{ename}-*/". Use this if your experiments
have been run locally.

If datetime_bounds is given, it contains a tuple of strings
(lower_time, upper_time), or a dictionary mapping names from
experiment_names to such tuples. Both strings are time-stamps in the
format ST_DATETIME_FORMAT (example:
“2023-03-19-22-01-57”), and each can be None as well. This serves to
filter out any result whose time-stamp does not fall within the interval
(both sides are inclusive), where None means the interval is open on
that side. This feature is useful to filter out results of erroneous
attempts.

If metadata_keys is given, it contains a list of keys into the
metadata. In this case, metadata values for these keys are extracted and
can be retrieved with metadata_values(). In fact,
metadata_values(benchmark_name) returns a nested dictionary, where
result[key][setup_name] is a list of values. If
metadata_subplot_level is True and metadata_to_subplot is
given, the result structure is result[key][setup_name][subplot_no].
This should be set if different subplots share the same setup names,
since otherwise metadata values are only grouped by setup name.


	Parameters:

	
	experiment_names (Tuple[str, ...]) – Tuple of experiment names (prefixes, without the
timestamps)


	setups (Iterable[str]) – Possible values of setup names


	num_runs (int) – When grouping results w.r.t. benchmark name and setup
name, we should end up with this many experiments. See above


	metadata_to_setup (Union[Callable[[Dict[str, Any]], Optional[str]], Dict[str, Callable[[Dict[str, Any]], Optional[str]]]]) – See above


	plot_params (Optional[PlotParameters]) – Parameters controlling the plot. Can be overwritten
in plot(). See PlotParameters


	metadata_to_subplot (Optional[Callable[[Dict[str, Any]], Optional[int]]]) – See above. Optional


	benchmark_key (Optional[str]) – Key for benchmark in metadata files. Defaults to
“benchmark”. If this is None, there is only a single benchmark,
and all results are merged together


	with_subdirs (Union[str, List[str], None]) – See above. Defaults to “*”


	datetime_bounds (Union[Tuple[Optional[str], Optional[str]], Dict[str, Tuple[Optional[str], Optional[str]]], None]) – See above


	metadata_keys (Optional[List[str]]) – See above


	metadata_subplot_level (bool) – See above. Defaults to False


	download_from_s3 (bool) – Should result files be downloaded from S3? This
is supported only if with_subdirs


	s3_bucket (Optional[str]) – Only if download_from_s3 == True. If not given, the
default bucket for the SageMaker session is used









	
metadata_values(benchmark_name=None)

	The nested dictionary returned has the structure
result[key][setup_name], or result[key][setup_name][subplot_no]
if metadata_subplot_level == True.


	Parameters:

	benchmark_name (Optional[str]) – Name of benchmark



	Return type:

	Dict[str, Any]



	Returns:

	Nested dictionary with meta-data values










	
plot(benchmark_name=None, plot_params=None, file_name=None, extra_results_keys=None, dataframe_column_generator=None, one_result_per_trial=False)

	Create comparative plot from results of all experiments collected at
construction, for benchmark benchmark_name (if there is a single
benchmark only, this need not be given).

If plot_params.show_init_trials is given, the best metric value
curve for the data from trials <=  plot_params.show_init_trials.trial_id
in a particular setup plot_params.show_init_trials.setup_name is
shown in all subplots the setup is contained in. This is useful to
contrast the performance of methods against the performance for one
particular trial, for example the initial configuration (i.e., to show
how much this can be improved upon). The final metric value of this extra
curve is extended until the end of the horizontal range, in order to make
it visible. The corresponding curve is labeled with
plot_params.show_init_trials.new_setup_name in the legend.

If extra_results_keys is given, these are column names in the result
dataframe. For each setup and seed, we collect the values for the
largest time stamp. We return a nested dictionary extra_results, so
that extra_results[setup_name][key] contains values (over seeds),
where key is in extra_results_keys. If metadata_subplot_level
is True and metadata_to_subplot is given, the structure is
extra_results[setup_name][subplot_no][key].

If dataframe_column_generator is given, it maps a result dataframe
for a single experiment to a new column named plot_params.metric.
This is applied before computing cumulative maximum or minimum and
aggregation over seeds. This way, we can plot derived metrics which are
not contained in the results as columns. Note that the transformed
dataframe is not retained.


	Parameters:

	
	benchmark_name (Optional[str]) – Name of benchmark for which to plot results.
Not needed if there is only one benchmark


	plot_params (Optional[PlotParameters]) – Parameters controlling the plot. Values provided
here overwrite values provided at construction.


	file_name (Optional[str]) – If given, the figure is stored in a file of this name


	extra_results_keys (Optional[List[str]]) – See above, optional


	dataframe_column_generator (Optional[Callable[[DataFrame], Series]]) – See above, optional


	one_result_per_trial (bool) – If True, results for each experiment
are filtered down to one row per trial (the one with the largest
time stamp). This is useful for results from a single-fidelity
method, where the training script reported results after every
epoch.






	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with “fig”, “axs” (for further processing). If
extra_results_keys, “extra_results” entry as stated above
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.visualization.results_utils module


	
syne_tune.experiments.visualization.results_utils.create_index_for_result_files(experiment_names, metadata_to_setup, metadata_to_subplot=None, metadata_keys=None, metadata_subplot_level=False, benchmark_key='benchmark', with_subdirs='*', datetime_bounds=None, seed_key=None)

	Helper function for ComparativeResults.

Runs over all result directories for experiments of a comparative study.
For each experiment, we read the metadata file, extract the benchmark name
(key benchmark_key), and use metadata_to_setup,
metadata_to_subplot to map the metadata to setup name and subplot index.
If any of the two return None, the result is not used. Otherwise, we
enter (result_path, setup_name, subplot_no) into the list for benchmark
name.
Here, result_path is the result path for the experiment, without the
experiment_path() prefix. The index returned is the
dictionary from benchmark names to these list. It allows loading results
specifically for each benchmark, and we do not have to load and parse the
metadata files again.

If benchmark_key is None, the returned index is a dictionary with a
single element only, and the metadata files need not contain an entry for
benchmark name.

Result files have the path
f"{experiment_path()}{ename}/{patt}/{ename}-*/", where path is from
with_subdirs, and ename from experiment_names. The default is
with_subdirs="*". If with_subdirs is None, result files have
the path f"{experiment_path()}{ename}-*/". This is an older convention,
which makes it harder to sync files from S3, it is not recommended.

If metadata_keys is given, it contains a list of keys into the
metadata. In this case, a nested dictionary metadata_values is
returned, where metadata_values[benchmark_name][key][setup_name]
contains a list of metadata values for this benchmark, key in
metadata_keys, and setup name. In this case, if
metadata_subplot_level is True and metadata_to_subplot is
given, metadata_values has the structure
metadata_values[benchmark_name][key][setup_name][subplot_no]. This
should be set if different subplots share the same setup names.

If datetime_bounds is given, it contains a tuple of strings
(lower_time, upper_time), or a dictionary mapping experiment names (from
experiment_names) to such tuples. Both strings are time-stamps in the
format ST_DATETIME_FORMAT (example:
“2023-03-19-22-01-57”), and each can be None as well. This serves to
filter out any result whose time-stamp does not fall within the interval
(both sides are inclusive), where None means the interval is open on
that side. This feature is useful to filter out results of erroneous
attempts.

If seed_key is given, the returned index is a dictionary with keys
(benchmark_name, seed), where seed is the value corresponding to
seed_key in the metadata dict. This mode is needed for plots focusing
on a single experiment.


	Parameters:

	
	experiment_names (Tuple[str, ...]) – Tuple of experiment names (prefixes, without the
timestamps)


	metadata_to_setup (Union[Callable[[Dict[str, Any]], Optional[str]], Dict[str, Callable[[Dict[str, Any]], Optional[str]]]]) – See above


	metadata_to_subplot (Optional[Callable[[Dict[str, Any]], Optional[int]]]) – See above. Optional


	metadata_keys (Optional[List[str]]) – See above. Optional


	metadata_subplot_level (bool) – See above. Defaults to False


	benchmark_key (Optional[str]) – Key for benchmark in metadata files. Defaults to
“benchmark”


	with_subdirs (Union[str, List[str], None]) – See above. Defaults to “*”


	datetime_bounds (Union[Tuple[Optional[str], Optional[str]], Dict[str, Tuple[Optional[str], Optional[str]]], None]) – See above


	seed_key (Optional[str]) – See above






	Return type:

	Union[Dict[str, Any], Dict[Tuple[str, int], Any]]



	Returns:

	Dictionary; entry “index” for index (see above); entry
“setup_names” for setup names encountered; entry “metadata_values” see
metadata_keys










	
syne_tune.experiments.visualization.results_utils.load_results_dataframe_per_benchmark(experiment_list)

	Helper function for ComparativeResults.

Loads time-stamped results for all experiments in experiments_list
and returns them in a single dataframe with additional columns
“setup_name”, “suplot_no”, “tuner_name”, whose values are constant
across data for one experiment, allowing for later grouping.


	Parameters:

	experiment_list (List[Tuple[str, str, int]]) – Information about experiments, see
create_index_for_result_files()



	Return type:

	Optional[DataFrame]



	Returns:

	Dataframe with all results combined










	
syne_tune.experiments.visualization.results_utils.download_result_files_from_s3(experiment_names, s3_bucket=None)

	Downloads result files from S3. This works only if the result objects on S3
have prefixes f"{s3_experiment_path(s3_bucket)}{ename}/", where ename
is in experiment_names. Only files with names
ST_METADATA_FILENAME and ST_RESULTS_DATAFRAME_FILENAME
are downloaded.


	Parameters:

	
	experiment_names (Tuple[str, ...]) – Tuple of experiment names (prefixes, without the
timestamps)


	s3_bucket (Optional[str]) – If not given, the default bucket for the SageMaker session
is used















            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.baselines module


	
class syne_tune.experiments.baselines.MethodArguments(config_space, metric, mode, random_seed, resource_attr, max_resource_attr=None, scheduler_kwargs=None, transfer_learning_evaluations=None, use_surrogates=False, fcnet_ordinal=None, num_gpus_per_trial=1)

	Bases: object

Arguments for creating HPO method (scheduler). We collect the union of
optional arguments for all use cases here.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space (typically taken from benchmark
definition)


	metric (str) – Name of metric to optimize


	mode (str) – Whether metric is minimized (“min”) or maximized (“max”)


	random_seed (int) – Different for different repetitions


	resource_attr (str) – Name of resource attribute


	max_resource_attr (Optional[str]) – Name of max_resource_value in config_space.
One of max_resource_attr, max_t is mandatory


	scheduler_kwargs (Optional[Dict[str, Any]]) – If given, overwrites defaults of scheduler
arguments


	transfer_learning_evaluations (Optional[Dict[str, Any]]) – Support for transfer learning. Only
for simulator backend experiments right now


	use_surrogates (bool) – For simulator backend experiments, defaults to
False


	fcnet_ordinal (Optional[str]) – Only for simulator backend and fcnet blackbox.
This blackbox is tabulated with finite domains, one of which has
irregular spacing. If fcnet_ordinal="none", this is left as
categorical, otherwise we use ordinal encoding with
kind=fcnet_ordinal.


	num_gpus_per_trial (int) – Only for local backend and GPU training. Number
of GPUs assigned to a trial.
This is passed here, because it needs to be written into the
configuration space for some benchmarks. Defaults to 1









	
config_space: Dict[str, Any]

	




	
metric: str

	




	
mode: str

	




	
random_seed: int

	




	
resource_attr: str

	




	
max_resource_attr: Optional[str] = None

	




	
scheduler_kwargs: Optional[Dict[str, Any]] = None

	




	
transfer_learning_evaluations: Optional[Dict[str, Any]] = None

	




	
use_surrogates: bool = False

	




	
fcnet_ordinal: Optional[str] = None

	




	
num_gpus_per_trial: int = 1

	








	
syne_tune.experiments.baselines.default_arguments(args, extra_args)

	
	Return type:

	Dict[str, Any]










	
syne_tune.experiments.baselines.convert_categorical_to_ordinal(config_space)

	
	Parameters:

	config_space (Dict[str, Any]) – Configuration space



	Return type:

	Dict[str, Any]



	Returns:

	New configuration space where all categorical domains are
replaced by ordinal ones (with kind="equal")










	
syne_tune.experiments.baselines.convert_categorical_to_ordinal_numeric(config_space, kind, do_convert=None)

	Converts categorical domains to ordinal ones, of type kind. This is not
done if kind="none", or if do_convert(config_space) == False.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space


	kind (Optional[str]) – Type of ordinal, or "none"


	do_convert (Optional[Callable[[Dict[str, Any]], bool]]) – See above. The default is testing for the config space
of the fcnet blackbox






	Return type:

	Dict[str, Any]



	Returns:

	New configuration space












            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.default_baselines module


	
syne_tune.experiments.default_baselines.RandomSearch(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.GridSearch(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.BayesianOptimization(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.KDE(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.BORE(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.BoTorch(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.REA(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.ConstrainedBayesianOptimization(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.ASHA(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.MOBSTER(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.HyperTune(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.BOHB(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.DyHPO(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.ASHABORE(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.SyncHyperband(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.SyncBOHB(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.DEHB(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.SyncMOBSTER(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.MOREA(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.LSOBO(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.NSGA2(method_arguments, **kwargs)

	




	
syne_tune.experiments.default_baselines.MORandomScalarizationBayesOpt(method_arguments, **kwargs)

	






            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.experiment_result module


	
class syne_tune.experiments.experiment_result.ExperimentResult(name, results, metadata, tuner, path)

	Bases: object

Wraps results dataframe and provides retrieval services.


	Parameters:

	
	name (str) – Name of experiment


	results (DataFrame) – Dataframe containing results of experiment


	metadata (Dict[str, Any]) – Metadata stored along with results


	tuner (Tuner) – Tuner object stored along with results


	path (Path) – local path where the experiment is stored









	
name: str

	




	
results: DataFrame

	




	
metadata: Dict[str, Any]

	




	
tuner: Tuner

	




	
path: Path

	




	
creation_date()

	
	Returns:

	Timestamp when Tuner was created










	
plot_hypervolume(metrics_to_plot=None, reference_point=None, figure_path=None, **plt_kwargs)

	Plot best hypervolume value as function of wallclock time


	Parameters:

	
	reference_point (Optional[ndarray]) – Reference point for hypervolume calculations.
If None, the maximum values of each metric is used.


	figure_path (Optional[str]) – If specified, defines the path where the figure will be saved.
If None, the figure is shown


	plt_kwargs – Arguments to matplotlib.pyplot.plot()













	
plot(metric_to_plot=0, figure_path=None, **plt_kwargs)

	Plot best metric value as function of wallclock time


	Parameters:

	
	metric_to_plot (Union[str, int]) – Indicates which metric to plot, can be the index or a name of the metric.
default to 0 - first metric defined


	figure_path (Optional[str]) – If specified, defines the path where the figure will be saved.
If None, the figure is shown


	plt_kwargs – Arguments to matplotlib.pyplot.plot()













	
plot_trials_over_time(metric_to_plot=0, figure_path=None, figsize=None)

	Plot trials results over as function of wallclock time


	Parameters:

	
	metric_to_plot (Union[str, int]) – Indicates which metric to plot, can be the index or a name of the metric.
default to 0 - first metric defined


	figure_path (Optional[str]) – If specified, defines the path where the figure will be saved.
If None, the figure is shown


	figsize – width and height of figure













	
metric_mode()

	
	Return type:

	Union[str, List[str]]










	
metric_names()

	
	Return type:

	List[str]










	
entrypoint_name()

	
	Return type:

	str










	
best_config(metric=0)

	Return the best config found for the specified metric
:type metric: Union[str, int]
:param metric: Indicates which metric to use, can be the index or a name of the metric.


default to 0 - first metric defined in the Scheduler





	Return type:

	Dict[str, Any]



	Returns:

	Configuration corresponding to best metric value














	
syne_tune.experiments.experiment_result.download_single_experiment(tuner_name, s3_bucket=None, experiment_name=None)

	Downloads results from S3 of a tuning experiment


	Parameters:

	
	tuner_name (str) – Name of tuner to be retrieved.


	s3_bucket (Optional[str]) – If not given, the default bucket for the SageMaker session
is used


	experiment_name (Optional[str]) – If given, this is used as first directory.













	
syne_tune.experiments.experiment_result.load_experiment(tuner_name, download_if_not_found=True, load_tuner=False, local_path=None, experiment_name=None)

	Load results from an experiment


	Parameters:

	
	tuner_name (str) – Name of a tuning experiment previously run


	download_if_not_found (bool) – If True, fetch results from S3 if not found locally


	load_tuner (bool) – Whether to load the tuner in addition to metadata and results


	local_path (Optional[str]) – Path containing the experiment to load. If not specified,
~/{SYNE_TUNE_FOLDER}/ is used.


	experiment_name (Optional[str]) – If given, this is used as first directory.






	Return type:

	ExperimentResult



	Returns:

	Result object










	
syne_tune.experiments.experiment_result.get_metadata(path_filter=None, root=PosixPath('/home/docs/syne-tune'))

	Load meta-data for a number of experiments


	Parameters:

	
	path_filter (Optional[Callable[[str], bool]]) – If passed then only experiments whose path matching
the filter are kept. This allows rapid filtering in the presence of many
experiments.


	root (Path) – Root path for experiment results. Default is
experiment_path()






	Return type:

	Dict[str, dict]



	Returns:

	Dictionary from tuner name to metadata dict










	
syne_tune.experiments.experiment_result.list_experiments(path_filter=None, experiment_filter=None, root=PosixPath('/home/docs/syne-tune'), load_tuner=False)

	List experiments for which results are found


	Parameters:

	
	path_filter (Optional[Callable[[str], bool]]) – If passed then only experiments whose path matching
the filter are kept. This allows rapid filtering in the presence of many
experiments.


	experiment_filter (Optional[Callable[[ExperimentResult], bool]]) – Filter on ExperimentResult, optional


	root (Path) – Root path for experiment results. Default is result of
experiment_path()


	load_tuner (bool) – Whether to load the tuner in addition to metadata and results






	Return type:

	List[ExperimentResult]



	Returns:

	List of result objects










	
syne_tune.experiments.experiment_result.load_experiments_df(path_filter=None, experiment_filter=None, root=PosixPath('/home/docs/syne-tune'), load_tuner=False)

	
	Parameters:

	
	path_filter (Optional[Callable[[str], bool]]) – If passed then only experiments whose path matching
the filter are kept. This allows rapid filtering in the presence of many
experiments.


	experiment_filter (Optional[Callable[[ExperimentResult], bool]]) – Filter on ExperimentResult


	root (Path) – Root path for experiment results. Default is
experiment_path()


	load_tuner (bool) – Whether to load the tuner in addition to metadata and results






	Return type:

	DataFrame



	Returns:

	Dataframe that contains all evaluations reported by tuners according
to the filter given. The columns contain trial-id, hyperparameter
evaluated, metrics reported via Reporter. These metrics
are collected automatically:


	st_worker_time (indicating time spent in the worker when report was
seen)


	time (indicating wallclock time measured by the tuner)


	decision decision taken by the scheduler when observing the result


	status status of the trial that was shown to the tuner


	config_{xx} configuration value for the hyperparameter {xx}


	tuner_name named passed when instantiating the Tuner


	entry_point_name, entry_point_path name and path of the entry
point that was tuned

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.experiments.util module




            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer package


Subpackages



	syne_tune.optimizer.schedulers package
	FIFOScheduler
	FIFOScheduler.searcher

	FIFOScheduler.set_time_keeper()

	FIFOScheduler.on_trial_result()

	FIFOScheduler.metric_names()

	FIFOScheduler.metric_mode()

	FIFOScheduler.is_multiobjective_scheduler()





	HyperbandScheduler
	HyperbandScheduler.does_pause_resume()

	HyperbandScheduler.rung_levels

	HyperbandScheduler.num_brackets

	HyperbandScheduler.resource_attr

	HyperbandScheduler.max_resource_level

	HyperbandScheduler.searcher_data

	HyperbandScheduler.on_trial_error()

	HyperbandScheduler.on_trial_result()

	HyperbandScheduler.on_trial_remove()

	HyperbandScheduler.on_trial_complete()

	HyperbandScheduler.callback_for_checkpoint_removal()





	MedianStoppingRule
	MedianStoppingRule.on_trial_result()

	MedianStoppingRule.grace_condition()

	MedianStoppingRule.metric_names()

	MedianStoppingRule.metric_mode()





	PopulationBasedTraining
	PopulationBasedTraining.on_trial_add()

	PopulationBasedTraining.on_trial_result()





	RayTuneScheduler
	RayTuneScheduler.RT_FIFOScheduler

	RayTuneScheduler.RT_Searcher

	RayTuneScheduler.RandomSearch
	RayTuneScheduler.RandomSearch.suggest()

	RayTuneScheduler.RandomSearch.on_trial_complete()





	RayTuneScheduler.on_trial_add()

	RayTuneScheduler.on_trial_error()

	RayTuneScheduler.on_trial_result()

	RayTuneScheduler.on_trial_complete()

	RayTuneScheduler.on_trial_remove()

	RayTuneScheduler.metric_names()

	RayTuneScheduler.metric_mode()

	RayTuneScheduler.convert_config_space()





	Subpackages
	syne_tune.optimizer.schedulers.multiobjective package
	MOASHA

	MultiObjectiveRegularizedEvolution

	NSGA2Searcher

	LinearScalarizedScheduler

	MultiObjectiveMultiSurrogateSearcher

	MultiObjectiveLCBRandomLinearScalarization

	Submodules





	syne_tune.optimizer.schedulers.neuralbands package
	NeuralbandScheduler

	Submodules





	syne_tune.optimizer.schedulers.searchers package
	BaseSearcher

	impute_points_to_evaluate()

	StochasticSearcher

	StochasticAndFilterDuplicatesSearcher

	extract_random_seed()

	RandomSearcher

	GridSearcher

	searcher_factory()

	ModelBasedSearcher

	BayesianOptimizationSearcher

	GPFIFOSearcher

	GPMultiFidelitySearcher

	Subpackages

	Submodules





	syne_tune.optimizer.schedulers.synchronous package
	SynchronousHyperbandScheduler

	SynchronousGeometricHyperbandScheduler

	DifferentialEvolutionHyperbandScheduler

	GeometricDifferentialEvolutionHyperbandScheduler

	Submodules





	syne_tune.optimizer.schedulers.transfer_learning package
	TransferLearningTaskEvaluations

	TransferLearningMixin

	BoundingBox

	RUSHScheduler

	Subpackages

	Submodules





	syne_tune.optimizer.schedulers.utils package
	Submodules









	Submodules
	syne_tune.optimizer.schedulers.fifo module
	FIFOScheduler





	syne_tune.optimizer.schedulers.hyperband module
	is_continue_decision()

	TrialInformation

	HyperbandScheduler

	HyperbandBracketManager





	syne_tune.optimizer.schedulers.hyperband_checkpoint_removal module
	create_callback_for_checkpoint_removal()





	syne_tune.optimizer.schedulers.hyperband_cost_promotion module
	CostPromotionRungEntry

	CostPromotionRungSystem





	syne_tune.optimizer.schedulers.hyperband_pasha module
	PASHARungSystem





	syne_tune.optimizer.schedulers.hyperband_promotion module
	PromotionRungEntry

	PromotionRungSystem





	syne_tune.optimizer.schedulers.hyperband_rush module
	RUSHDecider

	RUSHStoppingRungSystem

	RUSHPromotionRungSystem





	syne_tune.optimizer.schedulers.hyperband_stopping module
	RungEntry

	Rung

	RungSystem

	StoppingRungSystem





	syne_tune.optimizer.schedulers.median_stopping_rule module
	MedianStoppingRule





	syne_tune.optimizer.schedulers.multi_fidelity module
	MultiFidelitySchedulerMixin





	syne_tune.optimizer.schedulers.pbt module
	PBTTrialState

	PopulationBasedTraining





	syne_tune.optimizer.schedulers.random_seeds module
	generate_random_seed()

	RandomSeedGenerator





	syne_tune.optimizer.schedulers.ray_scheduler module
	RayTuneScheduler





	syne_tune.optimizer.schedulers.remove_checkpoints module
	RemoveCheckpointsSchedulerMixin





	syne_tune.optimizer.schedulers.scheduler_searcher module
	TrialSchedulerWithSearcher





	syne_tune.optimizer.schedulers.smac_scheduler module















Submodules



	syne_tune.optimizer.baselines module
	RandomSearch

	GridSearch

	BayesianOptimization

	ASHA

	MOBSTER

	HyperTune

	DyHPO

	PASHA

	BOHB

	SyncHyperband

	SyncBOHB

	DEHB

	SyncMOBSTER

	BORE

	ASHABORE

	BoTorch

	REA

	create_gaussian_process_estimator()

	MORandomScalarizationBayesOpt

	NSGA2

	MOREA

	MOLinearScalarizationBayesOpt
	MOLinearScalarizationBayesOpt.scalarization_weights

	MOLinearScalarizationBayesOpt.single_objective_metric

	MOLinearScalarizationBayesOpt.base_scheduler





	ConstrainedBayesianOptimization

	ZeroShotTransfer

	ASHACTS

	KDE

	CQR

	ASHACQR





	syne_tune.optimizer.scheduler module
	SchedulerDecision
	SchedulerDecision.CONTINUE

	SchedulerDecision.PAUSE

	SchedulerDecision.STOP





	TrialSuggestion
	TrialSuggestion.spawn_new_trial_id

	TrialSuggestion.checkpoint_trial_id

	TrialSuggestion.config

	TrialSuggestion.start_suggestion()

	TrialSuggestion.resume_suggestion()





	TrialScheduler
	TrialScheduler.suggest()

	TrialScheduler.on_trial_add()

	TrialScheduler.on_trial_error()

	TrialScheduler.on_trial_result()

	TrialScheduler.on_trial_complete()

	TrialScheduler.on_trial_remove()

	TrialScheduler.metric_names()

	TrialScheduler.metric_mode()

	TrialScheduler.metadata()

	TrialScheduler.is_multiobjective_scheduler()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers package


	
class syne_tune.optimizer.schedulers.FIFOScheduler(config_space, **kwargs)

	Bases: TrialSchedulerWithSearcher

Scheduler which executes trials in submission order.

This is the most basic scheduler template. It can be configured to many use
cases by choosing searcher along with search_options.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	searcher (str or
BaseSearcher) – Searcher for get_config decisions. String values
are passed to
searcher_factory() along
with search_options and extra information. Supported values:
SUPPORTED_SEARCHERS_FIFO.
Defaults to “random” (i.e., random search)


	search_options (Dict[str, Any], optional) – If searcher is str, these arguments are
passed to
searcher_factory()


	metric (str or List[str]) – Name of metric to optimize, key in results obtained via
on_trial_result. For multi-objective schedulers, this can also be a
list


	mode (str or List[str], optional) – “min” if metric is minimized, “max” if metric is
maximized, defaults to “min”. This can also be a list if metric is
a list


	points_to_evaluate (List[dict], optional) – List of configurations to be evaluated
initially (in that order). Each config in the list
can be partially specified, or even be an empty dict. For each
hyperparameter not specified, the default value is determined using
a midpoint heuristic.
If not given, this is mapped to [dict()], a single default config
determined by the midpoint heuristic. If [] (empty list), no initial
configurations are specified.
Note: If searcher is of type BaseSearcher,
points_to_evaluate must be set there.


	random_seed (int, optional) – Master random seed. Generators used in the
scheduler or searcher are seeded using RandomSeedGenerator.
If not given, the master random seed is drawn at random here.


	max_resource_attr (str, optional) – Key name in config for fixed attribute
containing the maximum resource. If this is given, max_t is not
needed. We recommend to use max_resource_attr over max_t.
If given, we use it to infer max_resource_level. It is also
used to limit trial executions in promotion-based multi-fidelity
schedulers (see class:HyperbandScheduler, type="promotion").


	max_t (int, optional) – Value for max_resource_level. Needed for
schedulers which make use of intermediate reports via
on_trial_result. If this is not given, we try to infer its value
from config_space (see
ResourceLevelsScheduler).
checking config_space["epochs"], config_space["max_t"], and
config_space["max_epochs"]. If max_resource_attr is given, we use
the value config_space[max_resource_attr]. But if max_t is given
here, it takes precedence.


	time_keeper (TimeKeeper,
optional) – This will be used for timing here (see
_elapsed_time). The time keeper has to be started at the beginning
of the experiment. If not given, we use a local time keeper here,
which is started with the first call to _suggest(). Can also be set
after construction, with set_time_keeper().
Note: If you use
SimulatorBackend, you need
to pass its time_keeper here.









	
property searcher: BaseSearcher | None

	




	
set_time_keeper(time_keeper)

	Assign time keeper after construction.

This is possible only if the time keeper was not assigned at
construction, and the experiment has not yet started.


	Parameters:

	time_keeper (TimeKeeper) – Time keeper to be used










	
on_trial_result(trial, result)

	We simply relay result to the searcher. Other decisions are done
in on_trial_complete.


	Return type:

	str










	
metric_names()

	
	Return type:

	List[str]



	Returns:

	List of metric names. The first one is the target
metric optimized over, unless the scheduler is a genuine
multi-objective metric (for example, for sampling the Pareto front)










	
metric_mode()

	
	Return type:

	Union[str, List[str]]



	Returns:

	“min” if target metric is minimized, otherwise “max”.
Here, “min” should be the default. For a genuine multi-objective
scheduler, a list of modes is returned










	
is_multiobjective_scheduler()

	Return True if a scheduler is multi-objective.


	Return type:

	bool














	
class syne_tune.optimizer.schedulers.HyperbandScheduler(config_space, **kwargs)

	Bases: FIFOScheduler, MultiFidelitySchedulerMixin, RemoveCheckpointsSchedulerMixin

Implements different variants of asynchronous Hyperband

See type for the different variants. One implementation detail is
when using multiple brackets, task allocation to bracket is done randomly,
based on a distribution which can be configured.

For definitions of concepts (bracket, rung, milestone), see



Li, Jamieson, Rostamizadeh, Gonina, Hardt, Recht, Talwalkar (2018)

A System for Massively Parallel Hyperparameter Tuning

https://arxiv.org/abs/1810.05934






or



Tiao, Klein, Lienart, Archambeau, Seeger (2020)

Model-based Asynchronous Hyperparameter and Neural Architecture Search

https://arxiv.org/abs/2003.10865







Note

This scheduler requires both metric and resource_attr to be
returned by the reporter. Here, resource values must be positive int.
If resource_attr == "epoch", this should be the number of epochs done,
starting from 1 (not the epoch number, starting from 0).



Rung levels and promotion quantiles

Rung levels are values of the resource attribute at which stop/go decisions
are made for jobs, comparing their metric against others at the same level.
These rung levels (positive, strictly increasing) can be specified via
rung_levels, the largest must be <= max_t.
If rung_levels is not given, they are specified by grace_period
and reduction_factor or rung_increment:


	If \(r_{min}\) is grace_period, \(\eta\) is
reduction_factor, then rung levels are
\(\mathrm{round}(r_{min} \eta^j), j=0, 1, \dots\). This is the default
choice for successive halving (Hyperband).


	If rung_increment is given, but not reduction_factor, then rung
levels are \(r_{min} + j \nu, j=0, 1, \dots\), where \(\nu\) is
rung_increment.




If rung_levels is given, then grace_period, reduction_factor,
rung_increment are ignored. If they are given, a warning is logged.

The rung levels determine the quantiles to be used in the stop/go
decisions. If rung levels are \(r_j\), define
\(q_j = r_j / r_{j+1}\).
\(q_j\) is the promotion quantile at rung level \(r_j\). On
average, a fraction of \(q_j\) jobs can continue, the remaining ones
are stopped (or paused). In the default successive halving case, we have
\(q_j = 1/\eta\) for all \(j\).

Cost-aware schedulers or searchers

Some schedulers (e.g., type == "cost_promotion") or searchers may depend
on cost values (with key cost_attr) reported alongside the target metric.
For promotion-based scheduling, a trial may pause and resume several times.
The cost received in on_trial_result only counts the cost since the last
resume. We maintain the sum of such costs in _cost_offset(), and append
a new entry to result in on_trial_result with the total cost.
If the evaluation function does not implement checkpointing, once a trial
is resumed, it has to start from scratch. We detect this in
on_trial_result and reset the cost offset to 0 (if the trial runs from
scratch, the cost reported needs no offset added).


Note

This process requires cost_attr to be set



Pending evaluations

The searcher is notified, by searcher.register_pending calls, of
(trial, resource) pairs for which evaluations are running, and a result
is expected in the future. These pending evaluations can be used by the
searcher in order to direct sampling elsewhere.

The choice of pending evaluations depends on searcher_data. If equal
to “rungs”, pending evaluations sit only at rung levels, because
observations are only used there. In the other cases, pending evaluations
sit at all resource levels for which observations are obtained. For
example, if a trial is at rung level \(r\) and continues towards the
next rung level \(r_{next}\), if searcher_data == "rungs",
searcher.register_pending is called for \(r_{next}\) only, while for
other searcher_data values, pending evaluations are registered for
\(r + 1, r + 2, \dots, r_{next}\).
However, if in this case, register_pending_myopic is True, we instead
call searcher.register_pending for \(r + 1\) when each observation is
obtained (not just at a rung level). This leads to less pending
evaluations at any one time. On the other hand, when a trial is continued
at a rung level, we already know it will emit observations up to the next
rung level, so it seems more “correct” to register all these pending
evaluations in one go.

Additional arguments on top of parent class
FIFOScheduler:


	Parameters:

	
	searcher (str or
BaseSearcher) – Searcher for get_config decisions. String values
are passed to
searcher_factory() along
with search_options and extra information. Supported values:
SUPPORTED_SEARCHERS_HYPERBAND.
Defaults to “random” (i.e., random search)


	resource_attr (str, optional) – Name of resource attribute in results obtained
via on_trial_result, defaults to “epoch”


	grace_period (int, optional) – Minimum resource to be used for a job. Ignored
if rung_levels is given. Defaults to 1


	reduction_factor (float, optional) – Parameter to determine rung levels. Ignored
if rung_levels is given. Must be \(\ge 2\), defaults to 3


	rung_increment (int, optional) – Parameter to determine rung levels. Ignored
if rung_levels or reduction_factor are given. Must be
postive


	rung_levels (List[int], optional) – If given, prescribes the set of rung levels to
be used. Must contain positive integers, strictly increasing.
This information overrides grace_period, reduction_factor,
rung_increment. Note that the stop/promote rule in the successive
halving scheduler is set based on the ratio of successive rung levels.


	brackets (int, optional) – Number of brackets to be used in Hyperband. Each
bracket has a different grace period, all share max_t
and reduction_factor. If brackets == 1 (default), we run
asynchronous successive halving.


	type (str, optional) – Type of Hyperband scheduler. Defaults to “stopping”.
Supported values (see also subclasses of
RungSystem):


	stopping: A config eval is executed by a single task. The task is
stopped at a milestone if its metric is worse than a fraction
of those who reached the milestone earlier, otherwise it
continues. See
StoppingRungSystem.


	promotion: A config eval may be associated with multiple tasks
over its lifetime. It is never terminated, but may be paused.
Whenever a task becomes available, it may promote a config to
the next milestone, if better than a fraction of others who
reached the milestone. If no config can be promoted, a new one
is chosen. See
PromotionRungSystem.


	cost_promotion: This is a cost-aware variant of ‘promotion’, see
CostPromotionRungSystem
for details. In this case, costs must be reported under the name
rung_system_kwargs["cost_attr"] in results.


	pasha: Similar to promotion type Hyperband, but it progressively
expands the available resources until the ranking of
configurations stabilizes.


	rush_stopping: A variation of the stopping scheduler which requires
passing rung_system_kwargs and points_to_evaluate. The first
rung_system_kwargs["num_threshold_candidates"] of
points_to_evaluate will enforce stricter rules on which task is
continued. See
RUSHStoppingRungSystem
and
RUSHScheduler.


	rush_promotion: Same as rush_stopping but for promotion, see
RUSHPromotionRungSystem


	dyhpo: A model-based scheduler, which can be seen as extension of
“promotion” with rung_increment rather than reduction_factor, see
DynamicHPOSearcher







	cost_attr (str, optional) – Required if the scheduler itself uses a cost metric
(i.e., type="cost_promotion"), or if the searcher uses a cost
metric. See also header comment.


	searcher_data (str, optional) – Relevant only if a model-based searcher is used.
Example: For NN tuning and ``resource_attr == “epoch”’, we receive a
result for each epoch, but not all epoch values are also rung levels.
searcher_data determines which of these results are passed to the
searcher. As a rule, the more data the searcher receives, the better
its fit, but also the more expensive get_config may become. Choices:


	”rungs” (default): Only results at rung levels. Cheapest


	”all”: All results. Most expensive


	”rungs_and_last”: Results at rung levels, plus the most recent
result. This means that in between rung levels, only the most
recent result is used by the searcher. This is in between




Note: For a Gaussian additive learning curve surrogate model, this
has to be set to ‘all’.




	register_pending_myopic (bool, optional) – See above. Used only if searcher_data !=
"rungs". Defaults to False


	rung_system_per_bracket (bool, optional) – This concerns Hyperband with
brackets > 1. Defaults to False.
When starting a job for a new config, it is assigned a randomly
sampled bracket. The larger the bracket, the larger the grace period
for the config.
If rung_system_per_bracket == True, we maintain separate rung level
systems for each bracket, so that configs only compete with others
started in the same bracket.
If rung_system_per_bracket == False, we use a single rung level system,
so that all configs compete with each other. In this case, the bracket
of a config only determines the initial grace period, i.e. the first
milestone at which it starts competing with others. This is the
default.
The concept of brackets in Hyperband is meant to hedge against overly
aggressive filtering in successive halving, based on low fidelity
criteria. In practice, successive halving (i.e., brackets = 1) often
works best in the asynchronous case (as implemented here). If
brackets > 1, the hedging is stronger if rung_system_per_bracket
is True.


	do_snapshots (bool, optional) – Support snapshots? If True, a snapshot of all running
tasks and rung levels is returned by _promote_trial(). This
snapshot is passed to searcher.get_config. Defaults to False.
Note: Currently, only the stopping variant supports snapshots.


	rung_system_kwargs (Dict[str, Any], optional) – Arguments passed to the rung system:
* num_threshold_candidates: Used if ``type in [“rush_promotion”,


”rush_stopping”]``. The first num_threshold_candidates in
points_to_evaluate enforce stricter requirements to the
continuation of training tasks. See
RUSHScheduler.





	probability_sh: Used if type == "dyhpo". In DyHPO, we typically
all paused trials against a number of new configurations, and the
winner is either resumed or started (new trial). However, with the
probability given here, we instead try to promote a trial as if
type == "promotion". If no trial can be promoted, we fall back to
the DyHPO logic. Use this to make DyHPO robust against starting too
many new trials, because all paused ones score poorly (this happens
especially at the beginning).







	early_checkpoint_removal_kwargs (Dict[str, Any], optional) – If given, speculative early removal
of checkpoints is done, see
HyperbandRemoveCheckpointsCallback.
The constructor arguments for the HyperbandRemoveCheckpointsCallback
must be given here, if they cannot be inferred (key max_num_checkpoints
is mandatory). This feature is used only for scheduler types which pause
and resume trials.









	
does_pause_resume()

	
	Return type:

	bool



	Returns:

	Is this variant doing pause and resume scheduling, in the
sense that trials can be paused and resumed later?










	
property rung_levels: List[int]

	Note that all entries of rung_levels are smaller than max_t (or
config_space[max_resource_attr]): rung levels are resource levels where
stop/go decisions are made. In particular, if rung_levels is passed at
construction with rung_levels[-1] == max_t, this last entry is stripped
off.


	Returns:

	Rung levels (strictly increasing, positive ints)










	
property num_brackets: int

	
	Returns:

	Number of brackets (i.e., rung level systems). If the scheduler
does not use brackets, it has to return 1










	
property resource_attr: str

	
	Returns:

	Name of resource attribute in reported results










	
property max_resource_level: int

	
	Returns:

	Maximum resource level










	
property searcher_data: str

	
	Returns:

	Relevant only if a model-based searcher is used.
Example: For NN tuning and resource_attr == "epoch", we receive
a result for each epoch, but not all epoch values are also rung
levels. searcher_data determines which of these results are
passed to the searcher. As a rule, the more data the searcher
receives, the better its fit, but also the more expensive
get_config() may become. Choices:


	”rungs”: Only results at rung levels. Cheapest


	”all”: All results. Most expensive


	”rungs_and_last”: Results at rung levels plus last recent one.
Not available for all multi-fidelity schedulers















	
on_trial_error(trial)

	Called when a trial has failed.


	Parameters:

	trial (Trial) – Trial for which error is reported.










	
on_trial_result(trial, result)

	We simply relay result to the searcher. Other decisions are done
in on_trial_complete.


	Return type:

	str










	
on_trial_remove(trial)

	Called to remove trial.

This is called when the trial is in PAUSED or PENDING state. Otherwise,
call on_trial_complete().


	Parameters:

	trial (Trial) – Trial to be removed










	
on_trial_complete(trial, result)

	Notification for the completion of trial.

Note that on_trial_result() is called with the same result before.
However, if the scheduler only uses one final report from each
trial, it may ignore on_trial_result() and just use result here.


	Parameters:

	
	trial (Trial) – Trial which is completing


	result (Dict[str, Any]) – Result dictionary













	
callback_for_checkpoint_removal(stop_criterion)

	
	Parameters:

	stop_criterion (Callable[[TuningStatus], bool]) – Stopping criterion, as passed to
Tuner



	Return type:

	Optional[TunerCallback]



	Returns:

	CP removal callback, or None if CP removal is not activated














	
class syne_tune.optimizer.schedulers.MedianStoppingRule(scheduler, resource_attr, running_average=True, metric=None, grace_time=1, grace_population=5, rank_cutoff=0.5)

	Bases: TrialScheduler

Applies median stopping rule in top of an existing scheduler.


	If result at time-step ranks less than the cutoff of other results observed
at this time-step, the trial is interrupted and otherwise, the wrapped
scheduler is called to make the stopping decision.


	Suggest decisions are left to the wrapped scheduler.


	The mode of the wrapped scheduler is used.




Reference:



Google Vizier: A Service for Black-Box Optimization.

Golovin et al. 2017.

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, August 2017

Pages 1487–1495

https://dl.acm.org/doi/10.1145/3097983.3098043







	Parameters:

	
	scheduler (TrialScheduler) – Scheduler to be called for trial suggestion or when
median-stopping-rule decision is to continue.


	resource_attr (str) – Key in the reported dictionary that accounts for the
resource (e.g. epoch).


	running_average (bool) – If True, then uses the running average of
observation instead of raw observations. Defaults to True


	metric (Optional[str]) – Metric to be considered, defaults to scheduler.metric


	grace_time (Optional[int]) – Median stopping rule is only applied for results whose
resource_attr exceeds this amount. Defaults to 1


	grace_population (int) – Median stopping rule when at least
grace_population have been observed at a resource level. Defaults to 5


	rank_cutoff (float) – Results whose quantiles are below this level are
discarded. Defaults to 0.5 (median)









	
on_trial_result(trial, result)

	Called on each intermediate result reported by a trial.

At this point, the trial scheduler can make a decision by returning
one of SchedulerDecision.CONTINUE,
SchedulerDecision.PAUSE, or SchedulerDecision.STOP.
This will only be called when the trial is currently running.


	Parameters:

	
	trial (Trial) – Trial for which results are reported


	result (Dict) – Result dictionary






	Return type:

	str



	Returns:

	Decision what to do with the trial










	
grace_condition(time_step)

	
	Parameters:

	time_step (float) – Value result[self.resource_attr]



	Return type:

	bool



	Returns:

	Decide for continue?










	
metric_names()

	
	Return type:

	List[str]



	Returns:

	List of metric names. The first one is the target
metric optimized over, unless the scheduler is a genuine
multi-objective metric (for example, for sampling the Pareto front)










	
metric_mode()

	
	Return type:

	str



	Returns:

	“min” if target metric is minimized, otherwise “max”.
Here, “min” should be the default. For a genuine multi-objective
scheduler, a list of modes is returned














	
class syne_tune.optimizer.schedulers.PopulationBasedTraining(config_space, custom_explore_fn=None, **kwargs)

	Bases: FIFOScheduler

Implements the Population Based Training (PBT) algorithm. This is an adapted
version of the Ray Tune implementation:

https://docs.ray.io/en/latest/tune/tutorials/tune-advanced-tutorial.html

PBT was originally presented in the following paper:



Jaderberg et. al.

Population Based Training of Neural Networks

https://arxiv.org/abs/1711.09846






Population based training (PBT) maintains a population of models spread across
an asynchronous set of workers and dynamically adjust their hyperparameters
during training. Every time a worker reaches a user-defined milestone, it
returns the performance of the currently evaluated network. If the network is
within the top percentile of the population, the worker resumes its training
until the next milestone. If not, PBT selects a model from the top percentile
uniformly at random. The worker now continues with the latest checkpoint of
this new model but mutates the hyperparameters.

The mutation happens as following. For each hyperparameter, we either resample
its value uniformly at random, or otherwise increment (multiply by 1.2) or
decrement (multiply by 0.8) the value (probability 0.5 each). For categorical
hyperparameters, the value is always resampled uniformly.

Note: While this is implemented as child of FIFOScheduler, we
require searcher="random" (default), since the current code only supports
a random searcher.

Additional arguments on top of parent class FIFOScheduler.


	Parameters:

	
	resource_attr (str) – Name of resource attribute in results obtained
via on_trial_result, defaults to “time_total_s”


	population_size (int, optional) – Size of the population, defaults to 4


	perturbation_interval (float, optional) – Models will be considered for perturbation
at this interval of resource_attr. Note that perturbation incurs
checkpoint overhead, so you shouldn’t set this to be too frequent.
Defaults to 60


	quantile_fraction (float, optional) – Parameters are transferred from the top
quantile_fraction fraction of trials to the bottom
quantile_fraction fraction. Needs to be between 0 and 0.5. Setting
it to 0 essentially implies doing no exploitation at all.
Defaults to 0.25


	resample_probability (float, optional) – The probability of resampling from the
original distribution when applying _explore(). If not
resampled, the value will be perturbed by a factor of 1.2 or 0.8 if
continuous, or changed to an adjacent value if discrete.
Defaults to 0.25


	custom_explore_fn (function, optional) – Custom exploration function. This
function is invoked as f(config) instead of the built-in perturbations,
and should return config updated as needed. If this is given,
resample_probability is not used









	
on_trial_add(trial)

	Called when a new trial is added to the trial runner.

Additions are normally triggered by suggest.


	Parameters:

	trial (Trial) – Trial to be added










	
on_trial_result(trial, result)

	We simply relay result to the searcher. Other decisions are done
in on_trial_complete.


	Return type:

	str














	
class syne_tune.optimizer.schedulers.RayTuneScheduler(config_space, ray_scheduler=None, ray_searcher=None, points_to_evaluate=None)

	Bases: TrialScheduler

Allow using Ray scheduler and searcher. Any searcher/scheduler should
work, except such which need access to TrialRunner (e.g., PBT), this
feature is not implemented in Syne Tune.

If ray_searcher is not given (defaults to random searcher), initial
configurations to evaluate can be passed in points_to_evaluate. If
ray_searcher is given, this argument is ignored (needs to be passed
to ray_searcher at construction). Note: Use
impute_points_to_evaluate()
in order to preprocess points_to_evaluate specified by the user or
the benchmark.


	Parameters:

	
	config_space (Dict) – Configuration space


	ray_scheduler – Ray scheduler, defaults to FIFO scheduler


	ray_searcher (Optional[Searcher]) – Ray searcher, defaults to random search


	points_to_evaluate (Optional[List[Dict]]) – See above









	
RT_FIFOScheduler

	alias of FIFOScheduler






	
RT_Searcher

	alias of Searcher






	
class RandomSearch(config_space, points_to_evaluate, mode)

	Bases: Searcher


	
suggest(trial_id)

	Queries the algorithm to retrieve the next set of parameters.


	Return type:

	Optional[Dict]






	Arguments:
	trial_id: Trial ID used for subsequent notifications.



	Returns:
	
	dict | FINISHED | None: Configuration for a trial, if possible.
	If FINISHED is returned, Tune will be notified that
no more suggestions/configurations will be provided.
If None is returned, Tune will skip the querying of the
searcher for this step.














	
on_trial_complete(trial_id, result=None, error=False)

	Notification for the completion of trial.

Typically, this method is used for notifying the underlying
optimizer of the result.


	Args:
	trial_id: A unique string ID for the trial.
result: Dictionary of metrics for current training progress.


Note that the result dict may include NaNs or
may not include the optimization metric. It is up to the
subclass implementation to preprocess the result to
avoid breaking the optimization process. Upon errors, this
may also be None.




error: True if the training process raised an error.














	
on_trial_add(trial)

	Called when a new trial is added to the trial runner.

Additions are normally triggered by suggest.


	Parameters:

	trial (Trial) – Trial to be added










	
on_trial_error(trial)

	Called when a trial has failed.


	Parameters:

	trial (Trial) – Trial for which error is reported.










	
on_trial_result(trial, result)

	Called on each intermediate result reported by a trial.

At this point, the trial scheduler can make a decision by returning
one of SchedulerDecision.CONTINUE,
SchedulerDecision.PAUSE, or SchedulerDecision.STOP.
This will only be called when the trial is currently running.


	Parameters:

	
	trial (Trial) – Trial for which results are reported


	result (Dict) – Result dictionary






	Return type:

	str



	Returns:

	Decision what to do with the trial










	
on_trial_complete(trial, result)

	Notification for the completion of trial.

Note that on_trial_result() is called with the same result before.
However, if the scheduler only uses one final report from each
trial, it may ignore on_trial_result() and just use result here.


	Parameters:

	
	trial (Trial) – Trial which is completing


	result (Dict) – Result dictionary













	
on_trial_remove(trial)

	Called to remove trial.

This is called when the trial is in PAUSED or PENDING state. Otherwise,
call on_trial_complete().


	Parameters:

	trial (Trial) – Trial to be removed










	
metric_names()

	
	Return type:

	List[str]



	Returns:

	List of metric names. The first one is the target
metric optimized over, unless the scheduler is a genuine
multi-objective metric (for example, for sampling the Pareto front)










	
metric_mode()

	
	Return type:

	str



	Returns:

	“min” if target metric is minimized, otherwise “max”.
Here, “min” should be the default. For a genuine multi-objective
scheduler, a list of modes is returned










	
static convert_config_space(config_space)

	Converts config_space from our type to the one of Ray Tune.

Note: randint(lower, upper) in Ray Tune has exclusive upper, while
this is inclusive for us. On the other hand, lograndint(lower, upper)
has inclusive upper in Ray Tune as well.


	Parameters:

	config_space – Configuration space



	Returns:

	config_space converted into Ray Tune type
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	HyperbandScheduler.resource_attr

	HyperbandScheduler.max_resource_level

	HyperbandScheduler.searcher_data

	HyperbandScheduler.on_trial_error()

	HyperbandScheduler.on_trial_result()

	HyperbandScheduler.on_trial_remove()

	HyperbandScheduler.on_trial_complete()

	HyperbandScheduler.callback_for_checkpoint_removal()





	HyperbandBracketManager
	HyperbandBracketManager.does_pause_resume()

	HyperbandBracketManager.on_task_add()

	HyperbandBracketManager.on_task_report()

	HyperbandBracketManager.on_task_remove()

	HyperbandBracketManager.on_task_schedule()

	HyperbandBracketManager.snapshot_rungs()

	HyperbandBracketManager.paused_trials()

	HyperbandBracketManager.information_for_rungs()

	HyperbandBracketManager.support_early_checkpoint_removal()









	syne_tune.optimizer.schedulers.hyperband_checkpoint_removal module
	create_callback_for_checkpoint_removal()





	syne_tune.optimizer.schedulers.hyperband_cost_promotion module
	CostPromotionRungEntry

	CostPromotionRungSystem





	syne_tune.optimizer.schedulers.hyperband_pasha module
	PASHARungSystem
	PASHARungSystem.on_task_report()









	syne_tune.optimizer.schedulers.hyperband_promotion module
	PromotionRungEntry

	PromotionRungSystem
	PromotionRungSystem.on_task_schedule()

	PromotionRungSystem.on_task_add()

	PromotionRungSystem.on_task_report()

	PromotionRungSystem.on_task_remove()

	PromotionRungSystem.does_pause_resume()

	PromotionRungSystem.support_early_checkpoint_removal()

	PromotionRungSystem.paused_trials()









	syne_tune.optimizer.schedulers.hyperband_rush module
	RUSHDecider
	RUSHDecider.task_continues()





	RUSHStoppingRungSystem

	RUSHPromotionRungSystem





	syne_tune.optimizer.schedulers.hyperband_stopping module
	RungEntry

	Rung
	Rung.add()

	Rung.pop()

	Rung.quantile()





	RungSystem
	RungSystem.on_task_schedule()

	RungSystem.on_task_add()

	RungSystem.on_task_report()

	RungSystem.on_task_remove()

	RungSystem.get_first_milestone()

	RungSystem.get_milestones()

	RungSystem.snapshot_rungs()

	RungSystem.does_pause_resume()

	RungSystem.support_early_checkpoint_removal()

	RungSystem.paused_trials()

	RungSystem.information_for_rungs()





	StoppingRungSystem
	StoppingRungSystem.on_task_schedule()

	StoppingRungSystem.on_task_report()

	StoppingRungSystem.does_pause_resume()









	syne_tune.optimizer.schedulers.median_stopping_rule module
	MedianStoppingRule
	MedianStoppingRule.on_trial_result()

	MedianStoppingRule.grace_condition()

	MedianStoppingRule.metric_names()

	MedianStoppingRule.metric_mode()









	syne_tune.optimizer.schedulers.multi_fidelity module
	MultiFidelitySchedulerMixin
	MultiFidelitySchedulerMixin.resource_attr

	MultiFidelitySchedulerMixin.max_resource_level

	MultiFidelitySchedulerMixin.rung_levels

	MultiFidelitySchedulerMixin.searcher_data

	MultiFidelitySchedulerMixin.num_brackets









	syne_tune.optimizer.schedulers.pbt module
	PBTTrialState
	PBTTrialState.trial

	PBTTrialState.last_score

	PBTTrialState.last_checkpoint

	PBTTrialState.last_perturbation_time

	PBTTrialState.stopped





	PopulationBasedTraining
	PopulationBasedTraining.on_trial_add()

	PopulationBasedTraining.on_trial_result()









	syne_tune.optimizer.schedulers.random_seeds module
	generate_random_seed()

	RandomSeedGenerator





	syne_tune.optimizer.schedulers.ray_scheduler module
	RayTuneScheduler
	RayTuneScheduler.RT_FIFOScheduler

	RayTuneScheduler.RT_Searcher

	RayTuneScheduler.RandomSearch
	RayTuneScheduler.RandomSearch.suggest()

	RayTuneScheduler.RandomSearch.on_trial_complete()





	RayTuneScheduler.on_trial_add()

	RayTuneScheduler.on_trial_error()

	RayTuneScheduler.on_trial_result()

	RayTuneScheduler.on_trial_complete()

	RayTuneScheduler.on_trial_remove()

	RayTuneScheduler.metric_names()

	RayTuneScheduler.metric_mode()

	RayTuneScheduler.convert_config_space()









	syne_tune.optimizer.schedulers.remove_checkpoints module
	RemoveCheckpointsSchedulerMixin
	RemoveCheckpointsSchedulerMixin.callback_for_checkpoint_removal()









	syne_tune.optimizer.schedulers.scheduler_searcher module
	TrialSchedulerWithSearcher
	TrialSchedulerWithSearcher.searcher

	TrialSchedulerWithSearcher.suggest()

	TrialSchedulerWithSearcher.on_trial_error()

	TrialSchedulerWithSearcher.on_trial_complete()









	syne_tune.optimizer.schedulers.smac_scheduler module









            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.multiobjective package


	
class syne_tune.optimizer.schedulers.multiobjective.MOASHA(config_space, metrics, mode=None, time_attr='training_iteration', multiobjective_priority=None, max_t=100, grace_period=1, reduction_factor=3, brackets=1)

	Bases: TrialScheduler

Implements MultiObjective Asynchronous Successive HAlving with different
multiobjective sort options. References:



A multi-objective perspective on jointly tuning hardware and hyperparameters

David Salinas, Valerio Perrone, Cedric Archambeau and Olivier Cruchant

NAS workshop, ICLR2021.






and



Multi-objective multi-fidelity hyperparameter optimization with application to fairness

Robin Schmucker, Michele Donini, Valerio Perrone, Cédric Archambeau







	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space


	metrics (List[str]) – List of metric names MOASHA optimizes over


	mode (Union[str, List[str], None]) – One of {"min", "max"} or a list of these values (same
size as metrics). Determines whether objectives are minimized or
maximized. Defaults to “min”


	time_attr (str) – A training result attr to use for comparing time.
Note that you can pass in something non-temporal such as
training_iteration as a measure of progress, the only requirement
is that the attribute should increase monotonically.
Defaults to “training_iteration”


	multiobjective_priority (Optional[MOPriority]) – The multiobjective priority that is used
to sort multiobjective candidates. We support several choices such
as non-dominated sort or linear scalarization, default is
non-dominated sort.


	max_t (int) – max time units per trial. Trials will be stopped after
max_t time units (determined by time_attr) have passed.
Defaults to 100


	grace_period (int) – Only stop trials at least this old in time.
The units are the same as the attribute named by time_attr.
Defaults to 1


	reduction_factor (float) – Used to set halving rate and amount. This
is simply a unit-less scalar. Defaults to 3


	brackets (int) – Number of brackets. Each bracket has a different
grace_period and number of rung levels. Defaults to 1









	
metric_names()

	
	Return type:

	List[str]



	Returns:

	List of metric names. The first one is the target
metric optimized over, unless the scheduler is a genuine
multi-objective metric (for example, for sampling the Pareto front)










	
metric_mode()

	
	Return type:

	str



	Returns:

	“min” if target metric is minimized, otherwise “max”.
Here, “min” should be the default. For a genuine multi-objective
scheduler, a list of modes is returned










	
on_trial_add(trial)

	Called when a new trial is added to the trial runner.

Additions are normally triggered by suggest.


	Parameters:

	trial (Trial) – Trial to be added










	
on_trial_result(trial, result)

	Called on each intermediate result reported by a trial.

At this point, the trial scheduler can make a decision by returning
one of SchedulerDecision.CONTINUE,
SchedulerDecision.PAUSE, or SchedulerDecision.STOP.
This will only be called when the trial is currently running.


	Parameters:

	
	trial (Trial) – Trial for which results are reported


	result (Dict[str, Any]) – Result dictionary






	Return type:

	str



	Returns:

	Decision what to do with the trial










	
on_trial_complete(trial, result)

	Notification for the completion of trial.

Note that on_trial_result() is called with the same result before.
However, if the scheduler only uses one final report from each
trial, it may ignore on_trial_result() and just use result here.


	Parameters:

	
	trial (Trial) – Trial which is completing


	result (Dict[str, Any]) – Result dictionary













	
on_trial_remove(trial)

	Called to remove trial.

This is called when the trial is in PAUSED or PENDING state. Otherwise,
call on_trial_complete().


	Parameters:

	trial (Trial) – Trial to be removed










	
is_multiobjective_scheduler()

	Return True if a scheduler is multi-objective.


	Return type:

	bool














	
class syne_tune.optimizer.schedulers.multiobjective.MultiObjectiveRegularizedEvolution(config_space, metric, mode, points_to_evaluate=None, population_size=100, sample_size=10, multiobjective_priority=None, **kwargs)

	Bases: RegularizedEvolution

Adapts regularized evolution algorithm by Real et al. to the multi-objective setting. Elements in the
populations are scored via a multi-objective priority that is set to non-dominated sort by default. Parents are sampled from the population based on
this score.

Additional arguments on top of parent class
syne_tune.optimizer.schedulers.searchers.StochasticSearcher:


	Parameters:

	
	mode (Union[List[str], str]) – Mode to use for the metric given, can be “min” or “max”,
defaults to “min”


	population_size (int) – Size of the population, defaults to 100


	sample_size (int) – Size of the candidate set to obtain a parent for the
mutation, defaults to 10













	
class syne_tune.optimizer.schedulers.multiobjective.NSGA2Searcher(config_space, metric, mode='min', points_to_evaluate=None, population_size=20, **kwargs)

	Bases: StochasticSearcher

This is a wrapper around the NSGA-2 [1] implementation of pymoo [2].



[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan.

A fast and elitist multiobjective genetic algorithm: nsga-II.

Trans. Evol. Comp, 6(2):182–197, April 2002.




[2] J. Blank and K. Deb

pymoo: Multi-Objective Optimization in Python

IEEE Access, 2020







	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space


	metric (List[str]) – Name of metric passed to update(). Can be obtained from
scheduler in configure_scheduler(). In the case of multi-objective optimization,


metric is a list of strings specifying all objectives to be optimized.







	points_to_evaluate (Optional[List[dict]]) – List of configurations to be evaluated
initially (in that order). Each config in the list can be partially
specified, or even be an empty dict. For each hyperparameter not
specified, the default value is determined using a midpoint heuristic.
If None (default), this is mapped to [dict()], a single default config
determined by the midpoint heuristic. If [] (empty list), no initial
configurations are specified.


	mode (Union[List[str], str]) – Should metric be minimized (“min”, default) or maximized
(“max”). In the case of multi-objective optimization, mode can be a list defining for
each metric if it is minimized or maximized


	population_size (int) – Size of the population









	
get_config(**kwargs)

	Suggest a new configuration.

Note: Query _next_initial_config() for initial configs to return
first.


	Parameters:

	kwargs – Extra information may be passed from scheduler to
searcher



	Return type:

	Optional[Dict[str, Any]]



	Returns:

	New configuration. The searcher may return None if a new
configuration cannot be suggested. In this case, the tuning will
stop. This happens if searchers never suggest the same config more
than once, and all configs in the (finite) search space are
exhausted.














	
class syne_tune.optimizer.schedulers.multiobjective.LinearScalarizedScheduler(config_space, metric, mode='min', scalarization_weights=None, base_scheduler_factory=None, **base_scheduler_kwargs)

	Bases: TrialScheduler

Scheduler with linear scalarization of multiple objectives

This method optimizes a single objective equal to the linear scalarization
of given two objectives. The scalarized single objective is named:
"scalarized_<metric1>_<metric2>_..._<metricN>".


	Parameters:

	
	base_scheduler_factory (Optional[Callable[[Any], TrialScheduler]]) – Factory method for the single-objective scheduler
used on the scalarized objective. It will be initialized inside this scheduler.
Defaults to FIFOScheduler.


	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (List[str]) – Names of metrics to optimize


	mode (Union[List[str], str]) – Modes of metrics to optimize (“min” or “max”). All must be matching.


	scalarization_weights (Union[ndarray, List[float], None]) – Weights used to scalarize objectives. Defaults to
an array of 1s


	base_scheduler_kwargs – Additional arguments to base_scheduler_factory
beyond config_space, metric, mode









	
scalarization_weights: ndarray

	




	
single_objective_metric: str

	




	
base_scheduler: TrialScheduler

	




	
on_trial_add(trial)

	Called when a new trial is added to the trial runner.
See the docstring of the chosen base_scheduler for details






	
on_trial_error(trial)

	Called when a trial has failed.
See the docstring of the chosen base_scheduler for details






	
on_trial_result(trial, result)

	Called on each intermediate result reported by a trial.
See the docstring of the chosen base_scheduler for details


	Return type:

	str










	
on_trial_complete(trial, result)

	Notification for the completion of trial.
See the docstring of the chosen base_scheduler for details






	
on_trial_remove(trial)

	Called to remove trial.
See the docstring of the chosen base_scheduler for details






	
trials_checkpoints_can_be_removed()

	See the docstring of the chosen base_scheduler for details
:rtype: List[int]
:return: IDs of paused trials for which checkpoints can be removed






	
metric_names()

	
	Return type:

	List[str]



	Returns:

	List of metric names.










	
metric_mode()

	
	Return type:

	Union[str, List[str]]



	Returns:

	“min” if target metric is minimized, otherwise “max”.










	
metadata()

	
	Return type:

	Dict[str, Any]



	Returns:

	Metadata of the scheduler










	
is_multiobjective_scheduler()

	Return True if a scheduler is multi-objective.


	Return type:

	bool














	
class syne_tune.optimizer.schedulers.multiobjective.MultiObjectiveMultiSurrogateSearcher(config_space, metric, estimators, mode='min', points_to_evaluate=None, scoring_class=None, num_initial_candidates=250, num_initial_random_choices=3, allow_duplicates=False, restrict_configurations=None, clone_from_state=False, **kwargs)

	Bases: BayesianOptimizationSearcher

Multi Objective Multi Surrogate Searcher for FIFO scheduler

This searcher must be used with
FIFOScheduler. It provides
Bayesian optimization, based on a scikit-learn estimator based surrogate model.

Additional arguments on top of parent class
StochasticSearcher:


	Parameters:

	
	estimator – Instance of
SKLearnEstimator
to be used as surrogate model


	scoring_class (Optional[Callable[[Any], ScoringFunction]]) – The scoring function (or acquisition
function) class and any extra parameters used to instantiate it. If
None, expected improvement (EI) is used. Note that the acquisition
function is not locally optimized with this searcher.


	num_initial_candidates (int) – Number of candidates sampled for scoring with
acquisition function.


	num_initial_random_choices (int) – Number of randomly chosen candidates before
surrogate model is used.


	allow_duplicates (bool) – If True, allow for the same candidate to be
selected more than once.


	restrict_configurations (Optional[List[Dict[str, Any]]]) – If given, the searcher only suggests
configurations from this list. If allow_duplicates == False,
entries are popped off this list once suggested.









	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state – See above



	Returns:

	New searcher object














	
class syne_tune.optimizer.schedulers.multiobjective.MultiObjectiveLCBRandomLinearScalarization(predictor, active_metric=None, weights_sampler=None, kappa=0.5, normalize_acquisition=True, random_seed=None)

	Bases: ScoringFunction

Note: This is the multi objective random scalarization scoring function based on the work of Biswajit et al. [1].
This scoring function uses Lower Confidence Bound as the acquisition for the scalarized objective
\(h(\mu, \sigma) = \mu - \kappa * \sigma\)



[1] Paria, Biswajit, Kirthevasan Kandasamy and Barnabás Póczos.

A Flexible Framework for Multi-Objective Bayesian Optimization using Random Scalarizations.

Conference on Uncertainty in Artificial Intelligence (2018).







	Parameters:

	
	predictor (Dict[str, Predictor]) – Surrogate predictor for statistics of predictive distribution


	weights_sampler (Optional[Callable[[], Dict[str, float]]]) – Callable that can generate weights for each objective.
Once called it will return a dictionary mapping metric name to scalarization weight as
{


<name of metric 1> : <weight for metric 1>,
<name of metric 2> : <weight for metric 2>,
…




}




	kappa (float) – Hyperparameter used for the LCM portion of the scoring


	normalize_acquisition (bool) – If True, use rank-normalization on the acquisition function results before weighting.


	random_seed (Optional[int]) – The random seed used for default weights_sampler if not provided.









	
score(candidates, predictor=None)

	
	Parameters:

	
	candidates (Iterable[Dict[str, Union[int, float, str]]]) – Configurations for which scores are to be computed


	predictor (Optional[Dict[str, Predictor]]) – Overrides default  predictor






	Return type:

	List[float]



	Returns:

	List of score values, length of candidates














Submodules



	syne_tune.optimizer.schedulers.multiobjective.linear_scalarizer module
	LinearScalarizedScheduler
	LinearScalarizedScheduler.scalarization_weights

	LinearScalarizedScheduler.single_objective_metric

	LinearScalarizedScheduler.base_scheduler

	LinearScalarizedScheduler.on_trial_add()

	LinearScalarizedScheduler.on_trial_error()

	LinearScalarizedScheduler.on_trial_result()

	LinearScalarizedScheduler.on_trial_complete()

	LinearScalarizedScheduler.on_trial_remove()

	LinearScalarizedScheduler.trials_checkpoints_can_be_removed()

	LinearScalarizedScheduler.metric_names()

	LinearScalarizedScheduler.metric_mode()

	LinearScalarizedScheduler.metadata()

	LinearScalarizedScheduler.is_multiobjective_scheduler()









	syne_tune.optimizer.schedulers.multiobjective.moasha module
	MOASHA
	MOASHA.metric_names()

	MOASHA.metric_mode()

	MOASHA.on_trial_add()

	MOASHA.on_trial_result()

	MOASHA.on_trial_complete()

	MOASHA.on_trial_remove()

	MOASHA.is_multiobjective_scheduler()









	syne_tune.optimizer.schedulers.multiobjective.multi_objective_regularized_evolution module
	MultiObjectiveRegularizedEvolution





	syne_tune.optimizer.schedulers.multiobjective.multi_surrogate_multi_objective_searcher module
	MultiObjectiveMultiSurrogateSearcher
	MultiObjectiveMultiSurrogateSearcher.clone_from_state()









	syne_tune.optimizer.schedulers.multiobjective.multiobjective_priority module
	MOPriority
	MOPriority.priority_unsafe()





	LinearScalarizationPriority
	LinearScalarizationPriority.priority_unsafe()





	FixedObjectivePriority
	FixedObjectivePriority.priority_unsafe()





	NonDominatedPriority
	NonDominatedPriority.priority_unsafe()









	syne_tune.optimizer.schedulers.multiobjective.non_dominated_priority module
	pareto_efficient()

	compute_epsilon_net()

	nondominated_sort()





	syne_tune.optimizer.schedulers.multiobjective.nsga2_searcher module
	NSGA2Searcher
	NSGA2Searcher.get_config()









	syne_tune.optimizer.schedulers.multiobjective.random_scalarization module
	MultiObjectiveLCBRandomLinearScalarization
	MultiObjectiveLCBRandomLinearScalarization.score()









	syne_tune.optimizer.schedulers.multiobjective.utils module
	default_reference_point()

	hypervolume()

	linear_interpolate()

	hypervolume_cumulative()













            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.neuralbands package


	
class syne_tune.optimizer.schedulers.neuralbands.NeuralbandScheduler(config_space, gamma=0.01, nu=0.01, step_size=30, max_while_loop=100, **kwargs)

	Bases: NeuralbandSchedulerBase

NeuralBand is a neural-bandit based HPO algorithm for the multi-fidelity setting. It uses a budget-aware neural
network together with a feedback perturbation to efficiently explore the input space across fidelities.
NeuralBand uses a novel configuration selection criterion to actively choose the configuration in each trial
and incrementally exploits the knowledge of every past trial.


	Parameters:

	
	config_space (Dict) – 


	gamma (float) – Control aggressiveness of configuration selection criterion


	nu (float) – Control aggressiveness of perturbing feedback for exploration


	step_size (int) – How many trials we train network once


	max_while_loop (int) – Maximal number of times we can draw a configuration from configuration space


	kwargs – 









	
on_trial_result(trial, result)

	We simply relay result to the searcher. Other decisions are done
in on_trial_complete.


	Return type:

	str














Submodules



	syne_tune.optimizer.schedulers.neuralbands.networks module
	NetworkExploitation
	NetworkExploitation.forward()

	NetworkExploitation.training





	Exploitation
	Exploitation.add_data()

	Exploitation.predict()

	Exploitation.train()









	syne_tune.optimizer.schedulers.neuralbands.neuralband module
	is_continue_decision()

	NeuralbandScheduler
	NeuralbandScheduler.on_trial_result()









	syne_tune.optimizer.schedulers.neuralbands.neuralband_supplement module
	is_continue_decision()

	NeuralbandSchedulerBase
	NeuralbandSchedulerBase.on_trial_result()





	NeuralbandEGreedyScheduler

	NeuralbandTSScheduler

	NeuralbandUCBScheduler













            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers package


	
class syne_tune.optimizer.schedulers.searchers.BaseSearcher(config_space, metric, points_to_evaluate=None, mode='min')

	Bases: object

Base class of searchers, which are components of schedulers responsible for
implementing get_config().


Note

This is an abstract base class. In order to implement a new searcher, try to
start from
StochasticAndFilterDuplicatesSearcher
or StochasticSearcher,
which implement generally useful properties.




	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space


	metric (Union[List[str], str]) – Name of metric passed to update(). Can be obtained from
scheduler in configure_scheduler(). In the case of multi-objective optimization,


metric is a list of strings specifying all objectives to be optimized.







	points_to_evaluate (Optional[List[Dict[str, Any]]]) – List of configurations to be evaluated
initially (in that order). Each config in the list can be partially
specified, or even be an empty dict. For each hyperparameter not
specified, the default value is determined using a midpoint heuristic.
If None (default), this is mapped to [dict()], a single default config
determined by the midpoint heuristic. If [] (empty list), no initial
configurations are specified.


	mode (Union[List[str], str]) – Should metric be minimized (“min”, default) or maximized
(“max”). In the case of multi-objective optimization, mode can be a list defining for
each metric if it is minimized or maximized









	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.










	
get_config(**kwargs)

	Suggest a new configuration.

Note: Query _next_initial_config() for initial configs to return
first.


	Parameters:

	kwargs – Extra information may be passed from scheduler to
searcher



	Return type:

	Optional[Dict[str, Any]]



	Returns:

	New configuration. The searcher may return None if a new
configuration cannot be suggested. In this case, the tuning will
stop. This happens if searchers never suggest the same config more
than once, and all configs in the (finite) search space are
exhausted.










	
on_trial_result(trial_id, config, result, update)

	Inform searcher about result

The scheduler passes every result. If update == True, the searcher
should update its surrogate model (if any), otherwise result is an
intermediate result not modelled.

The default implementation calls _update() if update == True.
It can be overwritten by searchers which also react to intermediate
results.


	Parameters:

	
	trial_id (str) – See on_trial_result()


	config (Dict[str, Any]) – See on_trial_result()


	result (Dict[str, Any]) – See on_trial_result()


	update (bool) – Should surrogate model be updated?













	
register_pending(trial_id, config=None, milestone=None)

	Signals to searcher that evaluation for trial has started, but not yet
finished, which allows model-based searchers to register this evaluation
as pending.


	Parameters:

	
	trial_id (str) – ID of trial to be registered as pending evaluation


	config (Optional[Dict[str, Any]]) – If trial_id has not been registered with the
searcher, its configuration must be passed here. Ignored
otherwise.


	milestone (Optional[int]) – For multi-fidelity schedulers, this is the next
rung level the evaluation will attend, so that model registers
(config, milestone) as pending.













	
remove_case(trial_id, **kwargs)

	Remove data case previously appended by _update()

For searchers which maintain the dataset of all cases (reports) passed
to update, this method allows to remove one case from the dataset.


	Parameters:

	
	trial_id (str) – ID of trial whose data is to be removed


	kwargs – Extra arguments, optional













	
evaluation_failed(trial_id)

	Called by scheduler if an evaluation job for a trial failed.

The searcher should react appropriately (e.g., remove pending evaluations
for this trial, not suggest the configuration again).


	Parameters:

	trial_id (str) – ID of trial whose evaluated failed










	
cleanup_pending(trial_id)

	Removes all pending evaluations for trial trial_id.

This should be called after an evaluation terminates. For various
reasons (e.g., termination due to convergence), pending candidates
for this evaluation may still be present.


	Parameters:

	trial_id (str) – ID of trial whose pending evaluations should be cleared










	
dataset_size()

	
	Returns:

	Size of dataset a model is fitted to, or 0 if no model is
fitted to data










	
model_parameters()

	
	Returns:

	Dictionary with current model (hyper)parameter values if
this is supported; otherwise empty










	
get_state()

	Together with clone_from_state(), this is needed in order to
store and re-create the mutable state of the searcher.
The state returned here must be pickle-able.


	Return type:

	Dict[str, Any]



	Returns:

	Pickle-able mutable state of searcher










	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state (Dict[str, Any]) – See above



	Returns:

	New searcher object










	
property debug_log: DebugLogPrinter | None

	Some subclasses support writing a debug log, using
DebugLogPrinter.
See RandomSearcher
for an example.


	Returns:

	debug_log object`` or None (not supported)














	
syne_tune.optimizer.schedulers.searchers.impute_points_to_evaluate(points_to_evaluate, config_space)

	Transforms points_to_evaluate argument to
BaseSearcher. Each
config in the list can be partially specified, or even be an empty dict.
For each hyperparameter not specified, the default value is determined
using a midpoint heuristic. Also, duplicate entries are filtered out.
If None (default), this is mapped to [dict()], a single default config
determined by the midpoint heuristic. If [] (empty list), no initial
configurations are specified.


	Parameters:

	
	points_to_evaluate (Optional[List[Dict[str, Any]]]) – Argument to
BaseSearcher


	config_space (Dict[str, Any]) – Configuration space






	Return type:

	List[Dict[str, Any]]



	Returns:

	List of fully specified initial configs










	
class syne_tune.optimizer.schedulers.searchers.StochasticSearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: BaseSearcher

Base class of searchers which use random decisions. Creates the
random_state member, which must be used for all random draws.

Making proper use of this interface allows us to run experiments with
control of random seeds, e.g. for paired comparisons or integration testing.

Additional arguments on top of parent class BaseSearcher:


	Parameters:

	
	random_seed_generator (RandomSeedGenerator, optional) – If given, random seed is drawn from there


	random_seed (int, optional) – Used if random_seed_generator is not given.









	
get_state()

	Together with clone_from_state(), this is needed in order to
store and re-create the mutable state of the searcher.
The state returned here must be pickle-able.


	Return type:

	Dict[str, Any]



	Returns:

	Pickle-able mutable state of searcher










	
set_random_state(random_state)

	








	
class syne_tune.optimizer.schedulers.searchers.StochasticAndFilterDuplicatesSearcher(config_space, metric, points_to_evaluate=None, allow_duplicates=None, restrict_configurations=None, **kwargs)

	Bases: StochasticSearcher

Base class for searchers with the following properties:


	Random decisions use common random_state


	Maintains exclusion list to filter out duplicates in
get_config()
if allows_duplicates == False`. If this is ``True, duplicates are not
filtered, and the exclusion list is used only to avoid configurations of
failed trials.


	If restrict_configurations is given, this is a list of configurations,
and the searcher only suggests configurations from there. If
allow_duplicates == False, entries are popped off this list once
suggested.
points_to_evaluate is filtered to only contain entries in this set.




In order to make use of these features:


	Reject configurations in get_config() if should_not_suggest()
returns True.
If the configuration is drawn at random, use _get_random_config(),
which incorporates this filtering


	Implement _get_config() instead of get_config(). The latter
adds the new config to the exclusion list if allow_duplicates == False




Note: Not all searchers which filter duplicates make use of this class.

Additional arguments on top of parent class StochasticSearcher:


	Parameters:

	
	allow_duplicates (Optional[bool]) – See above. Defaults to False


	restrict_configurations (Optional[List[Dict[str, Any]]]) – See above, optional









	
property allow_duplicates: bool

	




	
should_not_suggest(config)

	
	Parameters:

	config (Dict[str, Any]) – Configuration



	Return type:

	bool



	Returns:

	get_config() should not suggest this configuration?










	
get_config(**kwargs)

	Suggest a new configuration.

Note: Query _next_initial_config() for initial configs to return
first.


	Parameters:

	kwargs – Extra information may be passed from scheduler to
searcher



	Return type:

	Optional[Dict[str, Any]]



	Returns:

	New configuration. The searcher may return None if a new
configuration cannot be suggested. In this case, the tuning will
stop. This happens if searchers never suggest the same config more
than once, and all configs in the (finite) search space are
exhausted.










	
register_pending(trial_id, config=None, milestone=None)

	Signals to searcher that evaluation for trial has started, but not yet
finished, which allows model-based searchers to register this evaluation
as pending.


	Parameters:

	
	trial_id (str) – ID of trial to be registered as pending evaluation


	config (Optional[Dict[str, Any]]) – If trial_id has not been registered with the
searcher, its configuration must be passed here. Ignored
otherwise.


	milestone (Optional[int]) – For multi-fidelity schedulers, this is the next
rung level the evaluation will attend, so that model registers
(config, milestone) as pending.













	
evaluation_failed(trial_id)

	Called by scheduler if an evaluation job for a trial failed.

The searcher should react appropriately (e.g., remove pending evaluations
for this trial, not suggest the configuration again).


	Parameters:

	trial_id (str) – ID of trial whose evaluated failed










	
get_state()

	Together with clone_from_state(), this is needed in order to
store and re-create the mutable state of the searcher.
The state returned here must be pickle-able.


	Return type:

	Dict[str, Any]



	Returns:

	Pickle-able mutable state of searcher














	
syne_tune.optimizer.schedulers.searchers.extract_random_seed(**kwargs)

	
	Return type:

	(int, Dict[str, Any])










	
class syne_tune.optimizer.schedulers.searchers.RandomSearcher(config_space, metric, points_to_evaluate=None, debug_log=False, resource_attr=None, allow_duplicates=None, restrict_configurations=None, **kwargs)

	Bases: StochasticAndFilterDuplicatesSearcher

Searcher which randomly samples configurations to try next.

Additional arguments on top of parent class StochasticAndFilterDuplicatesSearcher:


	Parameters:

	
	debug_log (Union[bool, DebugLogPrinter]) – If True, debug log printing is activated.
Logs which configs are chosen when, and which metric values are
obtained. Defaults to False


	resource_attr (Optional[str]) – Optional. Key in result passed to _update()
for resource value (for multi-fidelity schedulers)









	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.










	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state (Dict[str, Any]) – See above



	Returns:

	New searcher object










	
property debug_log

	Some subclasses support writing a debug log, using
DebugLogPrinter.
See RandomSearcher
for an example.


	Returns:

	debug_log object`` or None (not supported)














	
class syne_tune.optimizer.schedulers.searchers.GridSearcher(config_space, metric, points_to_evaluate=None, num_samples=None, shuffle_config=True, allow_duplicates=False, **kwargs)

	Bases: StochasticSearcher

Searcher that samples configurations from an equally spaced grid over config_space.

It first evaluates configurations defined in points_to_evaluate and then
continues with the remaining points from the grid.

Additional arguments on top of parent class StochasticSearcher.


	Parameters:

	
	num_samples (Optional[Dict[str, int]]) – Dictionary, optional. Number of samples per
hyperparameter. This is required for hyperparameters of type float,
optional for integer hyperparameters, and will be ignored for
other types (categorical, scalar). If left unspecified, a default
value of DEFAULT_NSAMPLE will be used for float parameters, and
the smallest of DEFAULT_NSAMPLE and integer range will be used
for integer parameters.


	shuffle_config (bool) – If True (default), the order of configurations
suggested after those specified in points_to_evaluate is
shuffled. Otherwise, the order will follow the Cartesian product
of the configurations.


	allow_duplicates (bool) – If True, get_config() may return the same
configuration more than once. Defaults to False









	
get_config(**kwargs)

	Select the next configuration from the grid.

This is done without replacement, so previously returned configs are
not suggested again.


	Return type:

	Optional[dict]



	Returns:

	A new configuration that is valid, or None if no new config
can be suggested. The returned configuration is a dictionary that
maps hyperparameters to its values.










	
get_state()

	Together with clone_from_state(), this is needed in order to
store and re-create the mutable state of the searcher.
The state returned here must be pickle-able.


	Return type:

	Dict[str, Any]



	Returns:

	Pickle-able mutable state of searcher










	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state (Dict[str, Any]) – See above



	Returns:

	New searcher object














	
syne_tune.optimizer.schedulers.searchers.searcher_factory(searcher_name, **kwargs)

	Factory for searcher objects

This function creates searcher objects from string argument name and
additional kwargs. It is typically called in the constructor of a
scheduler (see FIFOScheduler),
which provides most of the required kwargs.


	Parameters:

	
	searcher_name (str) – Value of searcher argument to scheduler (see
FIFOScheduler)


	kwargs – Argument to
BaseSearcher constructor






	Return type:

	BaseSearcher



	Returns:

	New searcher object










	
class syne_tune.optimizer.schedulers.searchers.ModelBasedSearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: StochasticSearcher

Common code for surrogate model based searchers

If num_initial_random_choices > 0, initial configurations are drawn using
an internal RandomSearcher
object, which is created in _assign_random_searcher(). This internal
random searcher shares random_state with the searcher here. This ensures
that if ModelBasedSearcher and RandomSearcher objects are created with
the same random_seed and points_to_evaluate argument, initial
configurations are identical until _get_config_modelbased() kicks in.

Note that this works because random_state is only used in the internal
random searcher until meth:_get_config_modelbased is first called.


	
on_trial_result(trial_id, config, result, update)

	Inform searcher about result

The scheduler passes every result. If update == True, the searcher
should update its surrogate model (if any), otherwise result is an
intermediate result not modelled.

The default implementation calls _update() if update == True.
It can be overwritten by searchers which also react to intermediate
results.


	Parameters:

	
	trial_id (str) – See on_trial_result()


	config (Dict[str, Any]) – See on_trial_result()


	result (Dict[str, Any]) – See on_trial_result()


	update (bool) – Should surrogate model be updated?













	
get_config(**kwargs)

	Runs Bayesian optimization in order to suggest the next config to evaluate.


	Return type:

	Optional[Dict[str, Any]]



	Returns:

	Next config to evaluate at










	
dataset_size()

	
	Returns:

	Size of dataset a model is fitted to, or 0 if no model is
fitted to data










	
model_parameters()

	
	Returns:

	Dictionary with current model (hyper)parameter values if
this is supported; otherwise empty










	
set_params(param_dict)

	




	
get_state()

	The mutable state consists of the GP model parameters, the
TuningJobState, and the skip_optimization predicate (which can have a
mutable state).
We assume that skip_optimization can be pickled.

Note that we do not have to store the state of _random_searcher,
since this internal searcher shares its random_state with the searcher
here.


	Return type:

	Dict[str, Any]










	
property debug_log

	Some subclasses support writing a debug log, using
DebugLogPrinter.
See RandomSearcher
for an example.


	Returns:

	debug_log object`` or None (not supported)














	
class syne_tune.optimizer.schedulers.searchers.BayesianOptimizationSearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: ModelBasedSearcher

Common Code for searchers using Bayesian optimization

We implement Bayesian optimization, based on a model factory which
parameterizes the state transformer. This implementation works with
any type of surrogate model and acquisition function, which are
compatible with each other.

The following happens in get_config():


	For the first num_init_random calls, a config is drawn at random
(after points_to_evaluate, which are included in the num_init_random
initial ones). Afterwards, Bayesian optimization is used, unless there
are no finished evaluations yet (a surrogate model cannot be used with no
data at all)


	For BO, model hyperparameter are refit first. This step can be skipped
(see opt_skip_* parameters).


	Next, the BO decision is made based on
BayesianOptimizationAlgorithm.
This involves sampling num_init_candidates` configs are sampled at
random, ranking them with a scoring function (initial_scoring), and
finally runing local optimization starting from the top scoring config.





	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.










	
register_pending(trial_id, config=None, milestone=None)

	Registers trial as pending. This means the corresponding evaluation
task is running. Once it finishes, update is called for this trial.






	
get_batch_configs(batch_size, num_init_candidates_for_batch=None, **kwargs)

	Asks for a batch of batch_size configurations to be suggested. This
is roughly equivalent to calling get_config batch_size times,
marking the suggested configs as pending in the state (but the state
is not modified here). This means the batch is chosen sequentially,
at about the cost of calling get_config batch_size times.

If num_init_candidates_for_batch is given, it is used instead
of num_init_candidates for the selection of all but the first
config in the batch. In order to speed up batch selection, choose
num_init_candidates_for_batch smaller than
num_init_candidates.

If less than batch_size configs are returned, the search space
has been exhausted.

Note: Batch selection does not support debug_log right now: make sure
to switch this off when creating scheduler and searcher.


	Return type:

	List[Dict[str, Union[int, float, str]]]










	
evaluation_failed(trial_id)

	Called by scheduler if an evaluation job for a trial failed.

The searcher should react appropriately (e.g., remove pending evaluations
for this trial, not suggest the configuration again).


	Parameters:

	trial_id (str) – ID of trial whose evaluated failed














	
class syne_tune.optimizer.schedulers.searchers.GPFIFOSearcher(config_space, metric, points_to_evaluate=None, clone_from_state=False, **kwargs)

	Bases: BayesianOptimizationSearcher

Gaussian process Bayesian optimization for FIFO scheduler

This searcher must be used with
FIFOScheduler. It provides
Bayesian optimization, based on a Gaussian process surrogate model.

It is not recommended creating GPFIFOSearcher searcher objects
directly, but rather to create
FIFOScheduler objects with
searcher="bayesopt", and passing arguments here in search_options.
This will use the appropriate functions from
:mod:syne_tune.optimizer.schedulers.searchers.gp_searcher_factory to
create components in a consistent way.

Most of the implementation is generic in
BayesianOptimizationSearcher.

Note: If metric values are to be maximized (mode-"max" in scheduler),
the searcher uses map_reward to map metric values to internal
criterion values, and minimizes the latter. The default choice is
to multiply values by -1.

Pending configurations (for which evaluation tasks are currently running)
are dealt with by fantasizing (i.e., target values are drawn from the
current posterior, and acquisition functions are averaged over this
sample, see num_fantasy_samples).

The GP surrogate model uses a Matern 5/2 covariance function with automatic
relevance determination (ARD) of input attributes, and a constant mean
function. The acquisition function is expected improvement (EI). All
hyperparameters of the surrogate model are estimated by empirical Bayes
(maximizing the marginal likelihood). In general, this hyperparameter
fitting is the most expensive part of a get_config() call.

Note that the full logic of construction based on arguments is given in
:mod:syne_tune.optimizer.schedulers.searchers.gp_searcher_factory. In
particular, see
gp_fifo_searcher_defaults()
for default values.

Additional arguments on top of parent class
StochasticSearcher:


	Parameters:

	
	clone_from_state (bool) – Internal argument, do not use


	resource_attr (str, optional) – Name of resource attribute in reports. This is
optional here, but required for multi-fidelity searchers.
If resource_attr and cost_attr are given, cost values are read from
each report and stored in the state. This allows cost models to be fit
on more data.


	cost_attr (str, optional) – Name of cost attribute in data obtained from reporter
(e.g., elapsed training time). Needed only by cost-aware searchers.
Depending on whether resource_attr is given, cost values are read
from each report or only at the end.


	num_init_random (int, optional) – Number of initial get_config() calls for which
randomly sampled configs are returned. Afterwards, the model-based
searcher is used. Defaults to
DEFAULT_NUM_INITIAL_RANDOM_EVALUATIONS


	num_init_candidates (int, optional) – Number of initial candidates sampled at
random in order to seed the model-based search in get_config.
Defaults to DEFAULT_NUM_INITIAL_CANDIDATES


	num_fantasy_samples (int, optional) – Number of samples drawn for fantasizing
(latent target values for pending evaluations), defaults to 20


	no_fantasizing (bool, optional) – If True, fantasizing is not done and pending
evaluations are ignored. This may lead to loss of diversity in
decisions. Defaults to False


	input_warping (bool, optional) – If True, we use a warping transform, so the kernel
function becomes \(k(w(x), w(x'))\), where \(w(x)\) is a warping
transform parameterized by two non-negative numbers per component, which
are learned as hyperparameters. See also
Warping.
Coordinates which belong to categorical hyperparameters, are not warped.
Defaults to False.


	boxcox_transform (bool, optional) – If True, target values are transformed before
being fitted with a Gaussian marginal likelihood. This is using the Box-Cox
transform with a parameter \(\lambda\), which is learned alongside
other parameters of the surrogate model. The transform is \(\log y\)
for \(\lambda = 0\), and \(y - 1\) for \(\lambda = 1\). This
option requires the targets to be positive. Defaults to False.


	gp_base_kernel (str, optional) – Selects the covariance (or kernel) function to be
used. Supported choices are
SUPPORTED_BASE_MODELS.
Defaults to “matern52-ard” (Matern 5/2 with automatic relevance
determination).


	acq_function (str, optional) – Selects the acquisition function to be used. Supported
choices are
SUPPORTED_ACQUISITION_FUNCTIONS.
Defaults to “ei” (expected improvement acquisition function).


	acq_function_kwargs (dict, optional) – Some acquisition functions have additional
parameters, they can be passed here. If none are given, default values
are used.


	initial_scoring (str, optional) – Scoring function to rank initial candidates
(local optimization of EI is started from top scorer):


	”thompson_indep”: Independent Thompson sampling; randomized score,
which can increase exploration


	”acq_func”: score is the same (EI) acquisition function which is
used for local optimization afterwards




Defaults to
DEFAULT_INITIAL_SCORING




	skip_local_optimization (bool, optional) – If True, the local gradient-based
optimization of the acquisition function is skipped, and the
top-ranked initial candidate (after initial scoring) is returned
instead. In this case, initial_scoring="acq_func" makes most
sense, otherwise the acquisition function will not be used.
Defaults to False


	opt_nstarts (int, optional) – Parameter for surrogate model fitting. Number of
random restarts. Defaults to 2


	opt_maxiter (int, optional) – Parameter for surrogate model fitting. Maximum
number of iterations per restart. Defaults to 50


	opt_warmstart (bool, optional) – Parameter for surrogate model fitting. If True,
each fitting is started from the previous optimum. Not recommended
in general. Defaults to False


	opt_verbose (bool, optional) – Parameter for surrogate model fitting. If True,
lots of output. Defaults to False


	max_size_data_for_model (int, optional) – If this is set, we limit the number of
observations the surrogate model is fitted on this value. If there are
more observations, they are down sampled, see
SubsampleSingleFidelityStateConverter
for details. This down sampling is repeated every time the model is
fit. The opt_skip_* predicates are evaluated before the state is
downsampled. Pass None not to apply such a threshold. The default is
DEFAULT_MAX_SIZE_DATA_FOR_MODEL.


	max_size_top_fraction (float, optional) – Only used if max_size_data_for_model is
set. This fraction of the down sampled set is filled with the top entries
in the full set, the remaining ones are sampled at random from the full
set, see
SubsampleSingleFidelityStateConverter
for details. Defaults to 0.25.


	opt_skip_init_length (int, optional) – Parameter for surrogate model fitting,
skip predicate. Fitting is never skipped as long as number of
observations below this threshold. Defaults to 150


	opt_skip_period (int, optional) – Parameter for surrogate model fitting, skip
predicate. If >1, and number of observations above
opt_skip_init_length, fitting is done only K-th call, and skipped
otherwise. Defaults to 1 (no skipping)


	allow_duplicates (bool, optional) – If True, get_config() may return the same
configuration more than once. Defaults to False


	restrict_configurations (List[dict], optional) – If given, the searcher only suggests
configurations from this list. This needs
skip_local_optimization == True. If allow_duplicates == False,
entries are popped off this list once suggested.


	map_reward (str or MapReward, optional) – In the scheduler, the metric may be minimized or
maximized, but internally, Bayesian optimization is minimizing
the criterion. map_reward converts from metric to internal
criterion:


	”minus_x”: criterion = -metric


	”<a>_minus_x”: criterion = <a> - metric. For example “1_minus_x”
maps accuracy to zero-one error




From a technical standpoint, it does not matter what is chosen here,
because criterion is only used internally. Also note that criterion
data is always normalized to mean 0, variance 1 before fitted with a
Gaussian process. Defaults to “1_minus_x”




	transfer_learning_task_attr (str, optional) – Used to support transfer HPO, where
the state contains observed data from several tasks, one of which
is the active one. To this end, config_space must contain a
categorical parameter of name transfer_learning_task_attr, whose
range are all task IDs. Also, transfer_learning_active_task must
denote the active task, and transfer_learning_active_config_space
is used as active_config_space argument in
HyperparameterRanges.
This allows us to use a narrower search space for the active task than
for the union of all tasks (config_space must be that), which is
needed if some configurations of non-active tasks lie outside of the
ranges in active_config_space. One of the implications is that
filter_observed_data() is selecting configs of the active task,
so that incumbents or exclusion lists are restricted to data from the
active task.


	transfer_learning_active_task (str, optional) – See transfer_learning_task_attr.


	transfer_learning_active_config_space (Dict[str, Any], optional) – See transfer_learning_task_attr. If not given, config_space is the
search space for the active task as well. This active config space need
not contain the transfer_learning_task_attr parameter. In fact, this
parameter is set to a categorical with transfer_learning_active_task
as single value, so that new configs are chosen for the active task
only.


	transfer_learning_model (str, optional) – See transfer_learning_task_attr.
Specifies the surrogate model to be used for transfer learning:


	”matern52_product”: Kernel is product of Matern 5/2 (not ARD) on
transfer_learning_task_attr and Matern 5/2 (ARD) on the rest.
Assumes that data from same task are more closely related than
data from different tasks


	”matern52_same”: Kernel is Matern 5/2 (ARD) on the rest of the
variables, transfer_learning_task_attr is ignored. Assumes
that data from all tasks can be merged together




Defaults to “matern52_product”











	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state – See above



	Returns:

	New searcher object














	
class syne_tune.optimizer.schedulers.searchers.GPMultiFidelitySearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: GPFIFOSearcher

Gaussian process Bayesian optimization for asynchronous Hyperband scheduler.

This searcher must be used with a scheduler of type
MultiFidelitySchedulerMixin. It
provides a novel combination of Bayesian optimization, based on a Gaussian
process surrogate model, with Hyperband scheduling. In particular, observations
across resource levels are modelled jointly.

It is not recommended to create GPMultiFidelitySearcher searcher
objects directly, but rather to create
HyperbandScheduler objects with
searcher="bayesopt", and passing arguments here in search_options.
This will use the appropriate functions from
:mod:syne_tune.optimizer.schedulers.searchers.gp_searcher_factory to
create components in a consistent way.

Most of GPFIFOSearcher
comments apply here as well. In multi-fidelity HPO, we optimize a function
\(f(\mathbf{x}, r)\), \(\mathbf{x}\) the configuration, \(r\)
the resource (or time) attribute. The latter must be a positive integer.
In most applications, resource_attr == "epoch", and the resource is the
number of epochs already trained.

If model == "gp_multitask" (default), we model the function
\(f(\mathbf{x}, r)\) jointly over all resource levels \(r\) at
which it is observed (but see searcher_data in
HyperbandScheduler). The kernel
and mean function of our surrogate model are over \((\mathbf{x}, r)\).
The surrogate model is selected by gp_resource_kernel. More details about
the supported kernels is in:



Tiao, Klein, Lienart, Archambeau, Seeger (2020)

Model-based Asynchronous Hyperparameter and Neural Architecture Search

https://openreview.net/forum?id=a2rFihIU7i






The acquisition function (EI) which is optimized in get_config(), is
obtained by fixing the resource level \(r\) to a value which is
determined depending on the current state. If resource_acq == ‘bohb’,
\(r\) is the largest value <= max_t, where we have seen
\(\ge \mathrm{dimension}(\mathbf{x})\) metric values. If
resource_acq == "first", \(r\) is the first milestone which config
\(\mathbf{x}\) would reach when started.

Additional arguments on top of parent class
GPFIFOSearcher.


	Parameters:

	
	model (str, optional) – Selects surrogate model (learning curve model) to be used.
Choices are:


	”gp_multitask” (default): GP multi-task surrogate model


	”gp_independent”: Independent GPs for each rung level, sharing
an ARD kernel


	”gp_issm”: Gaussian-additive model of ISSM type


	”gp_expdecay”: Gaussian-additive model of exponential decay type
(as in Freeze Thaw Bayesian Optimization)







	gp_resource_kernel (str, optional) – Only relevant for model == "gp_multitask".
Surrogate model over criterion function \(f(\mathbf{x}, r)\),
\(\mathbf{x}\) the config, \(r\) the resource. Note that
\(\mathbf{x}\) is encoded to be a vector with entries in [0, 1],
and \(r\) is linearly mapped to [0, 1], while the criterion data
is normalized to mean 0, variance 1. The reference above provides details
on the models supported here. For the exponential decay kernel, the
base kernel over \(\mathbf{x}\) is Matern 5/2 ARD. See
SUPPORTED_RESOURCE_MODELS
for supported choices. Defaults to “exp-decay-sum”


	resource_acq (str, optional) – Only relevant for ``model in
{"gp_multitask", "gp_independent"}. Determines how the EI
acquisition function is used. Values: “bohb”, “first”. Defaults to “bohb”


	max_size_data_for_model (int, optional) – If this is set, we limit the number of
observations the surrogate model is fitted on this value. If there are
more observations, they are down sampled, see
SubsampleMultiFidelityStateConverter
for details. This down sampling is repeated every time the model is
fit, which ensures that most recent data is taken into account.
The opt_skip_* predicates are evaluated before the state is downsampled.

Pass None not to apply such a threshold. The default is
DEFAULT_MAX_SIZE_DATA_FOR_MODEL.




	opt_skip_num_max_resource (bool, optional) – Parameter for surrogate model fitting,
skip predicate. If True, and number of observations above
opt_skip_init_length, fitting is done only when there is a new
datapoint at r = max_t, and skipped otherwise. Defaults to False


	issm_gamma_one (bool, optional) – Only relevant for model == "gp_issm".
If True, the gamma parameter of the ISSM is fixed to 1, otherwise it
is optimized over. Defaults to False


	expdecay_normalize_inputs (bool, optional) – Only relevant for model ==
"gp_expdecay". If True, resource values r are normalized to [0, 1]
as input to the exponential decay surrogate model. Defaults to False









	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.










	
register_pending(trial_id, config=None, milestone=None)

	Registers trial as pending. This means the corresponding evaluation
task is running. Once it finishes, update is called for this trial.






	
evaluation_failed(trial_id)

	Called by scheduler if an evaluation job for a trial failed.

The searcher should react appropriately (e.g., remove pending evaluations
for this trial, not suggest the configuration again).


	Parameters:

	trial_id (str) – ID of trial whose evaluated failed










	
cleanup_pending(trial_id)

	Removes all pending evaluations for trial trial_id.

This should be called after an evaluation terminates. For various
reasons (e.g., termination due to convergence), pending candidates
for this evaluation may still be present.


	Parameters:

	trial_id (str) – ID of trial whose pending evaluations should be cleared










	
remove_case(trial_id, **kwargs)

	Remove data case previously appended by _update()

For searchers which maintain the dataset of all cases (reports) passed
to update, this method allows to remove one case from the dataset.


	Parameters:

	
	trial_id (str) – ID of trial whose data is to be removed


	kwargs – Extra arguments, optional













	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state – See above



	Returns:

	New searcher object
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syne_tune.optimizer.schedulers.synchronous package


	
class syne_tune.optimizer.schedulers.synchronous.SynchronousHyperbandScheduler(config_space, bracket_rungs, **kwargs)

	Bases: SynchronousHyperbandCommon, DefaultRemoveCheckpointsSchedulerMixin

Synchronous Hyperband. Compared to
HyperbandScheduler, this is also
scheduling jobs asynchronously, but decision-making is synchronized,
in that trials are only promoted to the next milestone once the rung they
are currently paused at, is completely occupied.

Our implementation never delays scheduling of a job. If the currently
active bracket does not accept jobs, we assign the job to a later bracket.
This means that at any point in time, several brackets can be active, but
jobs are preferentially assigned to the first one (the “primary” active
bracket).


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for trial evaluation function


	bracket_rungs (List[List[Tuple[int, int]]]) – Determines rung level systems for each bracket, see
SynchronousHyperbandBracketManager


	metric (str) – Name of metric to optimize, key in result’s obtained via
on_trial_result()


	searcher (str, optional) – Searcher for get_config decisions. Passed to
searcher_factory() along
with search_options and extra information. Supported values:
SUPPORTED_SEARCHERS_HYPERBAND.
Defaults to “random” (i.e., random search)


	search_options (Dict[str, Any], optional) – Passed to
searcher_factory().


	mode (str, optional) – Mode to use for the metric given, can be “min” (default) or
“max”


	points_to_evaluate (List[dict], optional) – List of configurations to be evaluated
initially (in that order). Each config in the list can be partially
specified, or even be an empty dict. For each hyperparameter not
specified, the default value is determined using a midpoint heuristic.
If None (default), this is mapped to [dict()], a single default config
determined by the midpoint heuristic. If [] (empty list), no initial
configurations are specified.


	random_seed (int, optional) – Master random seed. Generators used in the scheduler
or searcher are seeded using
RandomSeedGenerator.
If not given, the master random seed is drawn at random here.


	max_resource_attr (str, optional) – Key name in config for fixed attribute
containing the maximum resource. If given, trials need not be
stopped, which can run more efficiently.


	max_resource_level (int, optional) – Largest rung level, corresponds to max_t in
FIFOScheduler. Must be positive
int larger than grace_period. If this is not given, it is inferred
like in FIFOScheduler. In
particular, it is not needed if max_resource_attr is given.


	resource_attr (str, optional) – Name of resource attribute in results obtained via
``on_trial_result(). The type of resource must be int. Default to
“epoch”


	searcher_data (str, optional) – Relevant only if a model-based searcher is used.
Example: For NN tuning and resource_attr == "epoch", we receive a
result for each epoch, but not all epoch values are also rung levels.
searcher_data determines which of these results are passed to the
searcher. As a rule, the more data the searcher receives, the better
its fit, but also the more expensive get_config may become. Choices:


	”rungs” (default): Only results at rung levels. Cheapest


	”all”: All results. Most expensive




Note: For a Gaussian additive learning curve surrogate model, this
has to be set to “all”.











	
property rung_levels: List[int]

	
	Returns:

	Rung levels (positive int; increasing), may or may not
include max_resource_level










	
property num_brackets: int

	
	Returns:

	Number of brackets (i.e., rung level systems). If the scheduler
does not use brackets, it has to return 1










	
on_trial_result(trial, result)

	Called on each intermediate result reported by a trial.

At this point, the trial scheduler can make a decision by returning
one of SchedulerDecision.CONTINUE,
SchedulerDecision.PAUSE, or SchedulerDecision.STOP.
This will only be called when the trial is currently running.


	Parameters:

	
	trial (Trial) – Trial for which results are reported


	result (Dict[str, Any]) – Result dictionary






	Return type:

	str



	Returns:

	Decision what to do with the trial










	
on_trial_error(trial)

	Given the trial is currently pending, we send a result at its
milestone for metric value NaN. Such trials are ranked after all others
and will most likely not be promoted.






	
metric_names()

	
	Return type:

	List[str]



	Returns:

	List of metric names. The first one is the target
metric optimized over, unless the scheduler is a genuine
multi-objective metric (for example, for sampling the Pareto front)










	
metric_mode()

	
	Return type:

	str



	Returns:

	“min” if target metric is minimized, otherwise “max”.
Here, “min” should be the default. For a genuine multi-objective
scheduler, a list of modes is returned










	
trials_checkpoints_can_be_removed()

	Supports the general case (see header comment).
This method returns IDs of paused trials for which checkpoints can safely
be removed. These trials either cannot be resumed anymore, or it is very
unlikely they will be resumed. Any trial ID needs to be returned only once,
not over and over. If a trial gets stopped (by returning
SchedulerDecision.STOP in on_trial_result()), its checkpoint
is removed anyway, so its ID does not have to be returned here.


	Return type:

	List[int]



	Returns:

	IDs of paused trials for which checkpoints can be removed














	
class syne_tune.optimizer.schedulers.synchronous.SynchronousGeometricHyperbandScheduler(config_space, **kwargs)

	Bases: SynchronousHyperbandScheduler

Special case of SynchronousHyperbandScheduler with rung system
defined by geometric sequences (see
SynchronousHyperbandRungSystem.geometric()). This is the most
frequently used case.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for trial evaluation function


	metric (str) – Name of metric to optimize, key in result’s obtained via
on_trial_result()


	grace_period (int, optional) – Smallest (resource) rung level. Must be positive int.
Defaults to 1


	reduction_factor (float, optional) – Approximate ratio of successive rung levels. Must
be >= 2. Defaults to 3


	brackets (int, optional) – Number of brackets to be used. The default is to use the
maximum number of brackets per iteration. Pass 1 for successive halving.


	searcher (str, optional) – Selects searcher. Passed to
searcher_factory().
Defaults to “random”


	search_options (Dict[str, Any], optional) – Passed to
searcher_factory().


	mode (str, optional) – Mode to use for the metric given, can be “min” (default) or
“max”


	points_to_evaluate (List[dict], optional) – List of configurations to be evaluated
initially (in that order). Each config in the list can be partially
specified, or even be an empty dict. For each hyperparameter not
specified, the default value is determined using a midpoint heuristic.
If None (default), this is mapped to [dict()], a single default config
determined by the midpoint heuristic. If [] (empty list), no initial
configurations are specified.


	random_seed (int, optional) – Master random seed. Generators used in the scheduler
or searcher are seeded using
RandomSeedGenerator.
If not given, the master random seed is drawn at random here.


	max_resource_level (int, optional) – Largest rung level, corresponds to max_t in
FIFOScheduler. Must be positive
int larger than grace_period. If this is not given, it is inferred
like in FIFOScheduler. In
particular, it is not needed if max_resource_attr is given.


	max_resource_attr (str, optional) – Key name in config for fixed attribute
containing the maximum resource. If given, trials need not be
stopped, which can run more efficiently.


	resource_attr (str, optional) – Name of resource attribute in results obtained via
``on_trial_result(). The type of resource must be int. Default to
“epoch”


	searcher_data (str, optional) – Relevant only if a model-based searcher is used.
Example: For NN tuning and resource_attr == "epoch", we receive a
result for each epoch, but not all epoch values are also rung levels.
searcher_data determines which of these results are passed to the
searcher. As a rule, the more data the searcher receives, the better
its fit, but also the more expensive get_config may become. Choices:


	”rungs” (default): Only results at rung levels. Cheapest


	”all”: All results. Most expensive




Note: For a Gaussian additive learning curve surrogate model, this
has to be set to “all”.















	
class syne_tune.optimizer.schedulers.synchronous.DifferentialEvolutionHyperbandScheduler(config_space, rungs_first_bracket, num_brackets_per_iteration=None, **kwargs)

	Bases: SynchronousHyperbandCommon

Differential Evolution Hyperband, as proposed in



DEHB: Evolutionary Hyperband for Scalable, Robust and Efficient Hyperparameter Optimization

Noor Awad, Neeratyoy Mallik, Frank Hutter

IJCAI 30 (2021), pages 2147-2153

https://arxiv.org/abs/2105.09821






We implement DEHB as a variant of synchronous Hyperband, which may
differ slightly from the implementation of the authors.
Main differences to synchronous Hyperband:


	In DEHB, trials are not paused and potentially promoted (except in the
very first bracket). Therefore, checkpointing is not used (except in
the very first bracket, if support_pause_resume is True)


	Only the initial configurations are drawn at random (or drawn from the
searcher). Whenever possible, new configurations (in their internal
encoding) are derived from earlier ones by way of differential evolution





	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for trial evaluation function


	rungs_first_bracket (List[Tuple[int, int]]) – Determines rung level systems for each
bracket, see
DifferentialEvolutionHyperbandBracketManager


	num_brackets_per_iteration (Optional[int]) – Number of brackets per iteration. The
algorithm cycles through these brackets in one iteration. If not
given, the maximum number is used (i.e., len(rungs_first_bracket))


	metric (str) – Name of metric to optimize, key in result’s obtained via
on_trial_result()


	searcher (str, optional) – Searcher for get_config decisions. Passed to
searcher_factory() along
with search_options and extra information. Supported values:
SUPPORTED_SEARCHERS_HYPERBAND.
If searcher == "random_encoded" (default), the encoded configs are
sampled directly, each entry independently from U([0, 1]).
This distribution has higher entropy than for “random” if
there are discrete hyperparameters in config_space. Note that
points_to_evaluate is still used in this case.


	search_options (Dict[str, Any], optional) – Passed to
searcher_factory().
Note: If search_options["allow_duplicates"] == True, then
suggest() may return a configuration more than once


	mode (str, optional) – Mode to use for the metric given, can be “min” (default) or
“max”


	points_to_evaluate (List[dict], optional) – List of configurations to be evaluated
initially (in that order). Each config in the list can be partially
specified, or even be an empty dict. For each hyperparameter not
specified, the default value is determined using a midpoint heuristic.
If None (default), this is mapped to [dict()], a single default config
determined by the midpoint heuristic. If [] (empty list), no initial
configurations are specified.


	random_seed (int, optional) – Master random seed. Generators used in the scheduler
or searcher are seeded using
RandomSeedGenerator.
If not given, the master random seed is drawn at random here.


	max_resource_attr (str, optional) – Key name in config for fixed attribute
containing the maximum resource. If given, trials need not be
stopped, which can run more efficiently.


	max_resource_level (int, optional) – Largest rung level, corresponds to max_t in
FIFOScheduler. Must be positive
int larger than grace_period. If this is not given, it is inferred
like in FIFOScheduler. In
particular, it is not needed if max_resource_attr is given.


	resource_attr (str, optional) – Name of resource attribute in results obtained via
on_trial_result(). The type of resource must be int. Default to
“epoch”


	mutation_factor (float, optional) – In \((0, 1]\). Factor \(F\) used in the rand/1
mutation operation of DE. Default to 0.5


	crossover_probability (float, optional) – In \((0, 1)\). Probability \(p\) used
in crossover operation (child entries are chosen with probability
\(p\)). Defaults to 0.5


	support_pause_resume (bool, optional) – If True, _suggest() supports pause and
resume in the first bracket (this is the default). If the objective
supports checkpointing, this is made use of. Defaults to True.
Note: The resumed trial still gets assigned a new trial_id, but it
starts from the earlier checkpoint.


	searcher_data (str, optional) – Relevant only if a model-based searcher is used.
Example: For NN tuning and resource_attr == "epoch", we receive a
result for each epoch, but not all epoch values are also rung levels.
searcher_data determines which of these results are passed to the
searcher. As a rule, the more data the searcher receives, the better
its fit, but also the more expensive get_config may become. Choices:


	”rungs” (default): Only results at rung levels. Cheapest


	”all”: All results. Most expensive




Note: For a Gaussian additive learning curve surrogate model, this
has to be set to “all”.











	
MAX_RETRIES = 50

	




	
property rung_levels: List[int]

	
	Returns:

	Rung levels (positive int; increasing), may or may not
include max_resource_level










	
property num_brackets: int

	
	Returns:

	Number of brackets (i.e., rung level systems). If the scheduler
does not use brackets, it has to return 1










	
on_trial_result(trial, result)

	Called on each intermediate result reported by a trial.

At this point, the trial scheduler can make a decision by returning
one of SchedulerDecision.CONTINUE,
SchedulerDecision.PAUSE, or SchedulerDecision.STOP.
This will only be called when the trial is currently running.


	Parameters:

	
	trial (Trial) – Trial for which results are reported


	result (Dict[str, Any]) – Result dictionary






	Return type:

	str



	Returns:

	Decision what to do with the trial










	
on_trial_error(trial)

	Given the trial is currently pending, we send a result at its
milestone for metric value NaN. Such trials are ranked after all others
and will most likely not be promoted.






	
metric_names()

	
	Return type:

	List[str]



	Returns:

	List of metric names. The first one is the target
metric optimized over, unless the scheduler is a genuine
multi-objective metric (for example, for sampling the Pareto front)










	
metric_mode()

	
	Return type:

	str



	Returns:

	“min” if target metric is minimized, otherwise “max”.
Here, “min” should be the default. For a genuine multi-objective
scheduler, a list of modes is returned














	
class syne_tune.optimizer.schedulers.synchronous.GeometricDifferentialEvolutionHyperbandScheduler(config_space, **kwargs)

	Bases: DifferentialEvolutionHyperbandScheduler

Special case of DifferentialEvolutionHyperbandScheduler with
rung system defined by geometric sequences. This is the most frequently
used case.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for trial evaluation function


	grace_period (int, optional) – Smallest (resource) rung level. Must be positive int.
Defaults to 1


	reduction_factor (float, optional) – Approximate ratio of successive rung levels. Must
be >= 2. Defaults to 3


	brackets (int, optional) – Number of brackets to be used. The default is to use the
maximum number of brackets per iteration. Pass 1 for successive halving.


	metric (str) – Name of metric to optimize, key in result’s obtained via
on_trial_result()


	searcher (str, optional) – Selects searcher. Passed to
searcher_factory()..
If searcher == "random_encoded" (default), the encoded configs are
sampled directly, each entry independently from U([0, 1]).
This distribution has higher entropy than for “random” if
there are discrete hyperparameters in config_space. Note that
points_to_evaluate is still used in this case.


	search_options (Dict[str, Any], optional) – Passed to
searcher_factory().


	mode (str, optional) – Mode to use for the metric given, can be “min” (default) or
“max”


	points_to_evaluate (List[dict], optional) – List of configurations to be evaluated
initially (in that order). Each config in the list can be partially
specified, or even be an empty dict. For each hyperparameter not
specified, the default value is determined using a midpoint heuristic.
If None (default), this is mapped to [dict()], a single default config
determined by the midpoint heuristic. If [] (empty list), no initial
configurations are specified.


	random_seed (int, optional) – Master random seed. Generators used in the scheduler
or searcher are seeded using
RandomSeedGenerator.
If not given, the master random seed is drawn at random here.


	max_resource_level (int, optional) – Largest rung level, corresponds to max_t in
FIFOScheduler. Must be positive
int larger than grace_period. If this is not given, it is inferred
like in FIFOScheduler. In
particular, it is not needed if max_resource_attr is given.


	max_resource_attr (str, optional) – Key name in config for fixed attribute
containing the maximum resource. If given, trials need not be
stopped, which can run more efficiently.


	resource_attr (str, optional) – Name of resource attribute in results obtained via
on_trial_result(). The type of resource must be int. Default to
“epoch”


	mutation_factor (float, optional) – In \((0, 1]\). Factor \(F\) used in the rand/1
mutation operation of DE. Default to 0.5


	crossover_probability (float, optional) – In \((0, 1)\). Probability \(p\) used
in crossover operation (child entries are chosen with probability
\(p\)). Defaults to 0.5


	support_pause_resume (bool, optional) – If True, _suggest() supports pause and
resume in the first bracket (this is the default). If the objective
supports checkpointing, this is made use of. Defaults to True.
Note: The resumed trial still gets assigned a new trial_id, but it
starts from the earlier checkpoint.













Submodules



	syne_tune.optimizer.schedulers.synchronous.dehb module
	TrialInformation
	TrialInformation.encoded_config

	TrialInformation.level

	TrialInformation.metric_val





	ExtendedSlotInRung
	ExtendedSlotInRung.slot_in_rung()





	DifferentialEvolutionHyperbandScheduler
	DifferentialEvolutionHyperbandScheduler.MAX_RETRIES

	DifferentialEvolutionHyperbandScheduler.rung_levels

	DifferentialEvolutionHyperbandScheduler.num_brackets

	DifferentialEvolutionHyperbandScheduler.on_trial_result()

	DifferentialEvolutionHyperbandScheduler.on_trial_error()

	DifferentialEvolutionHyperbandScheduler.metric_names()

	DifferentialEvolutionHyperbandScheduler.metric_mode()









	syne_tune.optimizer.schedulers.synchronous.dehb_bracket module
	DifferentialEvolutionHyperbandBracket
	DifferentialEvolutionHyperbandBracket.num_rungs

	DifferentialEvolutionHyperbandBracket.size_of_current_rung()

	DifferentialEvolutionHyperbandBracket.trial_id_for_slot()

	DifferentialEvolutionHyperbandBracket.top_list_for_previous_rung()









	syne_tune.optimizer.schedulers.synchronous.dehb_bracket_manager module
	DifferentialEvolutionHyperbandBracketManager
	DifferentialEvolutionHyperbandBracketManager.size_of_current_rung()

	DifferentialEvolutionHyperbandBracketManager.trial_id_from_parent_slot()

	DifferentialEvolutionHyperbandBracketManager.top_of_previous_rung()









	syne_tune.optimizer.schedulers.synchronous.hyperband module
	SynchronousHyperbandCommon
	SynchronousHyperbandCommon.searcher

	SynchronousHyperbandCommon.resource_attr

	SynchronousHyperbandCommon.max_resource_level

	SynchronousHyperbandCommon.searcher_data





	SynchronousHyperbandScheduler
	SynchronousHyperbandScheduler.rung_levels

	SynchronousHyperbandScheduler.num_brackets

	SynchronousHyperbandScheduler.on_trial_result()

	SynchronousHyperbandScheduler.on_trial_error()

	SynchronousHyperbandScheduler.metric_names()

	SynchronousHyperbandScheduler.metric_mode()

	SynchronousHyperbandScheduler.trials_checkpoints_can_be_removed()









	syne_tune.optimizer.schedulers.synchronous.hyperband_bracket module
	SlotInRung
	SlotInRung.rung_index

	SlotInRung.level

	SlotInRung.slot_index

	SlotInRung.trial_id

	SlotInRung.metric_val





	SynchronousBracket
	SynchronousBracket.assert_check_rungs()

	SynchronousBracket.num_rungs

	SynchronousBracket.is_bracket_complete()

	SynchronousBracket.num_pending_slots()

	SynchronousBracket.next_free_slot()

	SynchronousBracket.on_result()





	SynchronousHyperbandBracket
	SynchronousHyperbandBracket.num_rungs





	get_top_list()





	syne_tune.optimizer.schedulers.synchronous.hyperband_bracket_manager module
	SynchronousHyperbandBracketManager
	SynchronousHyperbandBracketManager.bracket_rungs

	SynchronousHyperbandBracketManager.level_to_prev_level()

	SynchronousHyperbandBracketManager.next_job()

	SynchronousHyperbandBracketManager.on_result()









	syne_tune.optimizer.schedulers.synchronous.hyperband_impl module
	SynchronousGeometricHyperbandScheduler

	GeometricDifferentialEvolutionHyperbandScheduler





	syne_tune.optimizer.schedulers.synchronous.hyperband_rung_system module
	SynchronousHyperbandRungSystem
	SynchronousHyperbandRungSystem.geometric()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.transfer_learning package


	
class syne_tune.optimizer.schedulers.transfer_learning.TransferLearningTaskEvaluations(configuration_space, hyperparameters, objectives_names, objectives_evaluations)

	Bases: object

Class that contains offline evaluations for a task that can be used for transfer learning.
Args:


configuration_space: Dict the configuration space that was used when sampling evaluations.
hyperparameters: pd.DataFrame the hyperparameters values that were acquired, all keys of configuration-space


should appear as columns.




objectives_names: List[str] the name of the objectives that were acquired
objectives_evaluations: np.array values of recorded objectives, must have shape


(num_evals, num_seeds, num_fidelities, num_objectives)








	
configuration_space: Dict

	




	
hyperparameters: DataFrame

	




	
objectives_names: List[str]

	




	
objectives_evaluations: array

	




	
objective_values(objective_name)

	
	Return type:

	array










	
objective_index(objective_name)

	
	Return type:

	int










	
top_k_hyperparameter_configurations(k, mode, objective)

	Returns the best k hyperparameter configurations.
:type k: int
:param k: The number of top hyperparameters to return.
:type mode: str
:param mode: ‘min’ or ‘max’, indicating the type of optimization problem.
:type objective: str
:param objective: The objective to consider for ranking hyperparameters.
:rtype: List[Dict[str, Any]]
:returns: List of hyperparameters in order.










	
class syne_tune.optimizer.schedulers.transfer_learning.TransferLearningMixin(config_space, transfer_learning_evaluations, metric_names, **kwargs)

	Bases: object


	
metric_names()

	
	Return type:

	List[str]










	
top_k_hyperparameter_configurations_per_task(transfer_learning_evaluations, num_hyperparameters_per_task, mode, metric)

	Returns the best hyperparameter configurations for each task.
:type transfer_learning_evaluations: Dict[str, TransferLearningTaskEvaluations]
:param transfer_learning_evaluations: Set of candidates to choose from.
:type num_hyperparameters_per_task: int
:param num_hyperparameters_per_task: The number of top hyperparameters per task to return.
:type mode: str
:param mode: ‘min’ or ‘max’, indicating the type of optimization problem.
:type metric: str
:param metric: The metric to consider for ranking hyperparameters.
:rtype: Dict[str, List[Dict[str, Any]]]
:returns: Dict which maps from task name to list of hyperparameters in order.










	
class syne_tune.optimizer.schedulers.transfer_learning.BoundingBox(scheduler_fun, config_space, metric, transfer_learning_evaluations, mode=None, num_hyperparameters_per_task=1)

	Bases: TransferLearningMixin, TrialScheduler

Simple baseline that computes a bounding-box of the best candidate found in
previous tasks to restrict the search space to only good candidates. The
bounding-box is obtained by restricting to the min-max of the best numerical
hyperparameters and restricting to the set of the best candidates on categorical
parameters. Reference:



Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning.

Valerio Perrone, Huibin Shen, Matthias Seeger, Cédric Archambeau, Rodolphe Jenatton.

NeurIPS 2019.






scheduler_fun is used to create the scheduler to be used here, feeding
it with the modified config space. Any additional scheduler arguments
(such as points_to_evaluate) should be encoded inside this function.
Example:

from syne_tune.optimizer.baselines import RandomSearch

def scheduler_fun(new_config_space: Dict[str, Any], mode: str, metric: str):
    return RandomSearch(new_config_space, metric, mode)

bb_scheduler = BoundingBox(scheduler_fun, ...)





Here, bb_scheduler represents random search, where the hyperparameter
ranges are restricted to contain the best evalutions of previous tasks,
as provided by transfer_learning_evaluations.


	Parameters:

	
	scheduler_fun (Callable[[dict, str, str], TrialScheduler]) – Maps tuple of configuration space (dict), mode (str),
metric (str) to a scheduler. This is required since the final
configuration space is known only after computing a bounding-box.


	config_space (Dict[str, Any]) – Initial configuration space to consider, will be updated
to the bounding of the best evaluations of previous tasks


	metric (str) – Objective name to optimize, must be present in transfer
learning evaluations.


	mode (Optional[str]) – Mode to be considered, default to “min”.


	transfer_learning_evaluations (Dict[str, TransferLearningTaskEvaluations]) – Dictionary from task name to
offline evaluations.


	num_hyperparameters_per_task (int) – Number of the best configurations to
use per task when computing the bounding box, defaults to 1.









	
suggest(trial_id)

	Returns a suggestion for a new trial, or one to be resumed

This method returns suggestion of type TrialSuggestion (unless
there is no config left to explore, and None is returned).

If suggestion.spawn_new_trial_id is True, a new trial is to be
started with config suggestion.config. Typically, this new trial
is started from scratch. But if suggestion.checkpoint_trial_id is
given, the trial is to be (warm)started from the checkpoint written
for the trial with this ID. The new trial has ID trial_id.

If suggestion.spawn_new_trial_id is False, an existing and currently
paused trial is to be resumed, whose ID is
suggestion.checkpoint_trial_id. If this trial has a checkpoint, we
start from there. In this case, suggestion.config is optional. If not
given (default), the config of the resumed trial does not change.
Otherwise, its config is overwritten by suggestion.config (see
HyperbandScheduler with
type="promotion" for an example why this can be useful).

Apart from the HP config, additional fields can be appended to the
dict, these are passed to the trial function as well.


	Parameters:

	trial_id (int) – ID for new trial to be started (ignored if existing
trial to be resumed)



	Return type:

	Optional[TrialSuggestion]



	Returns:

	Suggestion for a trial to be started or to be resumed, see
above. If no suggestion can be made, None is returned










	
on_trial_add(trial)

	Called when a new trial is added to the trial runner.

Additions are normally triggered by suggest.


	Parameters:

	trial (Trial) – Trial to be added










	
on_trial_complete(trial, result)

	Notification for the completion of trial.

Note that on_trial_result() is called with the same result before.
However, if the scheduler only uses one final report from each
trial, it may ignore on_trial_result() and just use result here.


	Parameters:

	
	trial (Trial) – Trial which is completing


	result (Dict[str, Any]) – Result dictionary













	
on_trial_remove(trial)

	Called to remove trial.

This is called when the trial is in PAUSED or PENDING state. Otherwise,
call on_trial_complete().


	Parameters:

	trial (Trial) – Trial to be removed










	
on_trial_error(trial)

	Called when a trial has failed.


	Parameters:

	trial (Trial) – Trial for which error is reported.










	
on_trial_result(trial, result)

	Called on each intermediate result reported by a trial.

At this point, the trial scheduler can make a decision by returning
one of SchedulerDecision.CONTINUE,
SchedulerDecision.PAUSE, or SchedulerDecision.STOP.
This will only be called when the trial is currently running.


	Parameters:

	
	trial (Trial) – Trial for which results are reported


	result (Dict[str, Any]) – Result dictionary






	Return type:

	str



	Returns:

	Decision what to do with the trial










	
metric_mode()

	
	Return type:

	str



	Returns:

	“min” if target metric is minimized, otherwise “max”.
Here, “min” should be the default. For a genuine multi-objective
scheduler, a list of modes is returned














	
class syne_tune.optimizer.schedulers.transfer_learning.RUSHScheduler(config_space, transfer_learning_evaluations, metric, type='stopping', points_to_evaluate=None, custom_rush_points=None, num_hyperparameters_per_task=1, **kwargs)

	Bases: TransferLearningMixin, HyperbandScheduler

A transfer learning variation of Hyperband which uses previously
well-performing hyperparameter configurations as an initialization. The best
hyperparameter configuration of each individual task provided is evaluated.
The one among them which performs best on the current task will serve as a
hurdle and is used to prune other candidates. This changes the standard
successive halving promotion as follows. As usual, only the top-performing
fraction is promoted to the next rung level. However, these candidates need
to be at least as good as the hurdle configuration to be promoted. In practice
this means that much fewer candidates can be promoted. Reference:



A resource-efficient method for repeated HPO and NAS.

Giovanni Zappella, David Salinas, Cédric Archambeau.

AutoML workshop @ ICML 2021.






Additional arguments on top of parent class
HyperbandScheduler.


	Parameters:

	
	transfer_learning_evaluations (Dict[str, TransferLearningTaskEvaluations]) – Dictionary from task name to offline
evaluations.


	points_to_evaluate (Optional[List[dict]]) – If given, these configurations are evaluated
after custom_rush_points and configurations inferred from
transfer_learning_evaluations. These points are not used to prune
any configurations.


	custom_rush_points (Optional[List[dict]]) – If given, these configurations are evaluated
first, in addition to top performing configurations from other tasks
and also serve to preemptively prune underperforming configurations


	num_hyperparameters_per_task (int) – The number of top hyperparameter
configurations to consider per task. Defaults to 1













Subpackages



	syne_tune.optimizer.schedulers.transfer_learning.quantile_based package
	Submodules
	syne_tune.optimizer.schedulers.transfer_learning.quantile_based.normalization_transforms module
	GaussianTransform

	StandardTransform

	from_string()





	syne_tune.optimizer.schedulers.transfer_learning.quantile_based.quantile_based_searcher module
	extract_input_output()

	fit_model()

	eval_model()

	subsample()

	QuantileBasedSurrogateSearcher



















Submodules



	syne_tune.optimizer.schedulers.transfer_learning.bounding_box module
	BoundingBox
	BoundingBox.suggest()

	BoundingBox.on_trial_add()

	BoundingBox.on_trial_complete()

	BoundingBox.on_trial_remove()

	BoundingBox.on_trial_error()

	BoundingBox.on_trial_result()

	BoundingBox.metric_mode()









	syne_tune.optimizer.schedulers.transfer_learning.rush module
	RUSHScheduler





	syne_tune.optimizer.schedulers.transfer_learning.zero_shot module
	ZeroShotTransfer
	ZeroShotTransfer.get_config()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.utils package


Submodules



	syne_tune.optimizer.schedulers.utils.simple_profiler module
	ProfilingBlock
	ProfilingBlock.meta

	ProfilingBlock.time_stamp

	ProfilingBlock.durations





	SimpleProfiler
	SimpleProfiler.begin_block()

	SimpleProfiler.push_prefix()

	SimpleProfiler.pop_prefix()

	SimpleProfiler.start()

	SimpleProfiler.stop()

	SimpleProfiler.clear()

	SimpleProfiler.records_as_dict()









	syne_tune.optimizer.schedulers.utils.successive_halving module
	successive_halving_rung_levels()













            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.fifo module


	
class syne_tune.optimizer.schedulers.fifo.FIFOScheduler(config_space, **kwargs)

	Bases: TrialSchedulerWithSearcher

Scheduler which executes trials in submission order.

This is the most basic scheduler template. It can be configured to many use
cases by choosing searcher along with search_options.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	searcher (str or
BaseSearcher) – Searcher for get_config decisions. String values
are passed to
searcher_factory() along
with search_options and extra information. Supported values:
SUPPORTED_SEARCHERS_FIFO.
Defaults to “random” (i.e., random search)


	search_options (Dict[str, Any], optional) – If searcher is str, these arguments are
passed to
searcher_factory()


	metric (str or List[str]) – Name of metric to optimize, key in results obtained via
on_trial_result. For multi-objective schedulers, this can also be a
list


	mode (str or List[str], optional) – “min” if metric is minimized, “max” if metric is
maximized, defaults to “min”. This can also be a list if metric is
a list


	points_to_evaluate (List[dict], optional) – List of configurations to be evaluated
initially (in that order). Each config in the list
can be partially specified, or even be an empty dict. For each
hyperparameter not specified, the default value is determined using
a midpoint heuristic.
If not given, this is mapped to [dict()], a single default config
determined by the midpoint heuristic. If [] (empty list), no initial
configurations are specified.
Note: If searcher is of type BaseSearcher,
points_to_evaluate must be set there.


	random_seed (int, optional) – Master random seed. Generators used in the
scheduler or searcher are seeded using RandomSeedGenerator.
If not given, the master random seed is drawn at random here.


	max_resource_attr (str, optional) – Key name in config for fixed attribute
containing the maximum resource. If this is given, max_t is not
needed. We recommend to use max_resource_attr over max_t.
If given, we use it to infer max_resource_level. It is also
used to limit trial executions in promotion-based multi-fidelity
schedulers (see class:HyperbandScheduler, type="promotion").


	max_t (int, optional) – Value for max_resource_level. Needed for
schedulers which make use of intermediate reports via
on_trial_result. If this is not given, we try to infer its value
from config_space (see
ResourceLevelsScheduler).
checking config_space["epochs"], config_space["max_t"], and
config_space["max_epochs"]. If max_resource_attr is given, we use
the value config_space[max_resource_attr]. But if max_t is given
here, it takes precedence.


	time_keeper (TimeKeeper,
optional) – This will be used for timing here (see
_elapsed_time). The time keeper has to be started at the beginning
of the experiment. If not given, we use a local time keeper here,
which is started with the first call to _suggest(). Can also be set
after construction, with set_time_keeper().
Note: If you use
SimulatorBackend, you need
to pass its time_keeper here.









	
property searcher: BaseSearcher | None

	




	
set_time_keeper(time_keeper)

	Assign time keeper after construction.

This is possible only if the time keeper was not assigned at
construction, and the experiment has not yet started.


	Parameters:

	time_keeper (TimeKeeper) – Time keeper to be used










	
on_trial_result(trial, result)

	We simply relay result to the searcher. Other decisions are done
in on_trial_complete.


	Return type:

	str










	
metric_names()

	
	Return type:

	List[str]



	Returns:

	List of metric names. The first one is the target
metric optimized over, unless the scheduler is a genuine
multi-objective metric (for example, for sampling the Pareto front)










	
metric_mode()

	
	Return type:

	Union[str, List[str]]



	Returns:

	“min” if target metric is minimized, otherwise “max”.
Here, “min” should be the default. For a genuine multi-objective
scheduler, a list of modes is returned










	
is_multiobjective_scheduler()

	Return True if a scheduler is multi-objective.


	Return type:

	bool
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.hyperband module


	
syne_tune.optimizer.schedulers.hyperband.is_continue_decision(trial_decision)

	
	Return type:

	bool










	
class syne_tune.optimizer.schedulers.hyperband.TrialInformation(config, time_stamp, bracket, keep_case, trial_decision, reported_result=None, largest_update_resource=None)

	Bases: object

The scheduler maintains information about all trials it has been dealing
with so far. trial_decision is the current status of the trial.
keep_case is relevant only if searcher_data == "rungs_and_last".
largest_update_resource is the largest resource level for which the
searcher was updated, or None.
reported_result contains the last recent reported result, or None
(task was started, but did not report anything yet). Only contains
attributes self.metric and self._resource_attr.


	
config: Dict[str, Any]

	




	
time_stamp: float

	




	
bracket: int

	




	
keep_case: bool

	




	
trial_decision: str

	




	
reported_result: Optional[dict] = None

	




	
largest_update_resource: Optional[int] = None

	




	
restart(time_stamp)

	








	
class syne_tune.optimizer.schedulers.hyperband.HyperbandScheduler(config_space, **kwargs)

	Bases: FIFOScheduler, MultiFidelitySchedulerMixin, RemoveCheckpointsSchedulerMixin

Implements different variants of asynchronous Hyperband

See type for the different variants. One implementation detail is
when using multiple brackets, task allocation to bracket is done randomly,
based on a distribution which can be configured.

For definitions of concepts (bracket, rung, milestone), see



Li, Jamieson, Rostamizadeh, Gonina, Hardt, Recht, Talwalkar (2018)

A System for Massively Parallel Hyperparameter Tuning

https://arxiv.org/abs/1810.05934






or



Tiao, Klein, Lienart, Archambeau, Seeger (2020)

Model-based Asynchronous Hyperparameter and Neural Architecture Search

https://arxiv.org/abs/2003.10865







Note

This scheduler requires both metric and resource_attr to be
returned by the reporter. Here, resource values must be positive int.
If resource_attr == "epoch", this should be the number of epochs done,
starting from 1 (not the epoch number, starting from 0).



Rung levels and promotion quantiles

Rung levels are values of the resource attribute at which stop/go decisions
are made for jobs, comparing their metric against others at the same level.
These rung levels (positive, strictly increasing) can be specified via
rung_levels, the largest must be <= max_t.
If rung_levels is not given, they are specified by grace_period
and reduction_factor or rung_increment:


	If \(r_{min}\) is grace_period, \(\eta\) is
reduction_factor, then rung levels are
\(\mathrm{round}(r_{min} \eta^j), j=0, 1, \dots\). This is the default
choice for successive halving (Hyperband).


	If rung_increment is given, but not reduction_factor, then rung
levels are \(r_{min} + j \nu, j=0, 1, \dots\), where \(\nu\) is
rung_increment.




If rung_levels is given, then grace_period, reduction_factor,
rung_increment are ignored. If they are given, a warning is logged.

The rung levels determine the quantiles to be used in the stop/go
decisions. If rung levels are \(r_j\), define
\(q_j = r_j / r_{j+1}\).
\(q_j\) is the promotion quantile at rung level \(r_j\). On
average, a fraction of \(q_j\) jobs can continue, the remaining ones
are stopped (or paused). In the default successive halving case, we have
\(q_j = 1/\eta\) for all \(j\).

Cost-aware schedulers or searchers

Some schedulers (e.g., type == "cost_promotion") or searchers may depend
on cost values (with key cost_attr) reported alongside the target metric.
For promotion-based scheduling, a trial may pause and resume several times.
The cost received in on_trial_result only counts the cost since the last
resume. We maintain the sum of such costs in _cost_offset(), and append
a new entry to result in on_trial_result with the total cost.
If the evaluation function does not implement checkpointing, once a trial
is resumed, it has to start from scratch. We detect this in
on_trial_result and reset the cost offset to 0 (if the trial runs from
scratch, the cost reported needs no offset added).


Note

This process requires cost_attr to be set



Pending evaluations

The searcher is notified, by searcher.register_pending calls, of
(trial, resource) pairs for which evaluations are running, and a result
is expected in the future. These pending evaluations can be used by the
searcher in order to direct sampling elsewhere.

The choice of pending evaluations depends on searcher_data. If equal
to “rungs”, pending evaluations sit only at rung levels, because
observations are only used there. In the other cases, pending evaluations
sit at all resource levels for which observations are obtained. For
example, if a trial is at rung level \(r\) and continues towards the
next rung level \(r_{next}\), if searcher_data == "rungs",
searcher.register_pending is called for \(r_{next}\) only, while for
other searcher_data values, pending evaluations are registered for
\(r + 1, r + 2, \dots, r_{next}\).
However, if in this case, register_pending_myopic is True, we instead
call searcher.register_pending for \(r + 1\) when each observation is
obtained (not just at a rung level). This leads to less pending
evaluations at any one time. On the other hand, when a trial is continued
at a rung level, we already know it will emit observations up to the next
rung level, so it seems more “correct” to register all these pending
evaluations in one go.

Additional arguments on top of parent class
FIFOScheduler:


	Parameters:

	
	searcher (str or
BaseSearcher) – Searcher for get_config decisions. String values
are passed to
searcher_factory() along
with search_options and extra information. Supported values:
SUPPORTED_SEARCHERS_HYPERBAND.
Defaults to “random” (i.e., random search)


	resource_attr (str, optional) – Name of resource attribute in results obtained
via on_trial_result, defaults to “epoch”


	grace_period (int, optional) – Minimum resource to be used for a job. Ignored
if rung_levels is given. Defaults to 1


	reduction_factor (float, optional) – Parameter to determine rung levels. Ignored
if rung_levels is given. Must be \(\ge 2\), defaults to 3


	rung_increment (int, optional) – Parameter to determine rung levels. Ignored
if rung_levels or reduction_factor are given. Must be
postive


	rung_levels (List[int], optional) – If given, prescribes the set of rung levels to
be used. Must contain positive integers, strictly increasing.
This information overrides grace_period, reduction_factor,
rung_increment. Note that the stop/promote rule in the successive
halving scheduler is set based on the ratio of successive rung levels.


	brackets (int, optional) – Number of brackets to be used in Hyperband. Each
bracket has a different grace period, all share max_t
and reduction_factor. If brackets == 1 (default), we run
asynchronous successive halving.


	type (str, optional) – Type of Hyperband scheduler. Defaults to “stopping”.
Supported values (see also subclasses of
RungSystem):


	stopping: A config eval is executed by a single task. The task is
stopped at a milestone if its metric is worse than a fraction
of those who reached the milestone earlier, otherwise it
continues. See
StoppingRungSystem.


	promotion: A config eval may be associated with multiple tasks
over its lifetime. It is never terminated, but may be paused.
Whenever a task becomes available, it may promote a config to
the next milestone, if better than a fraction of others who
reached the milestone. If no config can be promoted, a new one
is chosen. See
PromotionRungSystem.


	cost_promotion: This is a cost-aware variant of ‘promotion’, see
CostPromotionRungSystem
for details. In this case, costs must be reported under the name
rung_system_kwargs["cost_attr"] in results.


	pasha: Similar to promotion type Hyperband, but it progressively
expands the available resources until the ranking of
configurations stabilizes.


	rush_stopping: A variation of the stopping scheduler which requires
passing rung_system_kwargs and points_to_evaluate. The first
rung_system_kwargs["num_threshold_candidates"] of
points_to_evaluate will enforce stricter rules on which task is
continued. See
RUSHStoppingRungSystem
and
RUSHScheduler.


	rush_promotion: Same as rush_stopping but for promotion, see
RUSHPromotionRungSystem


	dyhpo: A model-based scheduler, which can be seen as extension of
“promotion” with rung_increment rather than reduction_factor, see
DynamicHPOSearcher







	cost_attr (str, optional) – Required if the scheduler itself uses a cost metric
(i.e., type="cost_promotion"), or if the searcher uses a cost
metric. See also header comment.


	searcher_data (str, optional) – Relevant only if a model-based searcher is used.
Example: For NN tuning and ``resource_attr == “epoch”’, we receive a
result for each epoch, but not all epoch values are also rung levels.
searcher_data determines which of these results are passed to the
searcher. As a rule, the more data the searcher receives, the better
its fit, but also the more expensive get_config may become. Choices:


	”rungs” (default): Only results at rung levels. Cheapest


	”all”: All results. Most expensive


	”rungs_and_last”: Results at rung levels, plus the most recent
result. This means that in between rung levels, only the most
recent result is used by the searcher. This is in between




Note: For a Gaussian additive learning curve surrogate model, this
has to be set to ‘all’.




	register_pending_myopic (bool, optional) – See above. Used only if searcher_data !=
"rungs". Defaults to False


	rung_system_per_bracket (bool, optional) – This concerns Hyperband with
brackets > 1. Defaults to False.
When starting a job for a new config, it is assigned a randomly
sampled bracket. The larger the bracket, the larger the grace period
for the config.
If rung_system_per_bracket == True, we maintain separate rung level
systems for each bracket, so that configs only compete with others
started in the same bracket.
If rung_system_per_bracket == False, we use a single rung level system,
so that all configs compete with each other. In this case, the bracket
of a config only determines the initial grace period, i.e. the first
milestone at which it starts competing with others. This is the
default.
The concept of brackets in Hyperband is meant to hedge against overly
aggressive filtering in successive halving, based on low fidelity
criteria. In practice, successive halving (i.e., brackets = 1) often
works best in the asynchronous case (as implemented here). If
brackets > 1, the hedging is stronger if rung_system_per_bracket
is True.


	do_snapshots (bool, optional) – Support snapshots? If True, a snapshot of all running
tasks and rung levels is returned by _promote_trial(). This
snapshot is passed to searcher.get_config. Defaults to False.
Note: Currently, only the stopping variant supports snapshots.


	rung_system_kwargs (Dict[str, Any], optional) – Arguments passed to the rung system:
* num_threshold_candidates: Used if ``type in [“rush_promotion”,


”rush_stopping”]``. The first num_threshold_candidates in
points_to_evaluate enforce stricter requirements to the
continuation of training tasks. See
RUSHScheduler.





	probability_sh: Used if type == "dyhpo". In DyHPO, we typically
all paused trials against a number of new configurations, and the
winner is either resumed or started (new trial). However, with the
probability given here, we instead try to promote a trial as if
type == "promotion". If no trial can be promoted, we fall back to
the DyHPO logic. Use this to make DyHPO robust against starting too
many new trials, because all paused ones score poorly (this happens
especially at the beginning).







	early_checkpoint_removal_kwargs (Dict[str, Any], optional) – If given, speculative early removal
of checkpoints is done, see
HyperbandRemoveCheckpointsCallback.
The constructor arguments for the HyperbandRemoveCheckpointsCallback
must be given here, if they cannot be inferred (key max_num_checkpoints
is mandatory). This feature is used only for scheduler types which pause
and resume trials.









	
does_pause_resume()

	
	Return type:

	bool



	Returns:

	Is this variant doing pause and resume scheduling, in the
sense that trials can be paused and resumed later?










	
property rung_levels: List[int]

	Note that all entries of rung_levels are smaller than max_t (or
config_space[max_resource_attr]): rung levels are resource levels where
stop/go decisions are made. In particular, if rung_levels is passed at
construction with rung_levels[-1] == max_t, this last entry is stripped
off.


	Returns:

	Rung levels (strictly increasing, positive ints)










	
property num_brackets: int

	
	Returns:

	Number of brackets (i.e., rung level systems). If the scheduler
does not use brackets, it has to return 1










	
property resource_attr: str

	
	Returns:

	Name of resource attribute in reported results










	
property max_resource_level: int

	
	Returns:

	Maximum resource level










	
property searcher_data: str

	
	Returns:

	Relevant only if a model-based searcher is used.
Example: For NN tuning and resource_attr == "epoch", we receive
a result for each epoch, but not all epoch values are also rung
levels. searcher_data determines which of these results are
passed to the searcher. As a rule, the more data the searcher
receives, the better its fit, but also the more expensive
get_config() may become. Choices:


	”rungs”: Only results at rung levels. Cheapest


	”all”: All results. Most expensive


	”rungs_and_last”: Results at rung levels plus last recent one.
Not available for all multi-fidelity schedulers















	
on_trial_error(trial)

	Called when a trial has failed.


	Parameters:

	trial (Trial) – Trial for which error is reported.










	
on_trial_result(trial, result)

	We simply relay result to the searcher. Other decisions are done
in on_trial_complete.


	Return type:

	str










	
on_trial_remove(trial)

	Called to remove trial.

This is called when the trial is in PAUSED or PENDING state. Otherwise,
call on_trial_complete().


	Parameters:

	trial (Trial) – Trial to be removed










	
on_trial_complete(trial, result)

	Notification for the completion of trial.

Note that on_trial_result() is called with the same result before.
However, if the scheduler only uses one final report from each
trial, it may ignore on_trial_result() and just use result here.


	Parameters:

	
	trial (Trial) – Trial which is completing


	result (Dict[str, Any]) – Result dictionary













	
callback_for_checkpoint_removal(stop_criterion)

	
	Parameters:

	stop_criterion (Callable[[TuningStatus], bool]) – Stopping criterion, as passed to
Tuner



	Return type:

	Optional[TunerCallback]



	Returns:

	CP removal callback, or None if CP removal is not activated














	
class syne_tune.optimizer.schedulers.hyperband.HyperbandBracketManager(scheduler_type, resource_attr, metric, mode, max_t, rung_levels, brackets, rung_system_per_bracket, cost_attr, random_seed, rung_system_kwargs, scheduler)

	Bases: object

Maintains rung level systems for range of brackets. Differences depending
on scheduler_type manifest themselves mostly at the level of the rung
level system itself.


	Parameters:

	
	scheduler_type (str) – See HyperbandScheduler.


	resource_attr (str) – See HyperbandScheduler.


	metric (str) – See HyperbandScheduler.


	mode (str) – See HyperbandScheduler.


	max_t (int) – See HyperbandScheduler.


	rung_levels (List[int]) – See HyperbandScheduler.


	brackets (int) – See HyperbandScheduler.


	rung_system_per_bracket (bool) – See HyperbandScheduler.


	cost_attr (str) – Overrides entry in rung_system_kwargs


	random_seed (int) – Random seed for bracket sampling


	rung_system_kwargs (Dict[str, Any]) – Arguments passed to the rung system


	scheduler (HyperbandScheduler) – The scheduler is needed in order to sample a bracket, and
also some rung level systems need more information from the scheduler









	
static does_pause_resume(scheduler_type)

	
	Return type:

	bool



	Returns:

	Is this variant doing pause and resume scheduling, in the
sense that trials can be paused and resumed later?










	
on_task_add(trial_id, **kwargs)

	Called when new task is started (can be new trial or trial being
resumed).

Since the bracket has already been sampled, not much is done here.
We return the list of milestones for this bracket in reverse
(decreasing) order. The first entry is max_t, even if it is
not a rung level in the bracket. This list contains the resource
levels the task would reach if it ran to max_t without being stopped.


	Parameters:

	
	trial_id (str) – ID of trial


	kwargs – Further arguments passed to rung_sys.on_task_add






	Return type:

	List[int]



	Returns:

	List of milestones in decreasing order, where`` max_t`` is first










	
on_task_report(trial_id, result)

	This method is called whenever a new report is received. It returns a
dictionary with all the information needed for making decisions
(e.g., stop / continue task, update model, etc). Keys are:


	task_continues: Should task continue or stop/pause?


	milestone_reached: True if rung level (or max_t) is hit


	next_milestone: If hit rung level < max_t, this is the subsequent
rung level (otherwise: None)


	bracket_id: Bracket in which the task is running





	Parameters:

	
	trial_id (str) – ID of trial


	result (Dict[str, Any]) – Results reported






	Return type:

	Dict[str, Any]



	Returns:

	See above










	
on_task_remove(trial_id)

	Called when trial is stopped or completes


	Parameters:

	trial_id – ID of trial










	
on_task_schedule(new_trial_id)

	Samples bracket for task to be scheduled. Check whether any paused
trial in that bracket can be promoted. If so, its trial_id is
returned. We also return extra_kwargs to be used in _promote_trial.
This contains the bracket which was sampled (key “bracket”).

Note: extra_kwargs can return information also if trial_id = None
is returned. This information is passed to get_config of the
searcher.

Note: extra_kwargs can return information also if trial_id = None
is returned. This information is passed to get_config of the
searcher.


	Parameters:

	new_trial_id (str) – ID for new trial as passed to _suggest()



	Return type:

	(Optional[str], dict)



	Returns:

	(trial_id, extra_kwargs)










	
snapshot_rungs(bracket_id)

	




	
paused_trials(resource=None)

	Only for pause and resume schedulers (does_pause_resume() returns
True), where trials can be paused at certain rung levels only.
If resource is not given, returns list of all paused trials
(trial_id, rank, metric_val, level), where level is
the rung level, and rank is the rank of the trial in the rung
(0 for the best metric value). If resource is given, only the
paused trials in the rung of this level are returned.


	Parameters:

	resource (Optional[int]) – If given, paused trials of only this rung level are
returned. Otherwise, all paused trials are returned



	Return type:

	List[Tuple[str, int, float, int]]



	Returns:

	See above










	
information_for_rungs()

	
	Return type:

	List[Tuple[int, int, float]]



	Returns:

	List of (resource, num_entries, prom_quant), where
resource is a rung level, num_entries the number of entries
in the rung, and prom_quant the promotion quantile










	
support_early_checkpoint_removal()

	
	Return type:

	bool
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.hyperband_checkpoint_removal module


	
syne_tune.optimizer.schedulers.hyperband_checkpoint_removal.create_callback_for_checkpoint_removal(callback_kwargs, stop_criterion)

	
	Return type:

	Optional[TunerCallback]












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.hyperband_cost_promotion module


	
class syne_tune.optimizer.schedulers.hyperband_cost_promotion.CostPromotionRungEntry(trial_id, metric_val, cost_val, was_promoted=False)

	Bases: PromotionRungEntry

Appends cost_val to the superclass. This is the cost value
\(c(x, r)\) recorded for the trial at the resource level.






	
class syne_tune.optimizer.schedulers.hyperband_cost_promotion.CostPromotionRungSystem(rung_levels, promote_quantiles, metric, mode, resource_attr, cost_attr, max_t)

	Bases: PromotionRungSystem

Cost-aware extension of promotion-based asynchronous Hyperband (ASHA).

This code is equivalent with base
PromotionRungSystem,
except the “promotable” condition in _find_promotable_trial() is
replaced.

When a config \(\mathbf{x}\) reaches rung level \(r\), the result
includes a metric \(f(\mathbf{x}, r)\), but also a cost
\(c(\mathbf{x}, r)\). The latter is the cost (e.g., training time) spent
to reach level \(r\).

Consider all trials who reached rung level \(r\) (whether promoted from
there or still paused there), ordered w.r.t. \(f(\mathbf{x}, r)\), best
first, and let their number be \(N\). Define


\[C(r, k) = \sum_{i\le k} c(\mathbf{x}_i, r)\]

For a promotion quantile \(q\), define


\[K = \max_k \mathrm{I}[ C(r, k) \le q  C(r, N) ]\]

Any trial not yet promoted and ranked \(\le K\) can be promoted.
As usual, we scan rungs from the top. If several trials are promotable,
the one with the best metric value is promoted.

Note that costs \(c(\mathbf{x}, r)\) reported via cost_attr need to
be total costs of a trial. If the trial is paused and resumed, partial costs
have to be added up. See HyperbandScheduler
for how this works.








            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.hyperband_pasha module


	
class syne_tune.optimizer.schedulers.hyperband_pasha.PASHARungSystem(rung_levels, promote_quantiles, metric, mode, resource_attr, max_t)

	Bases: PromotionRungSystem

Implements PASHA algorithm. PASHA is a more efficient version of ASHA
and is able to dynamically allocate maximum resources for the tuning procedure
depending on the need. Experimental evaluation has shown PASHA consumes
significantly fewer computational resources than ASHA.


	For more details, see the paper:
	
Bohdal, Balles, Wistuba, Ermis, Archambeau, Zappella (2023)

PASHA: Efficient HPO and NAS with Progressive Resource Allocation

https://openreview.net/forum?id=syfgJE6nFRW








	
on_task_report(trial_id, result, skip_rungs)

	Apart from calling the superclass method, we also check the rankings
and decides if to increase the current maximum resources.


	Return type:

	Dict[str, Any]
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.hyperband_promotion module


	
class syne_tune.optimizer.schedulers.hyperband_promotion.PromotionRungEntry(trial_id, metric_val, was_promoted=False)

	Bases: RungEntry

Appends was_promoted to the superclass. This is True iff the trial
has been promoted from this rung. Otherwise, the trial is paused at this rung.






	
class syne_tune.optimizer.schedulers.hyperband_promotion.PromotionRungSystem(rung_levels, promote_quantiles, metric, mode, resource_attr, max_t)

	Bases: RungSystem

Implements the promotion logic for an asynchronous variant of Hyperband,
known as ASHA:



Li etal

A System for Massively Parallel Hyperparameter Tuning

https://arxiv.org/abs/1810.05934






In ASHA, configs sit paused at milestones (rung levels) until they get
promoted, which means that a free task picks up their evaluation until
the next milestone.

The rule to decide whether a paused trial is promoted (or remains
paused) is the same as in
StoppingRungSystem,
except that continues becomes gets promoted. If several paused trials
in a rung can be promoted, the one with the best metric value is chosen.

Note: Say that an evaluation is resumed from level resume_from. If the
trial evaluation function does not implement pause & resume, it needs to
start training from scratch, in which case metrics are reported for every
epoch, also those < resume_from. At least for some modes of fitting the
searcher model to data, this would lead to duplicate target values for the
same extended config \((x, r)\), which we want to avoid. The solution is to
maintain resume_from in the data for the terminator (see _running).
Given this, we can report in on_task_report() that the current metric
data should not be used for the searcher model (ignore_data = True), namely
as long as the evaluation has not yet gone beyond level resume_from.


	
on_task_schedule(new_trial_id)

	Used to implement
_promote_trial().
Searches through rungs to find a trial which can be promoted. If one is
found, we return the trial_id and other info (current milestone,
milestone to be promoted to). We also mark the trial as being promoted
at the rung level it sits right now.


	Return type:

	Dict[str, Any]










	
on_task_add(trial_id, skip_rungs, **kwargs)

	Called when new task is started. Depending on kwargs["new_config"],
this could start an evaluation (True) or promote an existing config
to the next milestone (False). In the latter case, kwargs contains
additional information about the promotion (in “milestone”,
“resume_from”).


	Parameters:

	
	trial_id (str) – ID of trial to be started


	skip_rungs (int) – This number of the smallest rung levels are not
considered milestones for this task


	kwargs – Additional arguments













	
on_task_report(trial_id, result, skip_rungs)

	Decision on whether task may continue (task_continues=True), or
should be paused (task_continues=False).
milestone_reached is a flag whether resource coincides with a
milestone.
For this scheduler, we have that


task_continues == not milestone_reached,




since a trial is always paused at a milestone.

ignore_data is True if a result is received from a resumed trial
at a level <= resume_from. This happens if checkpointing is not
implemented (or not used), because resumed trials are started from
scratch then. These metric values should in general be ignored.


	Parameters:

	
	trial_id (str) – ID of trial which reported results


	result (Dict[str, Any]) – Reported metrics


	skip_rungs (int) – This number of smallest rung levels are not
considered milestones for this task






	Return type:

	Dict[str, Any]



	Returns:

	dict(task_continues, milestone_reached, next_milestone,
ignore_data)










	
on_task_remove(trial_id)

	Called when task is removed.


	Parameters:

	trial_id (str) – ID of trial which is to be removed










	
static does_pause_resume()

	
	Return type:

	bool



	Returns:

	Is this variant doing pause and resume scheduling, in the
sense that trials can be paused and resumed later?










	
support_early_checkpoint_removal()

	
	Return type:

	bool



	Returns:

	Do we support early checkpoint removal via
paused_trials()?










	
paused_trials(resource=None)

	Only for pause and resume schedulers (does_pause_resume() returns
True), where trials can be paused at certain rung levels only.
If resource is not given, returns list of all paused trials
(trial_id, rank, metric_val, level), where level is
the rung level, and rank is the rank of the trial in the rung
(0 for the best metric value). If resource is given, only the
paused trials in the rung of this level are returned. If resource
is not a rung level, the returned list is empty.


	Parameters:

	resource (Optional[int]) – If given, paused trials of only this rung level are
returned. Otherwise, all paused trials are returned



	Return type:

	List[Tuple[str, int, float, int]]



	Returns:

	See above
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.hyperband_rush module


	
class syne_tune.optimizer.schedulers.hyperband_rush.RUSHDecider(num_threshold_candidates, mode)

	Bases: object

Implements the additional decision logic according to the RUSH algorithm.
It is used as part of RUSHStoppingRungSystem and
RUSHPromotionRungSystem. Reference:



A resource-efficient method for repeated HPO and NAS.

Giovanni Zappella, David Salinas, Cédric Archambeau.

AutoML workshop @ ICML 2021.






For a more detailed description, refer to
RUSHScheduler.


	Parameters:

	
	num_threshold_candidates (int) – Number of threshold candidates


	mode (str) – “min” or “max”









	
task_continues(task_continues, trial_id, metric_val, resource)

	
	Return type:

	bool














	
class syne_tune.optimizer.schedulers.hyperband_rush.RUSHStoppingRungSystem(rung_levels, promote_quantiles, metric, mode, resource_attr, max_t, num_threshold_candidates)

	Bases: StoppingRungSystem

Implementation for RUSH algorithm, stopping variant.

Additional arguments on top of base class
StoppingRungSystem:


	Parameters:

	num_threshold_candidates (int) – Number of threshold candidates










	
class syne_tune.optimizer.schedulers.hyperband_rush.RUSHPromotionRungSystem(rung_levels, promote_quantiles, metric, mode, resource_attr, max_t, num_threshold_candidates)

	Bases: PromotionRungSystem

Implementation for RUSH algorithm, promotion variant.

Additional arguments on top of base class
PromotionRungSystem:


	Parameters:

	num_threshold_candidates (int) – Number of threshold candidates












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.hyperband_stopping module


	
class syne_tune.optimizer.schedulers.hyperband_stopping.RungEntry(trial_id, metric_val)

	Bases: object

Represents entry in a rung. This class is extended by rung level systems
which need to maintain more information per entry.


	Parameters:

	
	trial_id (str) – ID of trial


	metric_val (float) – Metric value













	
class syne_tune.optimizer.schedulers.hyperband_stopping.Rung(level, prom_quant, mode, data=None)

	Bases: object


	Parameters:

	
	level (int) – Rung level \(r_j\)


	prom_quant (float) – promotion quantile \(q_j\)


	data (Optional[List[RungEntry]]) – Data of all previous jobs reaching the level. This list is
kept sorted w.r.t. metric_val, so that best values come first









	
add(entry)

	




	
pop(pos)

	
	Return type:

	RungEntry










	
quantile()

	Returns same value as numpy.quantile(metric_vals, q), where
metric_vals are the metric values in data, and
q = prom_quant if mode == "min", q = ``1 - prom_quant
otherwise. If len(data) < 2, we return None.

See here [https://numpy.org/doc/stable/reference/generated/numpy.quantile.html].
The default for numpy.quantile is method="linear".


	Return type:

	Optional[float]



	Returns:

	See above














	
class syne_tune.optimizer.schedulers.hyperband_stopping.RungSystem(rung_levels, promote_quantiles, metric, mode, resource_attr, max_t)

	Bases: object

Terminology: Trials emit results at certain resource levels (e.g., epoch
numbers). Some resource levels are rung levels, this is where scheduling
decisions (stop, continue or pause, resume) are taken. For a running trial,
the next rung level (or max_t) it will reach is called its next
milestone.

Note that rung_levels, promote_quantiles can be empty. All
entries of rung_levels are smaller than max_t.


	Parameters:

	
	rung_levels (List[int]) – List of rung levels (positive int, increasing)


	promote_quantiles (List[float]) – List of promotion quantiles at each rung level


	metric (str) – Name of metric to optimize


	mode (str) – “min” or “max”


	resource_attr (str) – Name of resource attribute


	max_t (int) – Largest resource level









	
on_task_schedule(new_trial_id)

	Called when new task is to be scheduled.

For a promotion-based rung system, check whether any trial can be
promoted. If so, return dict with keys “trial_id”, “resume_from”
(rung level where trial is paused), “milestone” (next rung level
the trial will reach, or None).

If no trial can be promoted, or if the rung system is not
promotion-based, the returned dictionary must not contain the
“trial_id” key. It is nevertheless passed back via extra_kwargs in
on_task_schedule().
The default is to return an empty dictionary, but some special subclasses
can use this to return information in case a trial is not promoted.

If no trial can be promoted, or if the rung system is not
promotion-based, the returned dictionary must not contain the
“trial_id” key. It is nevertheless passed back via extra_kwargs in
on_task_schedule().
The default is to return an empty dictionary, but some special subclasses
can use this to return information in case a trial is not promoted.


	Parameters:

	new_trial_id (str) – ID for new trial as passed to _suggest().
Only needed by specific subclasses



	Return type:

	Dict[str, Any]



	Returns:

	See above










	
on_task_add(trial_id, skip_rungs, **kwargs)

	Called when new task is started.


	Parameters:

	
	trial_id (str) – ID of trial to be started


	skip_rungs (int) – This number of the smallest rung levels are not
considered milestones for this task


	kwargs – Additional arguments













	
on_task_report(trial_id, result, skip_rungs)

	Called when a trial reports metric results.

Returns dict with keys “milestone_reached” (trial reaches its milestone),
“task_continues” (trial should continue; otherwise it is stopped or
paused), “next_milestone” (next milestone it will reach, or None).
For certain subclasses, there may be additional entries.


	Parameters:

	
	trial_id (str) – ID of trial which reported results


	result (Dict[str, Any]) – Reported metrics


	skip_rungs (int) – This number of the smallest rung levels are not
considered milestones for this task






	Return type:

	Dict[str, Any]



	Returns:

	See above










	
on_task_remove(trial_id)

	Called when task is removed.


	Parameters:

	trial_id (str) – ID of trial which is to be removed










	
get_first_milestone(skip_rungs)

	
	Parameters:

	skip_rungs (int) – This number of the smallest rung levels are not
considered milestones for this task



	Return type:

	int



	Returns:

	First milestone to be considered










	
get_milestones(skip_rungs)

	
	Parameters:

	skip_rungs (int) – This number of the smallest rung levels are not
considered milestones for this task



	Return type:

	List[int]



	Returns:

	All milestones to be considered, in decreasing order; does
not include max_t










	
snapshot_rungs(skip_rungs)

	A snapshot is a list of rung levels with entries (level, data),
ordered from top to bottom (largest rung first).


	Parameters:

	skip_rungs (int) – This number of the smallest rung levels are not
considered milestones for this task



	Return type:

	List[Tuple[int, List[RungEntry]]]



	Returns:

	Snapshot (see above)










	
static does_pause_resume()

	
	Return type:

	bool



	Returns:

	Is this variant doing pause and resume scheduling, in the
sense that trials can be paused and resumed later?










	
support_early_checkpoint_removal()

	
	Return type:

	bool



	Returns:

	Do we support early checkpoint removal via
paused_trials()?










	
paused_trials(resource=None)

	Only for pause and resume schedulers (does_pause_resume() returns
True), where trials can be paused at certain rung levels only.
If resource is not given, returns list of all paused trials
(trial_id, rank, metric_val, level), where level is
the rung level, and rank is the rank of the trial in the rung
(0 for the best metric value). If resource is given, only the
paused trials in the rung of this level are returned. If resource
is not a rung level, the returned list is empty.


	Parameters:

	resource (Optional[int]) – If given, paused trials of only this rung level are
returned. Otherwise, all paused trials are returned



	Return type:

	List[Tuple[str, int, float, int]]



	Returns:

	See above










	
information_for_rungs()

	
	Return type:

	List[Tuple[int, int, float]]



	Returns:

	List of (resource, num_entries, prom_quant), where
resource is a rung level, num_entries the number of entries
in the rung, and prom_quant the promotion quantile














	
class syne_tune.optimizer.schedulers.hyperband_stopping.StoppingRungSystem(rung_levels, promote_quantiles, metric, mode, resource_attr, max_t)

	Bases: RungSystem

The decision on whether a trial \(\mathbf{x}\) continues or is stopped
at a rung level \(r\), is taken in on_task_report(). To this end,
the metric value \(f(\mathbf{x}, r)\) is inserted into \(r.data\).
Then:


\[\mathrm{continues}(\mathbf{x}, r)\; \Leftrightarrow\;
f(\mathbf{x}, r) \le \mathrm{np.quantile}(r.data, r.prom\_quant)\]

in case mode == "min". See also _task_continues().


	
on_task_schedule(new_trial_id)

	Called when new task is to be scheduled.

For a promotion-based rung system, check whether any trial can be
promoted. If so, return dict with keys “trial_id”, “resume_from”
(rung level where trial is paused), “milestone” (next rung level
the trial will reach, or None).

If no trial can be promoted, or if the rung system is not
promotion-based, the returned dictionary must not contain the
“trial_id” key. It is nevertheless passed back via extra_kwargs in
on_task_schedule().
The default is to return an empty dictionary, but some special subclasses
can use this to return information in case a trial is not promoted.

If no trial can be promoted, or if the rung system is not
promotion-based, the returned dictionary must not contain the
“trial_id” key. It is nevertheless passed back via extra_kwargs in
on_task_schedule().
The default is to return an empty dictionary, but some special subclasses
can use this to return information in case a trial is not promoted.


	Parameters:

	new_trial_id (str) – ID for new trial as passed to _suggest().
Only needed by specific subclasses



	Return type:

	Dict[str, Any]



	Returns:

	See above










	
on_task_report(trial_id, result, skip_rungs)

	Called when a trial reports metric results.

Returns dict with keys “milestone_reached” (trial reaches its milestone),
“task_continues” (trial should continue; otherwise it is stopped or
paused), “next_milestone” (next milestone it will reach, or None).
For certain subclasses, there may be additional entries.


	Parameters:

	
	trial_id (str) – ID of trial which reported results


	result (Dict[str, Any]) – Reported metrics


	skip_rungs (int) – This number of the smallest rung levels are not
considered milestones for this task






	Return type:

	Dict[str, Any]



	Returns:

	See above










	
static does_pause_resume()

	
	Return type:

	bool



	Returns:

	Is this variant doing pause and resume scheduling, in the
sense that trials can be paused and resumed later?
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.median_stopping_rule module


	
class syne_tune.optimizer.schedulers.median_stopping_rule.MedianStoppingRule(scheduler, resource_attr, running_average=True, metric=None, grace_time=1, grace_population=5, rank_cutoff=0.5)

	Bases: TrialScheduler

Applies median stopping rule in top of an existing scheduler.


	If result at time-step ranks less than the cutoff of other results observed
at this time-step, the trial is interrupted and otherwise, the wrapped
scheduler is called to make the stopping decision.


	Suggest decisions are left to the wrapped scheduler.


	The mode of the wrapped scheduler is used.




Reference:



Google Vizier: A Service for Black-Box Optimization.

Golovin et al. 2017.

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, August 2017

Pages 1487–1495

https://dl.acm.org/doi/10.1145/3097983.3098043







	Parameters:

	
	scheduler (TrialScheduler) – Scheduler to be called for trial suggestion or when
median-stopping-rule decision is to continue.


	resource_attr (str) – Key in the reported dictionary that accounts for the
resource (e.g. epoch).


	running_average (bool) – If True, then uses the running average of
observation instead of raw observations. Defaults to True


	metric (Optional[str]) – Metric to be considered, defaults to scheduler.metric


	grace_time (Optional[int]) – Median stopping rule is only applied for results whose
resource_attr exceeds this amount. Defaults to 1


	grace_population (int) – Median stopping rule when at least
grace_population have been observed at a resource level. Defaults to 5


	rank_cutoff (float) – Results whose quantiles are below this level are
discarded. Defaults to 0.5 (median)









	
on_trial_result(trial, result)

	Called on each intermediate result reported by a trial.

At this point, the trial scheduler can make a decision by returning
one of SchedulerDecision.CONTINUE,
SchedulerDecision.PAUSE, or SchedulerDecision.STOP.
This will only be called when the trial is currently running.


	Parameters:

	
	trial (Trial) – Trial for which results are reported


	result (Dict) – Result dictionary






	Return type:

	str



	Returns:

	Decision what to do with the trial










	
grace_condition(time_step)

	
	Parameters:

	time_step (float) – Value result[self.resource_attr]



	Return type:

	bool



	Returns:

	Decide for continue?










	
metric_names()

	
	Return type:

	List[str]



	Returns:

	List of metric names. The first one is the target
metric optimized over, unless the scheduler is a genuine
multi-objective metric (for example, for sampling the Pareto front)










	
metric_mode()

	
	Return type:

	str



	Returns:

	“min” if target metric is minimized, otherwise “max”.
Here, “min” should be the default. For a genuine multi-objective
scheduler, a list of modes is returned
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.multi_fidelity module


	
class syne_tune.optimizer.schedulers.multi_fidelity.MultiFidelitySchedulerMixin

	Bases: object

Declares properties which are required for multi-fidelity schedulers.


	
property resource_attr: str

	
	Returns:

	Name of resource attribute in reported results










	
property max_resource_level: int

	
	Returns:

	Maximum resource level










	
property rung_levels: List[int]

	
	Returns:

	Rung levels (positive int; increasing), may or may not
include max_resource_level










	
property searcher_data: str

	
	Returns:

	Relevant only if a model-based searcher is used.
Example: For NN tuning and resource_attr == "epoch", we receive
a result for each epoch, but not all epoch values are also rung
levels. searcher_data determines which of these results are
passed to the searcher. As a rule, the more data the searcher
receives, the better its fit, but also the more expensive
get_config() may become. Choices:


	”rungs”: Only results at rung levels. Cheapest


	”all”: All results. Most expensive


	”rungs_and_last”: Results at rung levels plus last recent one.
Not available for all multi-fidelity schedulers















	
property num_brackets: int

	
	Returns:

	Number of brackets (i.e., rung level systems). If the scheduler
does not use brackets, it has to return 1
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.pbt module


	
class syne_tune.optimizer.schedulers.pbt.PBTTrialState(trial, last_score=None, last_checkpoint=None, last_perturbation_time=0, stopped=False)

	Bases: object

Internal PBT state tracked per-trial.


	
trial: Trial

	




	
last_score: float = None

	




	
last_checkpoint: int = None

	




	
last_perturbation_time: int = 0

	




	
stopped: bool = False

	








	
class syne_tune.optimizer.schedulers.pbt.PopulationBasedTraining(config_space, custom_explore_fn=None, **kwargs)

	Bases: FIFOScheduler

Implements the Population Based Training (PBT) algorithm. This is an adapted
version of the Ray Tune implementation:

https://docs.ray.io/en/latest/tune/tutorials/tune-advanced-tutorial.html

PBT was originally presented in the following paper:



Jaderberg et. al.

Population Based Training of Neural Networks

https://arxiv.org/abs/1711.09846






Population based training (PBT) maintains a population of models spread across
an asynchronous set of workers and dynamically adjust their hyperparameters
during training. Every time a worker reaches a user-defined milestone, it
returns the performance of the currently evaluated network. If the network is
within the top percentile of the population, the worker resumes its training
until the next milestone. If not, PBT selects a model from the top percentile
uniformly at random. The worker now continues with the latest checkpoint of
this new model but mutates the hyperparameters.

The mutation happens as following. For each hyperparameter, we either resample
its value uniformly at random, or otherwise increment (multiply by 1.2) or
decrement (multiply by 0.8) the value (probability 0.5 each). For categorical
hyperparameters, the value is always resampled uniformly.

Note: While this is implemented as child of FIFOScheduler, we
require searcher="random" (default), since the current code only supports
a random searcher.

Additional arguments on top of parent class FIFOScheduler.


	Parameters:

	
	resource_attr (str) – Name of resource attribute in results obtained
via on_trial_result, defaults to “time_total_s”


	population_size (int, optional) – Size of the population, defaults to 4


	perturbation_interval (float, optional) – Models will be considered for perturbation
at this interval of resource_attr. Note that perturbation incurs
checkpoint overhead, so you shouldn’t set this to be too frequent.
Defaults to 60


	quantile_fraction (float, optional) – Parameters are transferred from the top
quantile_fraction fraction of trials to the bottom
quantile_fraction fraction. Needs to be between 0 and 0.5. Setting
it to 0 essentially implies doing no exploitation at all.
Defaults to 0.25


	resample_probability (float, optional) – The probability of resampling from the
original distribution when applying _explore(). If not
resampled, the value will be perturbed by a factor of 1.2 or 0.8 if
continuous, or changed to an adjacent value if discrete.
Defaults to 0.25


	custom_explore_fn (function, optional) – Custom exploration function. This
function is invoked as f(config) instead of the built-in perturbations,
and should return config updated as needed. If this is given,
resample_probability is not used









	
on_trial_add(trial)

	Called when a new trial is added to the trial runner.

Additions are normally triggered by suggest.


	Parameters:

	trial (Trial) – Trial to be added










	
on_trial_result(trial, result)

	We simply relay result to the searcher. Other decisions are done
in on_trial_complete.


	Return type:

	str
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.random_seeds module


	
syne_tune.optimizer.schedulers.random_seeds.generate_random_seed(random_state=<module 'numpy.random' from '/home/docs/checkouts/readthedocs.org/user_builds/syne-tune/envs/latest/lib/python3.9/site-packages/numpy/random/__init__.py'>)

	
	Return type:

	int










	
class syne_tune.optimizer.schedulers.random_seeds.RandomSeedGenerator(master_seed)

	Bases: object








            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.ray_scheduler module


	
class syne_tune.optimizer.schedulers.ray_scheduler.RayTuneScheduler(config_space, ray_scheduler=None, ray_searcher=None, points_to_evaluate=None)

	Bases: TrialScheduler

Allow using Ray scheduler and searcher. Any searcher/scheduler should
work, except such which need access to TrialRunner (e.g., PBT), this
feature is not implemented in Syne Tune.

If ray_searcher is not given (defaults to random searcher), initial
configurations to evaluate can be passed in points_to_evaluate. If
ray_searcher is given, this argument is ignored (needs to be passed
to ray_searcher at construction). Note: Use
impute_points_to_evaluate()
in order to preprocess points_to_evaluate specified by the user or
the benchmark.


	Parameters:

	
	config_space (Dict) – Configuration space


	ray_scheduler – Ray scheduler, defaults to FIFO scheduler


	ray_searcher (Optional[Searcher]) – Ray searcher, defaults to random search


	points_to_evaluate (Optional[List[Dict]]) – See above









	
RT_FIFOScheduler

	alias of FIFOScheduler






	
RT_Searcher

	alias of Searcher






	
class RandomSearch(config_space, points_to_evaluate, mode)

	Bases: Searcher


	
suggest(trial_id)

	Queries the algorithm to retrieve the next set of parameters.


	Return type:

	Optional[Dict]






	Arguments:
	trial_id: Trial ID used for subsequent notifications.



	Returns:
	
	dict | FINISHED | None: Configuration for a trial, if possible.
	If FINISHED is returned, Tune will be notified that
no more suggestions/configurations will be provided.
If None is returned, Tune will skip the querying of the
searcher for this step.














	
on_trial_complete(trial_id, result=None, error=False)

	Notification for the completion of trial.

Typically, this method is used for notifying the underlying
optimizer of the result.


	Args:
	trial_id: A unique string ID for the trial.
result: Dictionary of metrics for current training progress.


Note that the result dict may include NaNs or
may not include the optimization metric. It is up to the
subclass implementation to preprocess the result to
avoid breaking the optimization process. Upon errors, this
may also be None.




error: True if the training process raised an error.














	
on_trial_add(trial)

	Called when a new trial is added to the trial runner.

Additions are normally triggered by suggest.


	Parameters:

	trial (Trial) – Trial to be added










	
on_trial_error(trial)

	Called when a trial has failed.


	Parameters:

	trial (Trial) – Trial for which error is reported.










	
on_trial_result(trial, result)

	Called on each intermediate result reported by a trial.

At this point, the trial scheduler can make a decision by returning
one of SchedulerDecision.CONTINUE,
SchedulerDecision.PAUSE, or SchedulerDecision.STOP.
This will only be called when the trial is currently running.


	Parameters:

	
	trial (Trial) – Trial for which results are reported


	result (Dict) – Result dictionary






	Return type:

	str



	Returns:

	Decision what to do with the trial










	
on_trial_complete(trial, result)

	Notification for the completion of trial.

Note that on_trial_result() is called with the same result before.
However, if the scheduler only uses one final report from each
trial, it may ignore on_trial_result() and just use result here.


	Parameters:

	
	trial (Trial) – Trial which is completing


	result (Dict) – Result dictionary













	
on_trial_remove(trial)

	Called to remove trial.

This is called when the trial is in PAUSED or PENDING state. Otherwise,
call on_trial_complete().


	Parameters:

	trial (Trial) – Trial to be removed










	
metric_names()

	
	Return type:

	List[str]



	Returns:

	List of metric names. The first one is the target
metric optimized over, unless the scheduler is a genuine
multi-objective metric (for example, for sampling the Pareto front)










	
metric_mode()

	
	Return type:

	str



	Returns:

	“min” if target metric is minimized, otherwise “max”.
Here, “min” should be the default. For a genuine multi-objective
scheduler, a list of modes is returned










	
static convert_config_space(config_space)

	Converts config_space from our type to the one of Ray Tune.

Note: randint(lower, upper) in Ray Tune has exclusive upper, while
this is inclusive for us. On the other hand, lograndint(lower, upper)
has inclusive upper in Ray Tune as well.


	Parameters:

	config_space – Configuration space



	Returns:

	config_space converted into Ray Tune type
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.remove_checkpoints module


	
class syne_tune.optimizer.schedulers.remove_checkpoints.RemoveCheckpointsSchedulerMixin

	Bases: object

Methods to be implemented by pause-and-resume schedulers (in that
on_trial_result() can return SchedulerDecision.PAUSE) which
support early removal of checkpoints. Typically, model checkpoints are
retained for paused trials, because they may get resumed later on. This can
lead to the disk filling up, so removing checkpoints which are no longer
needed, can be important.

Early checkpoint removal is implemented as a callback used with
Tuner, which is created by
callback_for_checkpoint_removal() here.


	
callback_for_checkpoint_removal(stop_criterion)

	
	Parameters:

	stop_criterion (Callable[[TuningStatus], bool]) – Stopping criterion, as passed to
Tuner



	Return type:

	Optional[TunerCallback]



	Returns:

	CP removal callback, or None if CP removal is not activated
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.scheduler_searcher module


	
class syne_tune.optimizer.schedulers.scheduler_searcher.TrialSchedulerWithSearcher(config_space, **kwargs)

	Bases: TrialScheduler

Base class for trial schedulers which have a
BaseSearcher member
searcher. This searcher has a method
configure_scheduler()
which has to be called before the searcher is first used.

We also collect common code here:


	Determine max_resource_level if not explicitly given


	Master seed, random_seed_generator





	
property searcher: BaseSearcher | None

	




	
suggest(trial_id)

	Returns a suggestion for a new trial, or one to be resumed

This method returns suggestion of type TrialSuggestion (unless
there is no config left to explore, and None is returned).

If suggestion.spawn_new_trial_id is True, a new trial is to be
started with config suggestion.config. Typically, this new trial
is started from scratch. But if suggestion.checkpoint_trial_id is
given, the trial is to be (warm)started from the checkpoint written
for the trial with this ID. The new trial has ID trial_id.

If suggestion.spawn_new_trial_id is False, an existing and currently
paused trial is to be resumed, whose ID is
suggestion.checkpoint_trial_id. If this trial has a checkpoint, we
start from there. In this case, suggestion.config is optional. If not
given (default), the config of the resumed trial does not change.
Otherwise, its config is overwritten by suggestion.config (see
HyperbandScheduler with
type="promotion" for an example why this can be useful).

Apart from the HP config, additional fields can be appended to the
dict, these are passed to the trial function as well.


	Parameters:

	trial_id (int) – ID for new trial to be started (ignored if existing
trial to be resumed)



	Return type:

	Optional[TrialSuggestion]



	Returns:

	Suggestion for a trial to be started or to be resumed, see
above. If no suggestion can be made, None is returned










	
on_trial_error(trial)

	Called when a trial has failed.


	Parameters:

	trial (Trial) – Trial for which error is reported.










	
on_trial_complete(trial, result)

	Notification for the completion of trial.

Note that on_trial_result() is called with the same result before.
However, if the scheduler only uses one final report from each
trial, it may ignore on_trial_result() and just use result here.


	Parameters:

	
	trial (Trial) – Trial which is completing


	result (Dict[str, Any]) – Result dictionary



















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.smac_scheduler module




            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.baselines module


	
class syne_tune.optimizer.baselines.RandomSearch(config_space, metric, **kwargs)

	Bases: FIFOScheduler

Random search.

See RandomSearcher
for kwargs["search_options"] parameters.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	kwargs – Additional arguments to
FIFOScheduler













	
class syne_tune.optimizer.baselines.GridSearch(config_space, metric, **kwargs)

	Bases: FIFOScheduler

Grid search.

See GridSearcher
for kwargs["search_options"] parameters.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	kwargs – Additional arguments to
FIFOScheduler













	
class syne_tune.optimizer.baselines.BayesianOptimization(config_space, metric, **kwargs)

	Bases: FIFOScheduler

Gaussian process based Bayesian optimization.

See GPFIFOSearcher
for kwargs["search_options"] parameters.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	kwargs – Additional arguments to
FIFOScheduler













	
class syne_tune.optimizer.baselines.ASHA(config_space, metric, resource_attr, **kwargs)

	Bases: HyperbandScheduler

Asynchronous Sucessive Halving (ASHA).

One of max_t, max_resource_attr needs to be in kwargs. For
type="promotion", the latter is more useful.

See also HyperbandScheduler for
kwargs parameters.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	resource_attr (str) – Name of resource attribute


	kwargs – Additional arguments to HyperbandScheduler













	
class syne_tune.optimizer.baselines.MOBSTER(config_space, metric, resource_attr, **kwargs)

	Bases: HyperbandScheduler

Model-based Asynchronous Multi-fidelity Optimizer (MOBSTER).

One of max_t, max_resource_attr needs to be in kwargs. For
type="promotion", the latter is more useful, see also
HyperbandScheduler.

MOBSTER can be run with different surrogate models. The model is selected
by search_options["model"] in kwargs. The default is "gp_multitask"
(jointly dependent multi-task GP model), another useful choice is
"gp_independent" (independent GP models at each rung level, with shared
ARD kernel).

See also:


	HyperbandScheduler for kwargs
parameters


	GPMultiFidelitySearcher
for kwargs["search_options"] parameters





	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	resource_attr (str) – Name of resource attribute


	kwargs – Additional arguments to HyperbandScheduler













	
class syne_tune.optimizer.baselines.HyperTune(config_space, metric, resource_attr, **kwargs)

	Bases: HyperbandScheduler

One of max_t, max_resource_attr needs to be in kwargs. For
type="promotion", the latter is more useful, see also
HyperbandScheduler.

Hyper-Tune is a model-based variant of ASHA with more than one bracket.
It can be seen as extension of MOBSTER and can be used with
search_options["model"] in kwargs being "gp_independent" or
"gp_multitask". It has a model-based way to sample the bracket for every
new trial, as well as an ensemble predictive distribution feeding into the
acquisition function. Our implementation is based on:



Yang Li et al

Hyper-Tune: Towards Efficient Hyper-parameter Tuning at Scale

VLDB 2022

https://arxiv.org/abs/2201.06834






See also:


	HyperbandScheduler for kwargs
parameters


	HyperTuneSearcher
for kwargs["search_options"] parameters


	HyperTuneIndependentGPModel
for implementation





	Parameters:

	
	config_space (Dict) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	resource_attr (str) – Name of resource attribute


	kwargs – Additional arguments to HyperbandScheduler













	
class syne_tune.optimizer.baselines.DyHPO(config_space, metric, resource_attr, probability_sh=None, **kwargs)

	Bases: HyperbandScheduler

Dynamic Gray-Box Hyperparameter Optimization (DyHPO)


One of max_t, max_resource_attr needs to be in kwargs. The latter
is more useful (DyHPO is a pause-resume scheduler), see also
HyperbandScheduler.

DyHPO can be run with the same surrogate models as MOBSTER, but
search_options["model"] != "gp_independent". This is because DyHPO
requires extrapolation to resource levels without any data, which cannot
sensibly be done with independent GPs per resource level. Compared to
MOBSTER or HyperTune, DyHPO is typically run with linearly
spaced rung levels (the default being 1, 2, 3, …). Decisions whether to
promote a paused trial are folded together with suggesting a new
configuration, both are model-based. Our implementation is based on



Wistuba, M. and Kadra, A. and Grabocka, J.

Dynamic and Efficient Gray-Box Hyperparameter Optimization for Deep Learning

https://arxiv.org/abs/2202.09774






However, there are important differences:


	We do not implement their surrogate model based on a neural network kernel,
but instead just use the surrogate models we provide for MOBSTER as
well


	We implement a hybrid of DyHPO with the asynchronous successive halving
rule for promoting trials, controlled by probability_sh. With this
probability, we promote a trial via the SH rule. This mitigates the issue
that DyHPO tends to start many trials initially, because due to lack of any
data at higher rungs, the score values for promoting a trial are much worse
than those for starting a new one.




See HyperbandScheduler for kwargs
parameters, and
GPMultiFidelitySearcher
for kwargs["search_options"] parameters. The following parameters are
most important for DyHPO:


	rung_increment (and grace_period): These parameters determine the
rung level spacing. DyHPO is run with linearly spaced rung levels
:math:`r_{min} + k








	u`, where \(r_{min}\) is grace_period and
	:math:`



	u` is rung_increment. The default is 2.
	
	probability_sh: See comment. The smaller this probability, the closer
the method is to the published original, which tends to start many more
trials than promote paused ones. On the other hand, if this probability is
close to 1, you may as well run MOBSTER. The default is
DEFAULT_SH_PROBABILITY.


	search_options["opt_skip_period"]: DyHPO can be quite a bit slower
than MOBSTER, because the GP surrogate model is used more frequently. It
can be sped up a bit by changing opt_skip_period (general default is
1). The default here is 3.
















	
class syne_tune.optimizer.baselines.PASHA(config_space, metric, resource_attr, **kwargs)

	Bases: HyperbandScheduler

Progressive ASHA.

One of max_t, max_resource_attr needs to be in kwargs. The latter is
more useful, see also HyperbandScheduler.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	resource_attr (str) – Name of resource attribute


	kwargs – Additional arguments to HyperbandScheduler













	
class syne_tune.optimizer.baselines.BOHB(config_space, metric, resource_attr, **kwargs)

	Bases: HyperbandScheduler

Asynchronous BOHB

Combines ASHA with TPE-like Bayesian optimization, using kernel
density estimators.

One of max_t, max_resource_attr needs to be in kwargs. For
type="promotion", the latter is more useful, see also
HyperbandScheduler.

See
MultiFidelityKernelDensityEstimator
for kwargs["search_options"] parameters, and
HyperbandScheduler for kwargs
parameters.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	resource_attr (str) – Name of resource attribute


	kwargs – Additional arguments to HyperbandScheduler













	
class syne_tune.optimizer.baselines.SyncHyperband(config_space, metric, resource_attr, **kwargs)

	Bases: SynchronousGeometricHyperbandScheduler

Synchronous Hyperband.

One of max_resource_level, max_resource_attr needs to be in kwargs.
The latter is more useful, see also HyperbandScheduler.

If kwargs["brackets"] is not given, the maximum number of brackets is
used. Choose kwargs["brackets"] = 1 for synchronous successive halving.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	resource_attr (str) – Name of resource attribute


	kwargs – Additional arguments to
SynchronousGeometricHyperbandScheduler













	
class syne_tune.optimizer.baselines.SyncBOHB(config_space, metric, resource_attr, **kwargs)

	Bases: SynchronousGeometricHyperbandScheduler

Synchronous BOHB.

Combines SyncHyperband with TPE-like Bayesian optimization, using
kernel density estimators.

One of max_resource_level, max_resource_attr needs to be in kwargs.
The latter is more useful, see also
HyperbandScheduler.

If kwargs["brackets"] is not given, the maximum number of brackets is
used. Choose kwargs["brackets"] = 1 for synchronous successive halving.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	resource_attr (str) – Name of resource attribute


	kwargs – Additional arguments to
SynchronousGeometricHyperbandScheduler













	
class syne_tune.optimizer.baselines.DEHB(config_space, metric, resource_attr, **kwargs)

	Bases: GeometricDifferentialEvolutionHyperbandScheduler

Differential Evolution Hyperband (DEHB).

Combines SyncHyperband with ideas from evolutionary algorithms.

One of max_resource_level, max_resource_attr needs to be in kwargs.
The latter is more useful, see also HyperbandScheduler.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	resource_attr (str) – Name of resource attribute


	kwargs – Additional arguments to
SynchronousGeometricHyperbandScheduler













	
class syne_tune.optimizer.baselines.SyncMOBSTER(config_space, metric, resource_attr, **kwargs)

	Bases: SynchronousGeometricHyperbandScheduler

Synchronous MOBSTER.

Combines SyncHyperband with Gaussian process based Bayesian
optimization, just like MOBSTER builds on top of ASHA in
the asynchronous case.

One of max_resource_level, max_resource_attr needs to be in kwargs.
The latter is more useful, see also
HyperbandScheduler.

If kwargs["brackets"] is not given, the maximum number of brackets is
used. Choose kwargs["brackets"] = 1 for synchronous successive halving.

The default surrogate model (search_options["model"] in kwargs) is
"gp_independent", different to MOBSTER.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	resource_attr (str) – Name of resource attribute


	kwargs – Additional arguments to
SynchronousGeometricHyperbandScheduler













	
class syne_tune.optimizer.baselines.BORE(config_space, metric, random_seed=None, **kwargs)

	Bases: FIFOScheduler

Bayesian Optimization by Density-Ratio Estimation (BORE).

See Bore
for kwargs["search_options"] parameters.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	random_seed (Optional[int]) – Random seed, optional


	kwargs – Additional arguments to
FIFOScheduler













	
class syne_tune.optimizer.baselines.ASHABORE(config_space, metric, resource_attr, random_seed=None, **kwargs)

	Bases: HyperbandScheduler

Model-based ASHA with BORE searcher

See MultiFidelityBore
for kwargs["search_options"] parameters.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	resource_attr (str) – Name of resource attribute


	random_seed (Optional[int]) – Random seed, optional


	kwargs – Additional arguments to
FIFOScheduler













	
class syne_tune.optimizer.baselines.BoTorch(config_space, metric, random_seed=None, **kwargs)

	Bases: FIFOScheduler

Bayesian Optimization using BoTorch

See BoTorchSearcher
for kwargs["search_options"] parameters.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	random_seed (Optional[int]) – Random seed, optional


	kwargs – Additional arguments to
FIFOScheduler













	
class syne_tune.optimizer.baselines.REA(config_space, metric, population_size=100, sample_size=10, random_seed=None, **kwargs)

	Bases: FIFOScheduler

Regularized Evolution (REA).

See RegularizedEvolution
for kwargs["search_options"] parameters.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	population_size (int) – See
RegularizedEvolution.
Defaults to 100


	sample_size (int) – See
RegularizedEvolution.
Defaults to 10


	random_seed (Optional[int]) – Random seed, optional


	kwargs – Additional arguments to
FIFOScheduler













	
syne_tune.optimizer.baselines.create_gaussian_process_estimator(config_space, metric, random_seed=None, search_options=None)

	
	Return type:

	Estimator










	
class syne_tune.optimizer.baselines.MORandomScalarizationBayesOpt(config_space, metric, mode='min', random_seed=None, estimators=None, **kwargs)

	Bases: FIFOScheduler

Uses MultiObjectiveMultiSurrogateSearcher
with one standard GP surrogate model per metric (same as in
BayesianOptimization, together with the
MultiObjectiveLCBRandomLinearScalarization
acquisition function.

If estimators is given, surrogate models are taken from there, and the
default is used otherwise. This is useful if you have a good low-variance
model for one of the objectives.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (List[str]) – Name of metrics to optimize


	mode (Union[List[str], str]) – Modes of optimization. Defaults to “min” for all


	random_seed (Optional[int]) – Random seed, optional


	estimators (Optional[Dict[str, Estimator]]) – Use these surrogate models instead of the default GP
one. Optional


	kwargs – Additional arguments to
FIFOScheduler. Here,
kwargs["search_options"] is used to create the searcher and its
GP surrogate models.













	
class syne_tune.optimizer.baselines.NSGA2(config_space, metric, mode='min', population_size=20, random_seed=None, **kwargs)

	Bases: FIFOScheduler

See RandomSearcher
for kwargs["search_options"] parameters.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (List[str]) – Name of metric to optimize


	population_size (int) – The size of the population for NSGA-2


	random_seed (Optional[int]) – Random seed, optional


	kwargs – Additional arguments to
FIFOScheduler













	
class syne_tune.optimizer.baselines.MOREA(config_space, metric, mode='min', population_size=100, sample_size=10, random_seed=None, **kwargs)

	Bases: FIFOScheduler

See RandomSearcher
for kwargs["search_options"] parameters.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (List[str]) – Name of metric to optimize


	population_size (int) – See
RegularizedEvolution.
Defaults to 100


	sample_size (int) – See
RegularizedEvolution.
Defaults to 10


	random_seed (Optional[int]) – Random seed, optional


	kwargs – Additional arguments to
FIFOScheduler













	
class syne_tune.optimizer.baselines.MOLinearScalarizationBayesOpt(config_space, metric, scalarization_weights=None, **kwargs)

	Bases: LinearScalarizedScheduler

Uses LinearScalarizedScheduler
together with a default GP surrogate model.

See GPFIFOSearcher
for kwargs["search_options"] parameters.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (List[str]) – Name of metric to optimize


	scalarization_weights (Optional[List[float]]) – Positive weight used for the scalarization.
Defaults to all 1


	kwargs – Additional arguments to
FIFOScheduler









	
scalarization_weights: ndarray

	




	
single_objective_metric: str

	




	
base_scheduler: TrialScheduler

	








	
class syne_tune.optimizer.baselines.ConstrainedBayesianOptimization(config_space, metric, constraint_attr, **kwargs)

	Bases: FIFOScheduler

Constrained Bayesian Optimization.

See ConstrainedGPFIFOSearcher
for kwargs["search_options"] parameters.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	constraint_attr (str) – Name of constraint metric


	kwargs – Additional arguments to
FIFOScheduler













	
class syne_tune.optimizer.baselines.ZeroShotTransfer(config_space, transfer_learning_evaluations, metric, mode='min', sort_transfer_learning_evaluations=True, use_surrogates=False, random_seed=None, **kwargs)

	Bases: FIFOScheduler

A zero-shot transfer hyperparameter optimization method which jointly selects configurations that minimize the
average rank obtained on historic metadata (transfer_learning_evaluations).
Reference:



Sequential Model-Free Hyperparameter Tuning.

Martin Wistuba, Nicolas Schilling, Lars Schmidt-Thieme.

IEEE International Conference on Data Mining (ICDM) 2015.







	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	transfer_learning_evaluations (Dict[str, TransferLearningTaskEvaluations]) – Dictionary from task name to offline
evaluations.


	metric (str) – Name of metric to optimize


	mode (str) – Whether to minimize (min) or maximize (max)


	sort_transfer_learning_evaluations (bool) – Use False if the
hyperparameters for each task in transfer_learning_evaluations are
already in the same order. If set to True, hyperparameters are sorted.


	use_surrogates (bool) – If the same configuration is not evaluated on all
tasks, set this to True. This will generate a set of configurations
and will impute their performance using surrogate models.


	random_seed (Optional[int]) – Used for randomly sampling candidates. Only used if
use_surrogates=True.


	kwargs – Additional arguments to
FIFOScheduler













	
class syne_tune.optimizer.baselines.ASHACTS(config_space, metric, resource_attr, transfer_learning_evaluations, mode='min', random_seed=None, **kwargs)

	Bases: HyperbandScheduler

Runs ASHA where the searcher is done with the transfer-learning method:



A Quantile-based Approach for Hyperparameter Transfer Learning.

David Salinas, Huibin Shen, Valerio Perrone.

ICML 2020.






This is the Copula Thompson Sampling approach described in the paper where
a surrogate is fitted on the transfer learning data to predict mean and
variance of configuration performance given a hyperparameter. The surrogate
is then sampled from, and the best configurations are returned as next
candidate to evaluate.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	resource_attr (str) – Name of resource attribute


	transfer_learning_evaluations (Dict[str, TransferLearningTaskEvaluations]) – Dictionary from task name to offline
evaluations.


	mode (str) – Whether to minimize (min) or maximize (max)


	random_seed (Optional[int]) – Used for randomly sampling candidates


	kwargs – Additional arguments to
HyperbandScheduler













	
class syne_tune.optimizer.baselines.KDE(config_space, metric, **kwargs)

	Bases: FIFOScheduler

Single-fidelity variant of BOHB

Combines FIFOScheduler with TPE-like
Bayesian optimization, using kernel density estimators.

See
KernelDensityEstimator
for kwargs["search_options"] parameters.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (str) – Name of metric to optimize


	kwargs – Additional arguments to FIFOScheduler













	
class syne_tune.optimizer.baselines.CQR(config_space, metric, mode='min', random_seed=None, **kwargs)

	Bases: FIFOScheduler


	Single-fidelity Conformal Quantile Regression approach proposed in:
	
Optimizing Hyperparameters with Conformal Quantile Regression.

David Salinas, Jacek Golebiowski, Aaron Klein, Matthias Seeger, Cedric Archambeau.

ICML 2023.







The method predict quantile performance with gradient boosted trees and calibrate prediction with conformal
predictions.






	
class syne_tune.optimizer.baselines.ASHACQR(config_space, metric, resource_attr, mode='min', random_seed=None, **kwargs)

	Bases: HyperbandScheduler


	Multi-fidelity Conformal Quantile Regression approach proposed in:
	
Optimizing Hyperparameters with Conformal Quantile Regression.

David Salinas, Jacek Golebiowski, Aaron Klein, Matthias Seeger, Cedric Archambeau.

ICML 2023.







The method predict quantile performance with gradient boosted trees and calibrate prediction with conformal
predictions.








            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.scheduler module


	
class syne_tune.optimizer.scheduler.SchedulerDecision

	Bases: object

Possible return values of TrialScheduler.on_trial_result(), signals the
tuner how to proceed with the reporting trial.

The difference between PAUSE and STOP is important. If a
trial is stopped, it cannot be resumed afterwards. Its checkpoints may be
deleted. If a trial is paused, it may be resumed in the future, and its
most recent checkpoint should be retained.


	
CONTINUE = 'CONTINUE'

	Status for continuing trial execution






	
PAUSE = 'PAUSE'

	Status for pausing trial execution






	
STOP = 'STOP'

	Status for stopping trial execution










	
class syne_tune.optimizer.scheduler.TrialSuggestion(spawn_new_trial_id=True, checkpoint_trial_id=None, config=None)

	Bases: object

Suggestion returned by TrialScheduler.suggest()


	Parameters:

	
	spawn_new_trial_id (bool) – Whether a new trial_id should be used.


	checkpoint_trial_id (Optional[int]) – Checkpoint of this trial ID should
be used to resume from. If spawn_new_trial_id is False, then the
trial checkpoint_trial_id is resumed with its previous checkpoint.


	config (Optional[dict]) – The configuration which should be evaluated.









	
spawn_new_trial_id: bool = True

	




	
checkpoint_trial_id: Optional[int] = None

	




	
config: Optional[dict] = None

	




	
static start_suggestion(config, checkpoint_trial_id=None)

	Suggestion to start new trial


	Parameters:

	
	config (Dict[str, Any]) – Configuration to use for the new trial.


	checkpoint_trial_id (Optional[int]) – Use checkpoint of this trial
when starting the new trial (otherwise, it is started from
scratch).






	Return type:

	TrialSuggestion



	Returns:

	A trial decision that consists in starting a new trial (which
would receive a new trial-id).










	
static resume_suggestion(trial_id, config=None)

	Suggestion to resume a paused trial


	Parameters:

	
	trial_id (int) – ID of trial to be resumed (from its checkpoint)


	config (Optional[dict]) – Configuration to use for resumed trial






	Return type:

	TrialSuggestion



	Returns:

	A trial decision that consists in resuming trial trial-id
with config if provided, or the previous configuration used if
not provided.














	
class syne_tune.optimizer.scheduler.TrialScheduler(config_space)

	Bases: object

Schedulers maintain and drive the logic of an experiment, making decisions
which configs to evaluate in new trials, and which trials to stop early.

Some schedulers support pausing and resuming trials. In this case, they
also drive the decision when to restart a paused trial.


	Parameters:

	config_space (Dict[str, Any]) – Configuration spoce






	
suggest(trial_id)

	Returns a suggestion for a new trial, or one to be resumed

This method returns suggestion of type TrialSuggestion (unless
there is no config left to explore, and None is returned).

If suggestion.spawn_new_trial_id is True, a new trial is to be
started with config suggestion.config. Typically, this new trial
is started from scratch. But if suggestion.checkpoint_trial_id is
given, the trial is to be (warm)started from the checkpoint written
for the trial with this ID. The new trial has ID trial_id.

If suggestion.spawn_new_trial_id is False, an existing and currently
paused trial is to be resumed, whose ID is
suggestion.checkpoint_trial_id. If this trial has a checkpoint, we
start from there. In this case, suggestion.config is optional. If not
given (default), the config of the resumed trial does not change.
Otherwise, its config is overwritten by suggestion.config (see
HyperbandScheduler with
type="promotion" for an example why this can be useful).

Apart from the HP config, additional fields can be appended to the
dict, these are passed to the trial function as well.


	Parameters:

	trial_id (int) – ID for new trial to be started (ignored if existing
trial to be resumed)



	Return type:

	Optional[TrialSuggestion]



	Returns:

	Suggestion for a trial to be started or to be resumed, see
above. If no suggestion can be made, None is returned










	
on_trial_add(trial)

	Called when a new trial is added to the trial runner.

Additions are normally triggered by suggest.


	Parameters:

	trial (Trial) – Trial to be added










	
on_trial_error(trial)

	Called when a trial has failed.


	Parameters:

	trial (Trial) – Trial for which error is reported.










	
on_trial_result(trial, result)

	Called on each intermediate result reported by a trial.

At this point, the trial scheduler can make a decision by returning
one of SchedulerDecision.CONTINUE,
SchedulerDecision.PAUSE, or SchedulerDecision.STOP.
This will only be called when the trial is currently running.


	Parameters:

	
	trial (Trial) – Trial for which results are reported


	result (Dict[str, Any]) – Result dictionary






	Return type:

	str



	Returns:

	Decision what to do with the trial










	
on_trial_complete(trial, result)

	Notification for the completion of trial.

Note that on_trial_result() is called with the same result before.
However, if the scheduler only uses one final report from each
trial, it may ignore on_trial_result() and just use result here.


	Parameters:

	
	trial (Trial) – Trial which is completing


	result (Dict[str, Any]) – Result dictionary













	
on_trial_remove(trial)

	Called to remove trial.

This is called when the trial is in PAUSED or PENDING state. Otherwise,
call on_trial_complete().


	Parameters:

	trial (Trial) – Trial to be removed










	
metric_names()

	
	Return type:

	List[str]



	Returns:

	List of metric names. The first one is the target
metric optimized over, unless the scheduler is a genuine
multi-objective metric (for example, for sampling the Pareto front)










	
metric_mode()

	
	Return type:

	Union[str, List[str]]



	Returns:

	“min” if target metric is minimized, otherwise “max”.
Here, “min” should be the default. For a genuine multi-objective
scheduler, a list of modes is returned










	
metadata()

	
	Return type:

	Dict[str, Any]



	Returns:

	Metadata for the scheduler










	
is_multiobjective_scheduler()

	Return True if a scheduler is multi-objective.


	Return type:

	bool
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.remote package


Submodules



	syne_tune.remote.constants module

	syne_tune.remote.estimators module
	instance_sagemaker_estimator()

	basic_cpu_instance_sagemaker_estimator()

	pytorch_estimator()

	huggingface_estimator()

	sklearn_estimator()

	mxnet_estimator()





	syne_tune.remote.remote_launcher module
	RemoteLauncher
	RemoteLauncher.is_lambda()

	RemoteLauncher.run()

	RemoteLauncher.prepare_upload()

	RemoteLauncher.get_source_dir()

	RemoteLauncher.is_source_dir_specified()

	RemoteLauncher.update_backend_with_remote_paths()

	RemoteLauncher.upload_dir()

	RemoteLauncher.remote_script_dir()

	RemoteLauncher.launch_tuning_job_on_sagemaker()

	RemoteLauncher.clean_requirements_file()





	syne_tune_image_uri()





	syne_tune.remote.remote_main module
	decode_bool()





	syne_tune.remote.remote_metrics_callback module
	RemoteTuningMetricsCallback
	RemoteTuningMetricsCallback.get_metric_names()

	RemoteTuningMetricsCallback.register_metrics_with_estimator()

	RemoteTuningMetricsCallback.on_tuning_start()

	RemoteTuningMetricsCallback.on_trial_result()









	syne_tune.remote.scheduling module
	backoff()













            

          

      

      

    

  

    
      
          
            
  
syne_tune.remote.constants module




            

          

      

      

    

  

    
      
          
            
  
syne_tune.remote.estimators module


	
syne_tune.remote.estimators.instance_sagemaker_estimator(**kwargs)

	Returns SageMaker estimator to be used for simulator back-end experiments
and for remote launching of SageMaker back-end experiments.


	Parameters:

	kwargs – Extra arguments to SageMaker estimator



	Returns:

	SageMaker estimator










	
syne_tune.remote.estimators.basic_cpu_instance_sagemaker_estimator(**kwargs)

	Returns SageMaker estimator to be used for simulator back-end experiments
and for remote launching of SageMaker back-end experiments.


	Parameters:

	kwargs – Extra arguments to SageMaker estimator



	Returns:

	SageMaker estimator










	
syne_tune.remote.estimators.pytorch_estimator(**estimator_kwargs)

	Get the PyTorch sagemaker estimator with the most up-to-date framework version.
List of available containers: https://github.com/aws/deep-learning-containers/blob/master/available_images.md


	Parameters:

	estimator_kwargs – Estimator parameters as discussed in
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/sagemaker.pytorch.html



	Return type:

	PyTorch



	Returns:

	PyTorch estimator










	
syne_tune.remote.estimators.huggingface_estimator(**estimator_kwargs)

	Get the Huggingface sagemaker estimator with the most up-to-date framework version.
List of available containers: https://github.com/aws/deep-learning-containers/blob/master/available_images.md


	Parameters:

	estimator_kwargs – Estimator parameters as discussed in
https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/sagemaker.huggingface.html



	Return type:

	HuggingFace



	Returns:

	PyTorch estimator










	
syne_tune.remote.estimators.sklearn_estimator(**estimator_kwargs)

	Get the Scikit-learn sagemaker estimator with the most up-to-date framework version.
List of available containers: https://github.com/aws/deep-learning-containers/blob/master/available_images.md


	Parameters:

	estimator_kwargs – Estimator parameters as discussed in
https://sagemaker.readthedocs.io/en/stable/frameworks/sklearn/sagemaker.sklearn.html



	Return type:

	SKLearn



	Returns:

	PyTorch estimator










	
syne_tune.remote.estimators.mxnet_estimator(**estimator_kwargs)

	Get the MXNet sagemaker estimator with the most up-to-date framework version.
List of available containers: https://github.com/aws/deep-learning-containers/blob/master/available_images.md


	Parameters:

	estimator_kwargs – Estimator parameters as discussed in
https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/sagemaker.mxnet.html



	Return type:

	MXNet



	Returns:

	PyTorch estimator












            

          

      

      

    

  

    
      
          
            
  
syne_tune.remote.remote_launcher module


	
class syne_tune.remote.remote_launcher.RemoteLauncher(tuner, role=None, instance_type='ml.c5.4xlarge', dependencies=None, store_logs_localbackend=False, log_level=None, s3_path=None, no_tuner_logging=False, publish_tuning_metrics=True, **estimator_kwargs)

	Bases: object

This class allows to launch a tuning job remotely. The remote tuning job may
use either the local backend (in which case the remote instance will be used
to evaluate trials) or the Sagemaker backend in which case the remote instance
will spawn one Sagemaker job per trial.


	Parameters:

	
	tuner (Tuner) – Tuner that should be run remotely on a instance_type
instance. Note that StoppingCriterion should be used
for the Tuner rather than a lambda function to ensure
serialization.


	role (Optional[str]) – SageMaker role to be used to launch the remote tuning instance.


	instance_type (str) – Instance where the tuning is going to happen.
Defaults to “ml.c5.4xlarge”


	dependencies (Optional[List[str]]) – List of folders that should be included as
dependencies for the backend script to run


	estimator_kwargs – Extra arguments for creating the SageMaker
estimator for the tuning code.


	store_logs_localbackend (bool) – Whether to sync logs and checkpoints to S3
when using the local backend. When using SageMaker backend, logs are
persisted by SageMaker. Using True can lead to failure with large
checkpoints. Defauls to False


	log_level (Optional[int]) – Logging level. Default is logging.INFO, while
logging.DEBUG gives more messages


	s3_path (Optional[str]) – S3 base path used for checkpointing, outputs of tuning
will be stored under {s3_path}/{tuner_name}. The logs of the local
backend are only stored if store_logs_localbackend is True.
Defaults to s3_experiment_path()


	no_tuner_logging (bool) – If True, the logging level for syne_tune.tuner
is set to logging.ERROR. Defaults to False


	publish_tuning_metrics (bool) – If True, a number of tuning metrics (see
RemoteTuningMetricsCallback)
are reported and displayed in the SageMaker training job console. This is
modifying tuner, in the sense that a callback is appended to
tuner.callbacks. Defaults to True.









	
is_lambda(f)

	
	Parameters:

	f – Object to test



	Returns:

	True iff f is a lambda function










	
run(wait=True)

	
	Parameters:

	wait (bool) – Whether the call should wait until the job completes
(default: True). If False the call returns once the tuning job is
scheduled on SageMaker.










	
prepare_upload()

	Prepares the files that needs to be uploaded by SageMaker so that the
tuning job can happen. This includes, 1) the entrypoint script of the
backend and 2) the tuner that needs to run remotely.






	
get_source_dir()

	
	Return type:

	Path










	
is_source_dir_specified()

	
	Return type:

	bool










	
update_backend_with_remote_paths()

	Update the paths of the backend of the endpoint script and source dir
with their remote location.






	
upload_dir()

	
	Return type:

	Path










	
remote_script_dir()

	
	Return type:

	Path










	
launch_tuning_job_on_sagemaker(wait)

	




	
clean_requirements_file()

	








	
syne_tune.remote.remote_launcher.syne_tune_image_uri()

	
	Return type:

	str



	Returns:

	syne tune docker uri, if not present try to build it and returns
an error if this failed.












            

          

      

      

    

  

    
      
          
            
  
syne_tune.remote.remote_main module

Entrypoint script that allows to launch a tuning job remotely.
It loads the tuner from a specified path then runs it.


	
syne_tune.remote.remote_main.decode_bool(hp)

	






            

          

      

      

    

  

    
      
          
            
  
syne_tune.remote.remote_metrics_callback module


	
class syne_tune.remote.remote_metrics_callback.RemoteTuningMetricsCallback(metric, mode, config_space=None, resource_attr=None)

	Bases: TunerCallback

Reports metrics related to the experiment run by Tuner.
With remote tuning, if these metrics are registered with the SageMaker
estimator running the experiment, they are visualized in the SageMaker
console. Metrics reported are:


	BEST_METRIC_VALUE: Best value of metric reported to tuner so
far


	BEST_TRIAL_ID: ID of trial for which the best metric value was
reported so far


	BEST_RESOURCE_VALUE: Resource value for which the best metric
value was reported so far. Only if resource_attr is given


	If config_space is given, then for each hyperparameter name in
there (entry with domain), we add a metric BEST_HP_PREFIX + name.
However, at most MAX_METRICS_SUPPORTED_BY_SAGEMAKER
are supported





	
static get_metric_names(config_space, resource_attr=None)

	




	
register_metrics_with_estimator(estimator)

	Registers metrics reported here at SageMaker estimator estimator. This
should be the one which runs the remote experiment.

Note: The total number of metric definitions must not exceed
MAX_METRICS_SUPPORTED_BY_SAGEMAKER. Otherwise,
only the initial part of metric_names is registered.


	Parameters:

	estimator (EstimatorBase) – SageMaker estimator to run the experiment










	
on_tuning_start(tuner)

	Called at start of tuning loop


	Parameters:

	tuner – Tuner object










	
on_trial_result(trial, status, result, decision)

	Called when a new result (reported by a trial) is observed

The arguments here are inputs or outputs of scheduler.on_trial_result
(called just before).


	Parameters:

	
	trial (Trial) – Trial whose report has been received


	status (str) – Status of trial before scheduler.on_trial_result has
been called


	result (Dict[str, Any]) – Result dict received


	decision (str) – Decision returned by scheduler.on_trial_result



















            

          

      

      

    

  

    
      
          
            
  
syne_tune.remote.scheduling module


	
syne_tune.remote.scheduling.backoff(errorname, ntimes_resource_wait=100, length2sleep=600)

	Decorator that back offs for a fixed about of s after a given error is detected








            

          

      

      

    

  

    
      
          
            
  
syne_tune.utils package


	
syne_tune.utils.add_checkpointing_to_argparse(parser)

	To be called for the argument parser in the endpoint script.
Arguments added here are optional. If checkpointing is not supported,
they are simply not parsed.


	Parameters:

	parser (ArgumentParser) – Parser to add extra arguments to










	
syne_tune.utils.resume_from_checkpointed_model(config, load_model_fn)

	Checks whether there is a checkpoint to be resumed from. If so, the
checkpoint is loaded by calling load_model_fn. This function takes
a local pathname (to which it appends a filename). It returns
resume_from, the resource value (e.g., epoch) the checkpoint was written
at. If it fails to load the checkpoint, it may return 0. This skips
resuming from a checkpoint. This resume_from value is returned.

If checkpointing is not supported in config, or no checkpoint is
found, resume_from = 0 is returned.


	Parameters:

	
	config (Dict[str, Any]) – Configuration the training script is called with


	load_model_fn (Callable[[str], int]) – See above, must return resume_from. See
pytorch_load_save_functions() for an example






	Return type:

	int



	Returns:

	resume_from (0 if no checkpoint has been loaded)










	
syne_tune.utils.checkpoint_model_at_rung_level(config, save_model_fn, resource)

	If checkpointing is supported, checks whether a checkpoint is to be
written. This is the case if the checkpoint dir is set in config.
A checkpoint is written by calling save_model_fn, passing the
local pathname and resource.

Note: Why is resource passed here? In the future, we want to support
writing checkpoints only for certain resource levels. This is useful if
writing the checkpoint is expensive compared to the time needed to
run one resource unit.


	Parameters:

	
	config (Dict[str, Any]) – Configuration the training script is called with


	save_model_fn (Callable[[str, int], Any]) – See above. See pytorch_load_save_functions() for
an example


	resource (int) – Current resource level (e.g., number of epochs done)













	
syne_tune.utils.pytorch_load_save_functions(state_dict_objects, mutable_state=None, fname='checkpoint.json')

	Provides default load_model_fn, save_model_fn functions for standard
PyTorch models (arguments to resume_from_checkpointed_model(),
checkpoint_model_at_rung_level()).


	Parameters:

	
	state_dict_objects (Dict[str, Any]) – Dict of PyTorch objects implementing state_dict
and load_state_dict


	mutable_state (Optional[dict]) – Optional. Additional dict with elementary value
types


	fname (str) – Name of local file (path is taken from config)






	Returns:

	load_model_fn, save_model_fn










	
syne_tune.utils.parse_bool(val)

	
	Return type:

	bool










	
syne_tune.utils.add_config_json_to_argparse(parser)

	To be called for the argument parser in the endpoint script.


	Parameters:

	parser (ArgumentParser) – Parser to add extra arguments to










	
syne_tune.utils.load_config_json(args)

	Loads configuration from JSON file and returns the union with args.


	Parameters:

	args (Dict[str, Any]) – Arguments returned by ArgumentParser, as dictionary



	Return type:

	Dict[str, Any]



	Returns:

	Combined configuration dictionary










	
syne_tune.utils.streamline_config_space(config_space, exclude_names=None, verbose=False)

	Given a configuration space config_space, this function returns a new
configuration space where some domains may have been replaced by approximately
equivalent ones, which are however better suited for Bayesian optimization. Entries
with key in exclude_names are not replaced.

See convert_domain() for what replacement rules may be applied.


	Parameters:

	
	config_space (Dict[str, Any]) – Original configuration space


	exclude_names (Optional[List[str]]) – Do not convert entries with these keys


	verbose (bool) – Log output for replaced domains? Defaults to False






	Return type:

	Dict[str, Any]



	Returns:

	Streamlined configuration space










Submodules



	syne_tune.utils.checkpoint module
	add_checkpointing_to_argparse()

	resume_from_checkpointed_model()

	checkpoint_model_at_rung_level()

	pytorch_load_save_functions()





	syne_tune.utils.config_as_json module
	add_config_json_to_argparse()

	load_config_json()





	syne_tune.utils.convert_domain module
	fit_to_regular_grid()

	convert_choice_domain()

	convert_linear_to_log_domain()

	convert_domain()

	streamline_config_space()





	syne_tune.utils.parse_bool module
	parse_bool()













            

          

      

      

    

  

    
      
          
            
  
syne_tune.utils.checkpoint module


	
syne_tune.utils.checkpoint.add_checkpointing_to_argparse(parser)

	To be called for the argument parser in the endpoint script.
Arguments added here are optional. If checkpointing is not supported,
they are simply not parsed.


	Parameters:

	parser (ArgumentParser) – Parser to add extra arguments to










	
syne_tune.utils.checkpoint.resume_from_checkpointed_model(config, load_model_fn)

	Checks whether there is a checkpoint to be resumed from. If so, the
checkpoint is loaded by calling load_model_fn. This function takes
a local pathname (to which it appends a filename). It returns
resume_from, the resource value (e.g., epoch) the checkpoint was written
at. If it fails to load the checkpoint, it may return 0. This skips
resuming from a checkpoint. This resume_from value is returned.

If checkpointing is not supported in config, or no checkpoint is
found, resume_from = 0 is returned.


	Parameters:

	
	config (Dict[str, Any]) – Configuration the training script is called with


	load_model_fn (Callable[[str], int]) – See above, must return resume_from. See
pytorch_load_save_functions() for an example






	Return type:

	int



	Returns:

	resume_from (0 if no checkpoint has been loaded)










	
syne_tune.utils.checkpoint.checkpoint_model_at_rung_level(config, save_model_fn, resource)

	If checkpointing is supported, checks whether a checkpoint is to be
written. This is the case if the checkpoint dir is set in config.
A checkpoint is written by calling save_model_fn, passing the
local pathname and resource.

Note: Why is resource passed here? In the future, we want to support
writing checkpoints only for certain resource levels. This is useful if
writing the checkpoint is expensive compared to the time needed to
run one resource unit.


	Parameters:

	
	config (Dict[str, Any]) – Configuration the training script is called with


	save_model_fn (Callable[[str, int], Any]) – See above. See pytorch_load_save_functions() for
an example


	resource (int) – Current resource level (e.g., number of epochs done)













	
syne_tune.utils.checkpoint.pytorch_load_save_functions(state_dict_objects, mutable_state=None, fname='checkpoint.json')

	Provides default load_model_fn, save_model_fn functions for standard
PyTorch models (arguments to resume_from_checkpointed_model(),
checkpoint_model_at_rung_level()).


	Parameters:

	
	state_dict_objects (Dict[str, Any]) – Dict of PyTorch objects implementing state_dict
and load_state_dict


	mutable_state (Optional[dict]) – Optional. Additional dict with elementary value
types


	fname (str) – Name of local file (path is taken from config)






	Returns:

	load_model_fn, save_model_fn












            

          

      

      

    

  

    
      
          
            
  
syne_tune.utils.config_as_json module


	
syne_tune.utils.config_as_json.add_config_json_to_argparse(parser)

	To be called for the argument parser in the endpoint script.


	Parameters:

	parser (ArgumentParser) – Parser to add extra arguments to










	
syne_tune.utils.config_as_json.load_config_json(args)

	Loads configuration from JSON file and returns the union with args.


	Parameters:

	args (Dict[str, Any]) – Arguments returned by ArgumentParser, as dictionary



	Return type:

	Dict[str, Any]



	Returns:

	Combined configuration dictionary












            

          

      

      

    

  

    
      
          
            
  
syne_tune.utils.convert_domain module


	
syne_tune.utils.convert_domain.fit_to_regular_grid(x)

	Computes the least squares fit of \(a * j + b\) to x[j], where
\(j = 0,\dots, n-1\). Returns the LS estimate of a, b, and the
coefficient of variation \(R^2\).


	Parameters:

	x (ndarray) – Strictly increasing sequence



	Return type:

	Dict[str, float]



	Returns:

	See above










	
syne_tune.utils.convert_domain.convert_choice_domain(domain, name=None)

	If the choice domain domain has more than 2 numerical values, it is
converted to finrange(),
logfinrange(),
ordinal(), or
logordinal(). Otherwise, domain is
returned as is.

The idea is to compute the least squares fit \(a * j + b\) to x[j],
where x are the sorted values or their logs (if all values are positive).
If this fit is very close (judged by coefficient of variation \(R^2\)), we
use the equispaced types finrange or logfinrange, otherwise we use
ordinal or logordinal.


	Return type:

	Domain










	
syne_tune.utils.convert_domain.convert_linear_to_log_domain(domain, name=None)

	
	Return type:

	Domain










	
syne_tune.utils.convert_domain.convert_domain(domain, name=None)

	If one of the following rules apply, domain is converted and returned,
otherwise it is returned as is.


	domain is categorical, its values are numerical. This is converted to
finrange(),
logfinrange(),
ordinal(), or
logordinal(). We fit the values or their
logs to the closest regular grid, converting to (log)finrange if the
least squares fit to the grid is good enough, otherwise to
(log)ordinal, where ordinal is with kind="nn". Note that the
conversion to (log)finrange may result in slightly different values.


	domain is float` or ``int. This is converted to the same type, but
in log scale, if the current scale is linear, lower is positive, and
the ratio upper / lower is larger than UPPER_LOWER_RATIO_THRESHOLD.





	Parameters:

	domain (Domain) – Original domain



	Return type:

	Domain



	Returns:

	Streamlined domain










	
syne_tune.utils.convert_domain.streamline_config_space(config_space, exclude_names=None, verbose=False)

	Given a configuration space config_space, this function returns a new
configuration space where some domains may have been replaced by approximately
equivalent ones, which are however better suited for Bayesian optimization. Entries
with key in exclude_names are not replaced.

See convert_domain() for what replacement rules may be applied.


	Parameters:

	
	config_space (Dict[str, Any]) – Original configuration space


	exclude_names (Optional[List[str]]) – Do not convert entries with these keys


	verbose (bool) – Log output for replaced domains? Defaults to False






	Return type:

	Dict[str, Any]



	Returns:

	Streamlined configuration space












            

          

      

      

    

  

    
      
          
            
  
syne_tune.utils.parse_bool module


	
syne_tune.utils.parse_bool.parse_bool(val)

	
	Return type:

	bool












            

          

      

      

    

  

    
      
          
            
  
syne_tune.config_space module


	
class syne_tune.config_space.Domain

	Bases: object

Base class to specify a type and valid range to sample parameters from.

This base class is implemented by parameter spaces, like float ranges
(Float), integer ranges (Integer), or categorical
variables (Categorical). The Domain object contains
information about valid values (e.g. minimum and maximum values), and
exposes methods that allow specification of specific samplers (e.g.
uniform() or loguniform()).


	
sampler = None

	




	
default_sampler_cls = None

	




	
property value_type

	
	Returns:

	Type of values (one of str, float, int)










	
cast(value)

	
	Parameters:

	value – Value top cast



	Returns:

	value cast to domain. For a finite domain, this can
involve rounding










	
set_sampler(sampler, allow_override=False)

	




	
get_sampler()

	
	Return type:

	Sampler










	
sample(spec=None, size=1, random_state=None)

	
	Parameters:

	
	spec (Union[List[dict], dict, None]) – Passed to sampler


	size (int) – Number of values to sample, defaults to 1


	random_state (Optional[RandomState]) – PRN generator






	Return type:

	Union[Any, List[Any]]



	Returns:

	Single value (size == 1) or list (size > 1)










	
is_grid()

	
	Return type:

	bool










	
is_function()

	
	Return type:

	bool










	
is_valid(value)

	
	Parameters:

	value (Any) – Value to test



	Returns:

	Is value a valid value in domain?










	
property domain_str

	




	
match_string(value)

	Returns string representation of value (which must be of domain type)
which is to match configurations for (approximate) equality.
For discrete types (e.g., Integer, Categorical), this matches for
exact equality.


	Parameters:

	value (Any) – Value of domain type (use cast() to be safe)



	Return type:

	str



	Returns:

	String representation useful for matching














	
class syne_tune.config_space.Sampler

	Bases: object


	
sample(domain, spec=None, size=1, random_state=None)

	








	
class syne_tune.config_space.BaseSampler

	Bases: Sampler






	
class syne_tune.config_space.Uniform

	Bases: Sampler






	
class syne_tune.config_space.LogUniform(base=2.718281828459045)

	Bases: Sampler

Note: We keep the argument base for compatibility with Ray Tune.
Since base has no effect on the distribution, we don’t use it
internally.






	
class syne_tune.config_space.Normal(mean=0.0, sd=0.0)

	Bases: Sampler






	
class syne_tune.config_space.Grid

	Bases: Sampler

Dummy sampler used for grid search


	
sample(domain, spec=None, size=1, random_state=None)

	








	
class syne_tune.config_space.Float(lower, upper)

	Bases: Domain

Continuous value in closed interval [lower, upper].


	Parameters:

	
	lower (float) – Lower bound (included)


	upper (float) – Upper bound (included)









	
default_sampler_cls

	alias of _Uniform






	
property value_type

	
	Returns:

	Type of values (one of str, float, int)










	
uniform()

	




	
loguniform()

	




	
reverseloguniform()

	




	
normal(mean=0.0, sd=1.0)

	




	
quantized(q)

	




	
is_valid(value)

	
	Parameters:

	value (float) – Value to test



	Returns:

	Is value a valid value in domain?










	
property domain_str

	




	
match_string(value)

	Returns string representation of value (which must be of domain type)
which is to match configurations for (approximate) equality.
For discrete types (e.g., Integer, Categorical), this matches for
exact equality.


	Parameters:

	value – Value of domain type (use cast() to be safe)



	Return type:

	str



	Returns:

	String representation useful for matching














	
class syne_tune.config_space.Integer(lower, upper)

	Bases: Domain

Integer value in closed interval [lower, upper]. Note that
upper is included.


	Parameters:

	
	lower (int) – Lower bound (included)


	upper (int) – Upper bound (included)









	
default_sampler_cls

	alias of _Uniform






	
property value_type

	
	Returns:

	Type of values (one of str, float, int)










	
cast(value)

	
	Parameters:

	value – Value top cast



	Returns:

	value cast to domain. For a finite domain, this can
involve rounding










	
quantized(q)

	




	
uniform()

	




	
loguniform()

	




	
is_valid(value)

	
	Parameters:

	value (int) – Value to test



	Returns:

	Is value a valid value in domain?










	
property domain_str

	




	
match_string(value)

	Returns string representation of value (which must be of domain type)
which is to match configurations for (approximate) equality.
For discrete types (e.g., Integer, Categorical), this matches for
exact equality.


	Parameters:

	value – Value of domain type (use cast() to be safe)



	Return type:

	str



	Returns:

	String representation useful for matching














	
class syne_tune.config_space.Categorical(categories)

	Bases: Domain

Value from finite set, whose values do not have a total ordering. For
values with an ordering, use Ordinal.


	Parameters:

	categories (Sequence) – Finite sequence, all entries must have same type






	
default_sampler_cls

	alias of _Uniform






	
uniform()

	




	
grid()

	




	
is_valid(value)

	
	Parameters:

	value (Any) – Value to test



	Returns:

	Is value a valid value in domain?










	
property value_type

	
	Returns:

	Type of values (one of str, float, int)










	
property domain_str

	




	
cast(value)

	
	Parameters:

	value – Value top cast



	Returns:

	value cast to domain. For a finite domain, this can
involve rounding










	
match_string(value)

	Returns string representation of value (which must be of domain type)
which is to match configurations for (approximate) equality.
For discrete types (e.g., Integer, Categorical), this matches for
exact equality.


	Parameters:

	value – Value of domain type (use cast() to be safe)



	Return type:

	str



	Returns:

	String representation useful for matching














	
class syne_tune.config_space.Ordinal(categories)

	Bases: Categorical

Represents an ordered set. As far as random sampling is concerned, this
type is equivalent to Categorical, but when used in methods
that require encodings (or distances), nearby values have closer
encodings.


	Parameters:

	categories (Sequence) – Finite sequence, all entries must have same type










	
class syne_tune.config_space.OrdinalNearestNeighbor(categories, log_scale=False)

	Bases: Ordinal

Different type for ordered set of numerical values (int or float).
Essentially, the finite set is represented by a real-valued interval
containing all values, and random sampling draws a value from this
interval and rounds it to the nearest value in categories. If
log_scale is True, all of this happens in log scale. Unless values
are equidistant, this is different from Ordinal.


	Parameters:

	
	categories (Sequence) – Finite sequence, must be strictly increasing,
value type must be float or int. If log_scale=True, values
must be positive


	log_scale (bool) – Encoding and NN matching in log domain?









	
property lower_int: float | None

	




	
property upper_int: float | None

	




	
property categories_int: ndarray | None

	




	
cast_int(value_int)

	




	
cast(value)

	
	Parameters:

	value – Value top cast



	Returns:

	value cast to domain. For a finite domain, this can
involve rounding










	
set_sampler(sampler, allow_override=False)

	




	
get_sampler()

	




	
sample(spec=None, size=1, random_state=None)

	
	Parameters:

	
	spec (Union[List[dict], dict, None]) – Passed to sampler


	size (int) – Number of values to sample, defaults to 1


	random_state (Optional[RandomState]) – PRN generator






	Return type:

	Union[Any, List[Any]]



	Returns:

	Single value (size == 1) or list (size > 1)














	
class syne_tune.config_space.FiniteRange(lower, upper, size, log_scale=False, cast_int=False)

	Bases: Domain

Represents a finite range [lower, ..., upper] with size values
equally spaced in linear or log domain.
If cast_int, the value type is int (rounding after the transform).


	Parameters:

	
	lower (float) – Lower bound (included)


	upper (float) – Upper bound (included)


	size (int) – Number of values


	log_scale (bool) – Equal spacing in log domain?


	cast_int (bool) – Value type is int (float otherwise)









	
property values

	




	
property value_type

	
	Returns:

	Type of values (one of str, float, int)










	
cast(value)

	
	Parameters:

	value – Value top cast



	Returns:

	value cast to domain. For a finite domain, this can
involve rounding










	
set_sampler(sampler, allow_override=False)

	




	
get_sampler()

	




	
sample(spec=None, size=1, random_state=None)

	
	Parameters:

	
	spec (Union[List[dict], dict, None]) – Passed to sampler


	size (int) – Number of values to sample, defaults to 1


	random_state (Optional[RandomState]) – PRN generator






	Return type:

	Union[Any, List[Any]]



	Returns:

	Single value (size == 1) or list (size > 1)










	
property domain_str

	




	
match_string(value)

	Returns string representation of value (which must be of domain type)
which is to match configurations for (approximate) equality.
For discrete types (e.g., Integer, Categorical), this matches for
exact equality.


	Parameters:

	value – Value of domain type (use cast() to be safe)



	Return type:

	str



	Returns:

	String representation useful for matching














	
syne_tune.config_space.uniform(lower, upper)

	Uniform float value between lower and upper


	Parameters:

	
	lower (float) – Lower bound (included)


	upper (float) – Upper bound (included)






	Returns:

	Float object










	
syne_tune.config_space.loguniform(lower, upper)

	Log-uniform float value between lower and upper

Sampling is done as exp(x), where x is uniform between log(lower) and
log(upper).


	Parameters:

	
	lower (float) – Lower bound (included; positive)


	upper (float) – Upper bound (included; positive)






	Returns:

	Float object










	
syne_tune.config_space.randint(lower, upper)

	Uniform integer between lower and upper

lower and upper are inclusive. This is a difference to Ray Tune,
where upper is exclusive.


	Parameters:

	
	lower (int) – Lower bound (included)


	upper (int) – Upper bound (included)








:return Integer object






	
syne_tune.config_space.lograndint(lower, upper)

	Log-uniform integer between lower and upper

lower and upper are inclusive.
Note: Ray Tune has an argument base here, but since this does not affect
the distribution, we drop it.


	Parameters:

	
	lower (int) – Lower bound (included)


	upper (int) – Upper bound (included)








:return Integer object






	
syne_tune.config_space.choice(categories)

	Uniform over list of categories


	Parameters:

	categories (list) – Sequence of values, all entries must have the same
type



	Returns:

	Categorical object










	
syne_tune.config_space.ordinal(categories, kind=None)

	Ordinal value from list categories. Different variants are selected by
kind.

For kind == "equal", sampling is the same as for choice, and the
internal encoding is by int (first value maps to 0, second to 1, …).

For kind == "nn", the finite set is represented by a real-valued interval
containing all values, and random sampling draws a value from this
interval and rounds it to the nearest value in categories. This behaves
like a finite version of uniform or randint. For kind == "nn-log",
nearest neighbour rounding happens in log space, which behaves like a
finite version of loguniform`() or lograndint`(). You can also use the
synonym logordinal().
For this type, values in categories must be int or float and strictly
increasing, and also positive if kind == "nn-log".


	Parameters:

	
	categories (list) – Sequence of values, all entries must have the same type


	kind (Optional[str]) – Can be “equal”, “nn”, “nn-log”






	Returns:

	Ordinal or OrdinalNearestNeighbor object










	
syne_tune.config_space.logordinal(categories)

	Corresponds to ordinal() with kind="nn-log", so that nearest neighbour
mapping happens in log scale. Values in categories must be int or
float, strictly increasing, and positive.


	Parameters:

	categories (list) – Sequence of values, strictly increasing, of type
float or int, all positive



	Returns:

	OrdinalNearestNeighbor object










	
syne_tune.config_space.finrange(lower, upper, size, cast_int=False)

	Finite range [lower, ..., upper] with size entries, which are
equally spaced. Finite alternative to uniform().


	Parameters:

	
	lower (float) – Smallest feasible value


	upper (float) – Largest feasible value


	size (int) – Size of (finite) domain, must be >= 2


	cast_int (bool) – Values rounded and cast to int?






	Returns:

	FiniteRange object










	
syne_tune.config_space.logfinrange(lower, upper, size, cast_int=False)

	Finite range [lower, ..., upper] with size entries, which are
equally spaced in the log domain. Finite alternative to loguniform().


	Parameters:

	
	lower (float) – Smallest feasible value (positive)


	upper (float) – Largest feasible value (positive)


	size (int) – Size of (finite) domain, must be >= 2


	cast_int (bool) – Values rounded and cast to int?






	Returns:

	FiniteRange object










	
syne_tune.config_space.is_log_space(domain)

	
	Parameters:

	domain (Domain) – Hyperparameter type



	Return type:

	bool



	Returns:

	Logarithmic encoding?










	
syne_tune.config_space.is_reverse_log_space(domain)

	
	Return type:

	bool










	
syne_tune.config_space.is_uniform_space(domain)

	
	Parameters:

	domain (Domain) – Hyperparameter type



	Return type:

	bool



	Returns:

	Linear (uniform) encoding?










	
syne_tune.config_space.add_to_argparse(parser, config_space)

	Use this to prepare argument parser in endpoint script, for the
non-fixed parameters in config_space.


	Parameters:

	
	parser (ArgumentParser) – argparse.ArgumentParser object


	config_space (Dict[str, Any]) – Configuration space (modified)













	
syne_tune.config_space.cast_config_values(config, config_space)

	Returns config with keys, values of config, but values are cast to
their specific types.


	Parameters:

	
	config (Dict[str, Any]) – Config whose values are to be cast


	config_space (Dict[str, Any]) – Configuration space






	Return type:

	Dict[str, Any]



	Returns:

	New config with values cast to correct types










	
syne_tune.config_space.non_constant_hyperparameter_keys(config_space)

	
	Parameters:

	config_space (Dict[str, Any]) – Configuration space



	Return type:

	List[str]



	Returns:

	Keys corresponding to (non-fixed) hyperparameters










	
syne_tune.config_space.config_space_size(config_space, upper_limit=1048576)

	Counts the number of distinct configurations in the configuration space
config_space. If this is infinite (due to real-valued parameters) or
larger than upper_limit, None is returned.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space


	upper_limit (int) – See above. Defaults to 2**20






	Return type:

	Optional[int]



	Returns:

	Number of distinct configurations; or None if infinite or
more than upper_limit










	
syne_tune.config_space.config_to_match_string(config, config_space, keys)

	Maps configuration to a match string, which can be used to compare configs
for (approximate) equality. Only keys in keys are used, in that ordering.


	Parameters:

	
	config (Dict[str, Any]) – Configuration to be encoded in match string


	config_space (Dict[str, Any]) – Configuration space


	keys (List[str]) – Keys of parameters to be encoded






	Return type:

	str



	Returns:

	Match string










	
syne_tune.config_space.to_dict(x)

	We assume that for each Domain subclass, the __init__()
kwargs are also members, and all other members start with _.


	Parameters:

	x (Domain) – Domain object



	Return type:

	Dict[str, Any]



	Returns:

	Representation as dict










	
syne_tune.config_space.from_dict(d)

	
	Parameters:

	d (Dict[str, Any]) – Representation of Domain object as dict



	Return type:

	Domain



	Returns:

	Decoded Domain object










	
syne_tune.config_space.config_space_to_json_dict(config_space)

	Converts config_space into a dictionary that can be saved as a json file.


	Parameters:

	config_space (Dict[str, Union[Domain, int, float, str]]) – Configuration space



	Return type:

	Dict[str, Union[int, float, str]]



	Returns:

	JSON-serializable dictionary representing config_space










	
syne_tune.config_space.config_space_from_json_dict(config_space_dict)

	Converts the given dictionary into a Syne Tune search space.

Reverse of config_space_to_json_dict().


	Parameters:

	config_space_dict (Dict[str, Union[int, float, str]]) – JSON-serializable dict, as output by
config_space_to_json_dict()



	Return type:

	Dict[str, Union[Domain, int, float, str]]



	Returns:

	Configuration space corresponding to config_space_dict










	
syne_tune.config_space.restrict_domain(numerical_domain, lower, upper)

	Restricts a numerical domain to be in the range [lower, upper]


	Parameters:

	
	numerical_domain (Domain) – Numerical domain


	lower (float) – Lower bound


	upper (float) – Upper bound






	Return type:

	Domain



	Returns:

	Restricted domain










	
class syne_tune.config_space.Quantized(sampler, q)

	Bases: Sampler


	
get_sampler()

	




	
sample(domain, spec=None, size=1, random_state=None)

	








	
syne_tune.config_space.quniform(lower, upper, q)

	Sample a quantized float value uniformly between lower and upper.

Sampling from tune.uniform(1, 10) is equivalent to sampling from
np.random.uniform(1, 10))

The value will be quantized, i.e. rounded to an integer increment of q.
Quantization makes the upper bound inclusive.






	
syne_tune.config_space.reverseloguniform(lower, upper)

	Values 0 <= x < 1, internally represented as -log(1 - x)


	Paam lower:

	Lower boundary of the output interval (e.g. 0.99)



	Parameters:

	upper (float) – Upper boundary of the output interval (e.g. 0.9999)



	Returns:

	Float object










	
syne_tune.config_space.qloguniform(lower, upper, q)

	Sugar for sampling in different orders of magnitude.

The value will be quantized, i.e. rounded to an integer increment of
q. Quantization makes the upper bound inclusive.


	Parameters:

	
	lower (float) – Lower boundary of the output interval (e.g. 1e-4)


	upper (float) – Upper boundary of the output interval (e.g. 1e-2)


	q (float) – Quantization number. The result will be rounded to an
integer increment of this value.













	
syne_tune.config_space.qrandint(lower, upper, q=1)

	Sample an integer value uniformly between lower and upper.

lower is inclusive, upper is also inclusive (!).

The value will be quantized, i.e. rounded to an integer increment of q.
Quantization makes the upper bound inclusive.






	
syne_tune.config_space.qlograndint(lower, upper, q)

	Sample an integer value log-uniformly between lower and upper

lower is inclusive, upper is also inclusive (!).

The value will be quantized, i.e. rounded to an integer increment of q.
Quantization makes the upper bound inclusive.








            

          

      

      

    

  

    
      
          
            
  
syne_tune.constants module

Collects constants to be shared between core code and tuning scripts or
benchmarks.


	
syne_tune.constants.SYNE_TUNE_ENV_FOLDER = 'SYNETUNE_FOLDER'

	Environment variable that allows to overides default library folder






	
syne_tune.constants.SYNE_TUNE_DEFAULT_FOLDER = 'syne-tune'

	Name of default library folder used if the env variable is not defined






	
syne_tune.constants.ST_WORKER_ITER = 'st_worker_iter'

	Number of times reporter was called






	
syne_tune.constants.ST_WORKER_TIMESTAMP = 'st_worker_timestamp'

	Time stamp when worker was called






	
syne_tune.constants.ST_WORKER_TIME = 'st_worker_time'

	Time since creation of reporter






	
syne_tune.constants.ST_WORKER_COST = 'st_worker_cost'

	Estimate of dollar cost spent so far






	
syne_tune.constants.ST_INSTANCE_TYPE = 'st_instance_type'

	Instance type to be used for job execution (SageMaker backend)






	
syne_tune.constants.ST_INSTANCE_COUNT = 'st_instance_count'

	Number of instances o be used for job execution (SageMaker backend)






	
syne_tune.constants.ST_SAGEMAKER_METRIC_TAG = 'tune-metric'

	Tag for log lines used in Reporter






	
syne_tune.constants.ST_CHECKPOINT_DIR = 'st_checkpoint_dir'

	Name of config key for checkpoint directory






	
syne_tune.constants.ST_CONFIG_JSON_FNAME_ARG = 'st_config_json_filename'

	Name of config key for config JSON file






	
syne_tune.constants.ST_REMOTE_UPLOAD_DIR_NAME = 'tuner'

	Name for upload_dir in RemoteTuner






	
syne_tune.constants.ST_RESULTS_DATAFRAME_FILENAME = 'results.csv.zip'

	Name for results dataframe stored in StoreResultsCallback






	
syne_tune.constants.ST_METADATA_FILENAME = 'metadata.json'

	Name for metadata file stored in Tuner






	
syne_tune.constants.ST_TUNER_DILL_FILENAME = 'tuner.dill'

	Name for final tuner object file stored in Tuner






	
syne_tune.constants.ST_DATETIME_FORMAT = '%Y-%m-%d-%H-%M-%S'

	Datetime format used in result path names






	
syne_tune.constants.MAX_METRICS_SUPPORTED_BY_SAGEMAKER = 40

	Max number of metrics allowed for estimator






	
syne_tune.constants.TUNER_DEFAULT_SLEEP_TIME = 5.0

	Default value for sleep_time








            

          

      

      

    

  

    
      
          
            
  
syne_tune.num_gpu module

Adapted from to not run in Shell mode which is unsecure.
https://github.com/aws/sagemaker-rl-container/blob/master/src/vw-serving/src/vw_serving/sagemaker/gpu.py


	
syne_tune.num_gpu.get_num_gpus()

	Returns the number of available GPUs based on configuration parameters and available hardware GPU devices.
Gpus are detected by running “nvidia-smi –list-gpus” as a subprocess.
:rtype: int
:return: (int) number of GPUs








            

          

      

      

    

  

    
      
          
            
  
syne_tune.report module


	
class syne_tune.report.Reporter(add_time=True, add_cost=True)

	Bases: object

Callback for reporting metric values from a training script back to Syne Tune.
Example:

from syne_tune import Reporter

report = Reporter()
for epoch in range(1, epochs + 1):
    # ...
    report(epoch=epoch, accuracy=accuracy)






	Parameters:

	
	add_time (bool) – If True (default), the time (in secs) since creation of the
Reporter object is reported automatically as
ST_WORKER_TIME


	add_cost (bool) – If True (default), estimated dollar cost since creation of
Reporter object is reported automatically as
ST_WORKER_COST. This is available for
SageMaker backend only. Requires add_time=True.









	
add_time: bool = True

	




	
add_cost: bool = True

	








	
syne_tune.report.retrieve(log_lines)

	Retrieves metrics reported with _report_logger() given log lines.


	Parameters:

	log_lines (List[str]) – Lines in log file to be scanned for metric reports



	Return type:

	List[Dict[str, float]]



	Returns:

	list of metrics retrieved from the log lines.












            

          

      

      

    

  

    
      
          
            
  
syne_tune.results_callback module


	
class syne_tune.results_callback.ExtraResultsComposer

	Bases: object

Base class for extra_results_composer argument in
StoreResultsCallback. Extracts extra results in
StoreResultsCallback.on_trial_result() and returns them as
dictionary to be appended to the results dataframe.

Why don’t we use a lambda function instead? We would like the tuner,
with all its dependent objects, to be dill serializable, and lambda
functions are not.


	
keys()

	
	Return type:

	List[str]



	Returns:

	Key names of dictionaries returned in __call__(), or
[] if nothing is returned














	
class syne_tune.results_callback.StoreResultsCallback(add_wallclock_time=True, extra_results_composer=None)

	Bases: TunerCallback

Default implementation of TunerCallback which records all
reported results, and allows to store them as CSV file.


	Parameters:

	
	add_wallclock_time (bool) – If True, wallclock time since call of
on_tuning_start is stored as
ST_TUNER_TIME.


	extra_results_composer (Optional[ExtraResultsComposer]) – Optional. If given, this is called in
on_trial_result(), and the resulting dictionary is appended as
extra columns to the results dataframe









	
on_trial_result(trial, status, result, decision)

	Called when a new result (reported by a trial) is observed

The arguments here are inputs or outputs of scheduler.on_trial_result
(called just before).


	Parameters:

	
	trial (Trial) – Trial whose report has been received


	status (str) – Status of trial before scheduler.on_trial_result has
been called


	result (Dict[str, Any]) – Result dict received


	decision (str) – Decision returned by scheduler.on_trial_result













	
store_results()

	Store current results into CSV file, of name
{tuner.tuner_path}/{ST_RESULTS_DATAFRAME_FILENAME}.






	
dataframe()

	
	Return type:

	DataFrame










	
on_tuning_start(tuner)

	Called at start of tuning loop


	Parameters:

	tuner – Tuner object










	
on_tuning_end()

	Called once the tuning loop terminates

This is called before Tuner object is serialized
(optionally), and also before running jobs are stopped.












            

          

      

      

    

  

    
      
          
            
  
syne_tune.stopping_criterion module


	
class syne_tune.stopping_criterion.StoppingCriterion(max_wallclock_time=None, max_num_evaluations=None, max_num_trials_started=None, max_num_trials_completed=None, max_cost=None, max_num_trials_finished=None, min_metric_value=None, max_metric_value=None)

	Bases: object

Stopping criterion that can be used in a Tuner, for instance
Tuner(stop_criterion=StoppingCriterion(max_wallclock_time=3600), ...).

If several arguments are used, the combined criterion is true whenever
one of the atomic criteria is true.

In principle, stop_criterion for Tuner can be any lambda function, but
this class should be used with remote launching in order to ensure
proper serialization.


	Parameters:

	
	max_wallclock_time (Optional[float]) – Stop once this wallclock time is reached


	max_num_evaluations (Optional[int]) – Stop once more than this number of metric
records have been reported


	max_num_trials_started (Optional[int]) – Stop once more than this number of trials
have been started


	max_num_trials_completed (Optional[int]) – Stop once more than this number of trials
have been completed. This does not include trials which were stopped
or failed


	max_cost (Optional[float]) – Stop once total cost of evaluations larger than this value


	max_num_trials_finished (Optional[int]) – Stop once more than this number of trials
have finished (i.e., completed, stopped, failed, or stopping)


	min_metric_value (Optional[Dict[str, float]]) – Dictionary with thresholds for selected metrics.
Stop once an evaluation reports a metric value below a threshold


	max_metric_value (Optional[Dict[str, float]]) – Dictionary with thresholds for selected metrics.
Stop once an evaluation reports a metric value above a threshold









	
max_wallclock_time: float = None

	




	
max_num_evaluations: int = None

	




	
max_num_trials_started: int = None

	




	
max_num_trials_completed: int = None

	




	
max_cost: float = None

	




	
max_num_trials_finished: int = None

	




	
min_metric_value: Optional[Dict[str, float]] = None

	




	
max_metric_value: Optional[Dict[str, float]] = None

	








	
class syne_tune.stopping_criterion.PlateauStopper(metric, std=0.001, num_trials=10, mode='min', patience=0)

	Bases: object

Stops the experiment when a metric plateaued for N consecutive trials
for more than the given amount of iterations specified in the patience parameter.
This code is inspired by Ray Tune.








            

          

      

      

    

  

    
      
          
            
  
syne_tune.try_import module


	
syne_tune.try_import.try_import_gpsearchers_message()

	
	Return type:

	str










	
syne_tune.try_import.try_import_kde_message()

	
	Return type:

	str










	
syne_tune.try_import.try_import_bore_message()

	
	Return type:

	str










	
syne_tune.try_import.try_import_raytune_message()

	
	Return type:

	str










	
syne_tune.try_import.try_import_benchmarks_message()

	
	Return type:

	str










	
syne_tune.try_import.try_import_aws_message()

	
	Return type:

	str










	
syne_tune.try_import.try_import_botorch_message()

	
	Return type:

	str










	
syne_tune.try_import.try_import_blackbox_repository_message()

	
	Return type:

	str










	
syne_tune.try_import.try_import_yahpo_message()

	
	Return type:

	str










	
syne_tune.try_import.try_import_moo_message()

	
	Return type:

	str










	
syne_tune.try_import.try_import_visual_message()

	
	Return type:

	str










	
syne_tune.try_import.try_import_sklearn_message()

	
	Return type:

	str










	
syne_tune.try_import.try_import_backends_message()

	
	Return type:

	str












            

          

      

      

    

  

    
      
          
            
  
syne_tune.tuner module


	
class syne_tune.tuner.Tuner(trial_backend, scheduler, stop_criterion, n_workers, sleep_time=5.0, results_update_interval=10.0, print_update_interval=30.0, max_failures=1, tuner_name=None, asynchronous_scheduling=True, wait_trial_completion_when_stopping=False, callbacks=None, metadata=None, suffix_tuner_name=True, save_tuner=True, start_jobs_without_delay=True, trial_backend_path=None)

	Bases: object

Controller of tuning loop, manages interplay between scheduler and
trial backend. Also, stopping criterion and number of workers are
maintained here.


	Parameters:

	
	trial_backend (TrialBackend) – Backend for trial evaluations


	scheduler (TrialScheduler) – Tuning algorithm for making decisions about which
trials to start, stop, pause, or resume


	stop_criterion (Callable[[TuningStatus], bool]) – Tuning stops when this predicates returns True.
Called in each iteration with the current tuning status. It is
recommended to use StoppingCriterion.


	n_workers (int) – Number of workers used here. Note that the backend
needs to support (at least) this number of workers to be run
in parallel


	sleep_time (float) – Time to sleep when all workers are busy. Defaults to
DEFAULT_SLEEP_TIME


	results_update_interval (float) – Frequency at which results are updated and
stored (in seconds). Defaults to 10.


	print_update_interval (float) – Frequency at which result table is printed.
Defaults to 30.


	max_failures (int) – This many trial execution failures are allowed before
the tuning loop is aborted. Defaults to 1


	tuner_name (Optional[str]) – Name associated with the tuning experiment, default to
the name of the entrypoint. Must consists of alpha-digits characters,
possibly separated by ‘-’. A postfix with a date time-stamp is added
to ensure uniqueness.


	asynchronous_scheduling (bool) – Whether to use asynchronous scheduling
when scheduling new trials. If True, trials are scheduled as soon as
a worker is available. If False, the tuner waits that all trials
are finished before scheduling a new batch of size n_workers.
Default to True.


	wait_trial_completion_when_stopping (bool) – How to deal with running
trials when stopping criterion is met. If True, the tuner waits
until all trials are finished. If False, all trials are terminated.
Defaults to False.


	callbacks (Optional[List[TunerCallback]]) – Called at certain times in the tuning loop, for example
when a result is seen. The default callback stores results every
results_update_interval.


	metadata (Optional[dict]) – Dictionary of user-metadata that will be persisted in
{tuner_path}/{ST_METADATA_FILENAME}, in addition to metadata provided by
the user. SMT_TUNER_CREATION_TIMESTAMP is always included which
measures the time-stamp when the tuner started to run.


	suffix_tuner_name (bool) – If True, a timestamp is appended to the
provided tuner_name that ensures uniqueness, otherwise the name is
left unchanged and is expected to be unique. Defaults to True.


	save_tuner (bool) – If True, the Tuner object is serialized at
the end of tuning, including its dependencies (e.g., scheduler). This
allows all details of the experiment to be recovered. Defaults to
True.


	start_jobs_without_delay (bool) – Defaults to True. If this is True, the tuner
starts new jobs depending on scheduler decisions communicated to the
backend. For example, if a trial has just been stopped (by calling
backend.stop_trial), the tuner may start a new one immediately, even
if the SageMaker training job is still busy due to stopping delays.
This can lead to faster experiment runtime, because the backend is
temporarily going over its budget.

If set to False, the tuner always asks the backend for the number of
busy workers, which guarantees that we never go over the n_workers
budget. This makes a difference for backends where stopping or pausing
trials is not immediate (e.g., SageMakerBackend). Not going
over budget means that n_workers can be set up to the available quota,
without running the risk of an exception due to the quota being
exceeded. If you get such exceptions, we recommend to use
start_jobs_without_delay=False. Also, if the SageMaker warm pool
feature is used, it is recommended to set
start_jobs_without_delay=False, since otherwise more than n_workers
warm pools will be started, because existing ones are busy with
stopping when they should be reassigned.




	trial_backend_path (Optional[str]) – If this is given, the path of trial_backend
(where logs and checkpoints of trials are stored) is set to this.
Otherwise, it is set to self.tuner_path, so that per-trial
information is written to the same path as tuning results.

If the backend is LocalBackend and the
experiment is run remotely, we recommend to set this, since otherwise
checkpoints and logs are synced to S3, along with tuning results, which
is costly and error-prone.











	
run()

	Launches the tuning.






	
save(folder=None)

	




	
static load(tuner_path)

	




	
best_config(metric=0)

	
	Parameters:

	metric (Union[str, int, None]) – Indicates which metric to use, can be the index or a name of the metric.
default to 0 - first metric defined in the Scheduler



	Return type:

	Tuple[int, Dict[str, Any]]



	Returns:

	the best configuration found while tuning for the metric given and the associated trial-id
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.tuner_callback module


	
class syne_tune.tuner_callback.TunerCallback

	Bases: object

Allows user of Tuner to monitor progress, store
additional results, etc.


	
on_tuning_start(tuner)

	Called at start of tuning loop


	Parameters:

	tuner – Tuner object










	
on_tuning_end()

	Called once the tuning loop terminates

This is called before Tuner object is serialized
(optionally), and also before running jobs are stopped.






	
on_loop_start()

	Called at start of each tuning loop iteration

Every iteration starts with fetching new results from the backend.
This is called before this is done.






	
on_loop_end()

	Called at end of each tuning loop iteration

This is done before the loop stopping condition is checked and acted
upon.






	
on_fetch_status_results(trial_status_dict, new_results)

	Called just after trial_backend.fetch_status_results


	Parameters:

	
	trial_status_dict (Dict[int, Tuple[Trial, str]]) – Result of fetch_status_results


	new_results (List[Tuple[int, dict]]) – Result of fetch_status_results













	
on_trial_complete(trial, result)

	Called when a trial completes (Status.completed)

The arguments here also have been passed to scheduler.on_trial_complete,
before this call here.


	Parameters:

	
	trial (Trial) – Trial that just completed.


	result (Dict[str, Any]) – Last result obtained.













	
on_trial_result(trial, status, result, decision)

	Called when a new result (reported by a trial) is observed

The arguments here are inputs or outputs of scheduler.on_trial_result
(called just before).


	Parameters:

	
	trial (Trial) – Trial whose report has been received


	status (str) – Status of trial before scheduler.on_trial_result has
been called


	result (Dict[str, Any]) – Result dict received


	decision (str) – Decision returned by scheduler.on_trial_result













	
on_tuning_sleep(sleep_time)

	Called just after tuner has slept, because no worker was available


	Parameters:

	sleep_time (float) – Time (in secs) for which tuner has just slept










	
on_start_trial(trial)

	Called just after a new trials is started


	Parameters:

	trial (Trial) – Trial which has just been started










	
on_resume_trial(trial)

	Called just after a trial is resumed


	Parameters:

	trial (Trial) – Trial which has just been resumed
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.tuning_status module


	
class syne_tune.tuning_status.MetricsStatistics

	Bases: object

Allows to maintain simple running statistics (min/max/sum/count) of metrics
provided. Statistics are tracked for numeric types only. Types of first added
metrics define its types.


	
add(metrics)

	








	
class syne_tune.tuning_status.TuningStatus(metric_names)

	Bases: object

Information of a tuning job to display as progress or to use to decide whether
to stop the tuning job.


	Parameters:

	metric_names (List[str]) – Names of metrics reported






	
update(trial_status_dict, new_results)

	Updates the tuning status given new statuses and results.


	Parameters:

	
	trial_status_dict (Dict[int, Tuple[Trial, str]]) – Dictionary mapping trial ID to
Trial object and status


	new_results (List[Tuple[int, dict]]) – New results, along with trial IDs













	
mark_running_job_as_stopped()

	Update the status of all trials still running to be marked as stop.






	
property num_trials_started

	
	Returns:

	Number of trials which have been started










	
property num_trials_completed

	
	Returns:

	Number of trials which have been completed










	
property num_trials_failed

	
	Returns:

	Number of trials which have failed










	
property num_trials_finished

	
	Returns:

	Number of trials that finished, e.g. that completed, were
stopped or are stopping, or failed










	
property num_trials_running

	
	Returns:

	Number of trials currently running










	
property wallclock_time

	
	Returns:

	the wallclock time spent in the tuner










	
property user_time

	
	Returns:

	the total user time spent in the workers










	
property cost

	
	Returns:

	the estimated dollar-cost spent while tuning










	
get_dataframe()

	
	Return type:

	DataFrame



	Returns:

	Information about all trials as dataframe














	
syne_tune.tuning_status.print_best_metric_found(tuning_status, metric_names, mode=None)

	Prints trial status summary and the best metric found.


	Parameters:

	
	tuning_status (TuningStatus) – Current tuning status


	metric_names (List[str]) – Plot results for first metric in this list


	mode (Optional[str]) – “min” or “max”






	Return type:

	Optional[Tuple[int, float]]



	Returns:

	trial-id and value of the best metric found












            

          

      

      

    

  

    
      
          
            
  
syne_tune.util module


	
class syne_tune.util.RegularCallback(callback, call_seconds_frequency)

	Bases: object

Allows to call the callback function at most once every call_seconds_frequency seconds.


	Parameters:

	
	callback (callable) – Callback object


	call_seconds_frequency (float) – Wait time between subsequent calls













	
syne_tune.util.experiment_path(tuner_name=None, local_path=None)

	Return the path of an experiment which is used both by Tuner
and to collect results of experiments.


	Parameters:

	
	tuner_name (Optional[str]) – Name of a tuning experiment


	local_path (Optional[str]) – Local path where results should be saved when running
locally outside of SageMaker. If not specified, then the environment
variable "SYNETUNE_FOLDER" is used if defined otherwise ~/syne-tune/
is used. Defining the environment variable "SYNETUNE_FOLDER" allows to
override the default path.






	Return type:

	Path



	Returns:

	Path where to write logs and results for Syne Tune tuner. On
SageMaker, results are written to "/opt/ml/checkpoints/" so that files
are persisted continuously to S3 by SageMaker.










	
syne_tune.util.s3_experiment_path(s3_bucket=None, experiment_name=None, tuner_name=None)

	Returns S3 path for storing results and checkpoints.


	Parameters:

	
	s3_bucket (Optional[str]) – If not given, the default bucket for the SageMaker
session is used


	experiment_name (Optional[str]) – If given, this is used as first directory


	tuner_name (Optional[str]) – If given, this is used as second directory






	Return type:

	str



	Returns:

	S3 path, ending on “/”










	
syne_tune.util.check_valid_sagemaker_name(name)

	




	
syne_tune.util.sanitize_sagemaker_name(name)

	
	Return type:

	str










	
syne_tune.util.name_from_base(base, default, max_length=63)

	Append a timestamp to the provided string.

This function assures that the total length of the resulting string is
not longer than the specified max length, trimming the input parameter if
necessary.


	Parameters:

	
	base (Optional[str]) – String used as prefix to generate the unique name


	default (str) – String used if base is None


	max_length (int) – Maximum length for the resulting string (default: 63)






	Return type:

	str



	Returns:

	Input parameter with appended timestamp










	
syne_tune.util.random_string(length)

	
	Return type:

	str










	
syne_tune.util.repository_root_path()

	
	Return type:

	Path



	Returns:

	Returns path including syne_tune, examples, benchmarking










	
syne_tune.util.script_checkpoint_example_path()

	
	Return type:

	Path



	Returns:

	Path of checkpoint example










	
syne_tune.util.script_height_example_path()

	
	Return type:

	Path



	Returns:

	Path of train_heigth example










	
syne_tune.util.catchtime(name)

	
	Return type:

	float










	
syne_tune.util.is_increasing(lst)

	
	Parameters:

	lst (List[Union[float, int]]) – List of float or int entries



	Return type:

	bool



	Returns:

	Is lst strictly increasing?










	
syne_tune.util.is_positive_integer(lst)

	
	Parameters:

	lst (List[int]) – List of int entries



	Return type:

	bool



	Returns:

	Are all entries of lst of type int and positive?










	
syne_tune.util.is_integer(lst)

	
	Parameters:

	lst (list) – List of entries



	Return type:

	bool



	Returns:

	Are all entries of lst of type int?










	
syne_tune.util.dump_json_with_numpy(x, filename=None)

	Serializes dictionary x in JSON, taking into account NumPy specific
value types such as n.p.int64.


	Parameters:

	
	x (dict) – Dictionary to serialize or encode


	filename (Union[str, Path, None]) – Name of file to store JSON to. Optional. If not given,
the JSON encoding is returned as string






	Return type:

	Optional[str]



	Returns:

	If filename is None, JSON encoding is returned










	
syne_tune.util.dict_get(params, key, default)

	Returns params[key] if this exists and is not None, and default otherwise.
Note that this is not the same as params.get(key, default). Namely, if params[key]
is equal to None, this would return None, but this method returns default.

This function is particularly helpful when dealing with a dict returned by
argparse.ArgumentParser. Whenever key is added as argument to the parser,
but a value is not provided, this leads to params[key] = None.


	Return type:

	Any










	
syne_tune.util.recursive_merge(a, b, stop_keys=None)

	Merge dictionaries a and b, where b takes precedence. We
typically use this to modify a dictionary a, so b is smaller
than a. Further recursion is stopped on any node with key in
stop_keys. Use this for dictionary-valued entries not to be merged,
but to be replaced by what is in b.


	Parameters:

	
	a (Dict[str, Any]) – Dictionary


	b (Dict[str, Any]) – Dictionary (can be empty)


	stop_keys (Optional[List[str]]) – See above, optional






	Return type:

	Dict[str, Any]



	Returns:

	Merged dictionary










	
syne_tune.util.find_first_of_type(a, typ)

	
	Return type:

	Optional[Any]










	
syne_tune.util.metric_name_mode(metric_names, metric_mode, metric)

	Retrieve the metric mode given a metric queried by either index or name.
:type metric_names: List[str]
:param metric_names: metrics names defined in a scheduler
:type metric_mode: Union[str, List[str]]
:param metric_mode: metric mode or modes of a scheduler
:type metric: Union[str, int]
:param metric: Index or name of the selected metric
:return the name and the mode of the queried metric


	Return type:

	Tuple[str, str]
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      	Ackley (class in syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy)


      	acquisition_function_factory() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.models.acqfunc_factory)


      	AcquisitionFunction (class in syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes)
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      	add() (syne_tune.optimizer.schedulers.hyperband_stopping.Rung method)

      
        	(syne_tune.optimizer.schedulers.searchers.utils.exclusion_list.ExclusionList method)


        	(syne_tune.tuning_status.MetricsStatistics method)


      


      	add_checkpointing_to_argparse() (in module syne_tune.utils)

      
        	(in module syne_tune.utils.checkpoint)


      


      	add_config_json_to_argparse() (in module syne_tune.utils)

      
        	(in module syne_tune.utils.config_as_json)


      


      	add_cost (syne_tune.report.Reporter attribute)

      
        	(syne_tune.Reporter attribute)


      


      	add_data() (syne_tune.optimizer.schedulers.neuralbands.networks.Exploitation method)


      	add_metric_definitions_to_sagemaker_estimator() (in module syne_tune.backend.sagemaker_backend.sagemaker_utils)

      
        	(syne_tune.backend.sagemaker_backend.sagemaker_backend.SageMakerBackend method)


        	(syne_tune.backend.SageMakerBackend method)


      


      	add_regularizer_to_criterion() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.optimization_utils)


      	add_results() (syne_tune.backend.trial_status.Trial method)


      	add_surrogate() (in module syne_tune.blackbox_repository)

      
        	(in module syne_tune.blackbox_repository.blackbox_surrogate)


      


      	add_surrogate_kwargs (syne_tune.experiments.benchmark_definitions.common.SurrogateBenchmarkDefinition attribute)


      	add_syne_tune_dependency() (in module syne_tune.backend.sagemaker_backend.sagemaker_utils)


      	add_time (syne_tune.report.Reporter attribute)

      
        	(syne_tune.Reporter attribute)


      


      	add_to_argparse() (in module syne_tune.config_space)


      	AddJitterOp() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.custom_op)


      	advance() (syne_tune.backend.simulator_backend.time_keeper.SimulatedTimeKeeper method)

      
        	(syne_tune.backend.time_keeper.RealTimeKeeper method)


        	(syne_tune.backend.time_keeper.TimeKeeper method)


      


      	advance_to() (syne_tune.backend.simulator_backend.time_keeper.SimulatedTimeKeeper method)


      	aggregate_and_errors_over_time() (in module syne_tune.experiments.visualization.aggregate_results)


      	aggregate_mode (syne_tune.experiments.PlotParameters attribute)

      
        	(syne_tune.experiments.visualization.plotting.PlotParameters attribute)


      


      	all_configurations() (syne_tune.blackbox_repository.blackbox_tabular.BlackboxTabular method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.tuning_job_state.TuningJobState method)


      


      	allow_duplicates (syne_tune.optimizer.schedulers.searchers.searcher_base.StochasticAndFilterDuplicatesSearcher property)

      
        	(syne_tune.optimizer.schedulers.searchers.StochasticAndFilterDuplicatesSearcher property)


      


      	AlwaysSkipPredicate (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_skipopt)


      	append_extra() (syne_tune.optimizer.schedulers.searchers.bayesopt.utils.debug_log.DebugLogPrinter method)


  

  	
      	append_pending() (syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.tuning_job_state.TuningJobState method)


      	append_trial() (syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_transformer.ModelStateTransformer method)
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      	apply_lbfgs() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.optimization_utils)


      	apply_lbfgs_with_multiple_starts() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.optimization_utils)


      	ARD (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base.Matern52 property)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.Matern52 property)


      


      	ASHA (benchmarking.examples.benchmark_dehb.baselines.Methods attribute)

      
        	(benchmarking.examples.benchmark_dyhpo.baselines.Methods attribute)


        	(benchmarking.examples.benchmark_hypertune.baselines.Methods attribute)


        	(benchmarking.examples.benchmark_warping.baselines.Methods attribute)


        	(benchmarking.examples.demo_experiment.baselines.Methods attribute)


        	(benchmarking.examples.launch_local.baselines.Methods attribute)


        	(benchmarking.examples.launch_sagemaker.baselines.Methods attribute)


        	(class in syne_tune.optimizer.baselines)


      


      	ASHA() (in module syne_tune.experiments.default_baselines)


      	ASHA_ORD (benchmarking.examples.benchmark_dehb.baselines.Methods attribute)


      	ASHA_RELU (benchmarking.examples.demo_experiment.baselines.Methods attribute)


      	ASHA_STOP (benchmarking.examples.benchmark_dehb.baselines.Methods attribute)


      	ASHA_TANH (benchmarking.examples.demo_experiment.baselines.Methods attribute)


      	ASHABORE (class in syne_tune.optimizer.baselines)


      	ASHABORE() (in module syne_tune.experiments.default_baselines)


      	ASHACQR (class in syne_tune.optimizer.baselines)


      	ASHACTS (class in syne_tune.optimizer.baselines)


      	assert_check_rungs() (syne_tune.optimizer.schedulers.synchronous.hyperband_bracket.SynchronousBracket static method)


      	assert_data_entries() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.likelihood.GaussianProcessMarginalLikelihood static method)


      	assert_ensemble_distribution() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.posterior_state)


      	assert_equal_candidates() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy)


      	assert_equal_randomstate() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy)


      	assert_no_invalid_options() (in module syne_tune.optimizer.schedulers.searchers.utils.default_arguments)


      	assert_valid() (syne_tune.optimizer.schedulers.searchers.utils.default_arguments.Boolean method)

      
        	(syne_tune.optimizer.schedulers.searchers.utils.default_arguments.Categorical method)


        	(syne_tune.optimizer.schedulers.searchers.utils.default_arguments.CheckType method)


        	(syne_tune.optimizer.schedulers.searchers.utils.default_arguments.Dictionary method)


        	(syne_tune.optimizer.schedulers.searchers.utils.default_arguments.Float method)


        	(syne_tune.optimizer.schedulers.searchers.utils.default_arguments.Integer method)


        	(syne_tune.optimizer.schedulers.searchers.utils.default_arguments.IntegerOrNone method)


        	(syne_tune.optimizer.schedulers.searchers.utils.default_arguments.String method)


      


      	assign_active_metric() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes)


      	AVG_POOL_3x3 (syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.linear_cost_model.NASBench201LinearCostModel.Op attribute)
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      	backend_path_not_synced_to_s3() (in module syne_tune.backend.sagemaker_backend.sagemaker_utils)


      	backoff() (in module syne_tune.remote.scheduling)


      	backward_gradient() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.posterior_state.HyperTuneIndependentGPPosteriorState method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.posterior_state.HyperTuneJointGPPosteriorState method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils.GaussProcPosteriorStateAndRungLevels method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils.PosteriorStateClampedResource method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.posterior_state.IndependentGPPerResourcePosteriorState method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.posterior_state.GaussProcAdditivePosteriorState method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_state.GaussProcPosteriorState method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_state.PosteriorState method)
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        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_model.GaussProcPredictor method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.gpiss_model.GaussProcAdditivePredictor method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.sklearn_model.SKLearnPredictorWrapper method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn.predictor.SKLearnPredictor method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn.SKLearnPredictor method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes.Predictor method)


      


      	backward_gradient_given_predict() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_state)


      	base_kernel_factory() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.models.kernel_factory)


      	base_scheduler (syne_tune.optimizer.baselines.MOLinearScalarizationBayesOpt attribute)

      
        	(syne_tune.optimizer.schedulers.multiobjective.linear_scalarizer.LinearScalarizedScheduler attribute)


        	(syne_tune.optimizer.schedulers.multiobjective.LinearScalarizedScheduler attribute)


      


      	BasePredictor (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_base)


      	BaseSampler (class in syne_tune.config_space)


      	BaseSearcher (class in syne_tune.optimizer.schedulers.searchers)

      
        	(class in syne_tune.optimizer.schedulers.searchers.searcher)


      


      	basic_cpu_instance_sagemaker_estimator() (in module syne_tune.remote.estimators)


      	BayesianOptimization (class in syne_tune.optimizer.baselines)


      	BayesianOptimization() (in module syne_tune.experiments.default_baselines)


      	BayesianOptimizationAlgorithm (class in syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm)


      	BayesianOptimizationSearcher (class in syne_tune.optimizer.schedulers.searchers)

      
        	(class in syne_tune.optimizer.schedulers.searchers.model_based_searcher)


      


      	begin_block() (syne_tune.optimizer.schedulers.utils.simple_profiler.SimpleProfiler method)


      	Benchmark (class in syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench.api)


      	
    benchmarking

      
        	module


      


      	
    benchmarking.benchmark_definitions.distilbert_on_imdb

      
        	module


      


      	
    benchmarking.benchmark_definitions.finetune_transformer_glue

      
        	module


      


      	
    benchmarking.benchmark_definitions.finetune_transformer_swag

      
        	module


      


      	
    benchmarking.benchmark_definitions.lstm_wikitext2

      
        	module


      


      	
    benchmarking.benchmark_definitions.mlp_on_fashionmnist

      
        	module


      


      	
    benchmarking.benchmark_definitions.real_benchmark_definitions

      
        	module


      


      	
    benchmarking.benchmark_definitions.resnet_cifar10

      
        	module


      


      	
    benchmarking.benchmark_definitions.transformer_wikitext2

      
        	module


      


      	
    benchmarking.examples

      
        	module


      


      	
    benchmarking.examples.benchmark_dehb

      
        	module


      


      	
    benchmarking.examples.benchmark_dehb.baselines

      
        	module


      


      	
    benchmarking.examples.benchmark_dyhpo

      
        	module


      


      	
    benchmarking.examples.benchmark_dyhpo.baselines

      
        	module


      


      	
    benchmarking.examples.benchmark_hypertune

      
        	module


      


      	
    benchmarking.examples.benchmark_hypertune.baselines

      
        	module


      


      	
    benchmarking.examples.benchmark_warping

      
        	module


      


      	
    benchmarking.examples.benchmark_warping.baselines

      
        	module


      


      	
    benchmarking.examples.demo_experiment

      
        	module


      


      	
    benchmarking.examples.demo_experiment.baselines

      
        	module


      


      	
    benchmarking.examples.fine_tuning_transformer_glue

      
        	module


      


      	
    benchmarking.examples.fine_tuning_transformer_glue.baselines

      
        	module


      


      	
    benchmarking.examples.fine_tuning_transformer_glue.hpo_main

      
        	module


      


      	
    benchmarking.examples.fine_tuning_transformer_glue.plot_results

      
        	module


      


      	
    benchmarking.examples.fine_tuning_transformer_swag

      
        	module


      


      	
    benchmarking.examples.fine_tuning_transformer_swag.baselines

      
        	module


      


      	
    benchmarking.examples.fine_tuning_transformer_swag.hpo_main

      
        	module


      


      	
    benchmarking.examples.launch_local

      
        	module


      


  

  	
      	
    benchmarking.examples.launch_local.baselines

      
        	module


      


      	
    benchmarking.examples.launch_local.hpo_main

      
        	module


      


      	
    benchmarking.examples.launch_sagemaker

      
        	module


      


      	
    benchmarking.examples.launch_sagemaker.baselines

      
        	module


      


      	
    benchmarking.examples.launch_sagemaker.hpo_main

      
        	module


      


      	
    benchmarking.training_scripts

      
        	module


      


      	
    benchmarking.utils

      
        	module


      


      	
    benchmarking.utils.get_cost_model

      
        	module


      


      	
    benchmarking.utils.launch_sample_searcher_states

      
        	module


      


      	
    benchmarking.utils.searcher_state_callback

      
        	module


      


      	best_config() (syne_tune.experiments.experiment_result.ExperimentResult method)

      
        	(syne_tune.experiments.ExperimentResult method)


        	(syne_tune.Tuner method)


        	(syne_tune.tuner.Tuner method)


      


      	BetaBinomialEstimator (class in syne_tune.callbacks.hyperband_remove_checkpoints_callback)


      	BiasOnlyLinearCostModel (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.linear_cost_model)


      	Blackbox (class in syne_tune.blackbox_repository.blackbox)


      	blackbox (syne_tune.blackbox_repository.BlackboxRepositoryBackend property)

      
        	(syne_tune.blackbox_repository.simulated_tabular_backend.BlackboxRepositoryBackend property)


        	(syne_tune.blackbox_repository.simulated_tabular_backend.UserBlackboxBackend property)


        	(syne_tune.blackbox_repository.UserBlackboxBackend property)


      


      	blackbox_list() (in module syne_tune.blackbox_repository)

      
        	(in module syne_tune.blackbox_repository.repository)


      


      	blackbox_local_path() (in module syne_tune.blackbox_repository.conversion_scripts.utils)


      	blackbox_name (syne_tune.experiments.benchmark_definitions.common.SurrogateBenchmarkDefinition attribute)


      	blackbox_s3_path() (in module syne_tune.blackbox_repository.conversion_scripts.utils)


      	BlackboxOffline (class in syne_tune.blackbox_repository)

      
        	(class in syne_tune.blackbox_repository.blackbox_offline)


      


      	BlackboxRecipe (class in syne_tune.blackbox_repository.conversion_scripts.blackbox_recipe)


      	BlackboxRepositoryBackend (class in syne_tune.blackbox_repository)

      
        	(class in syne_tune.blackbox_repository.simulated_tabular_backend)


      


      	BlackboxSurrogate (class in syne_tune.blackbox_repository.blackbox_surrogate)


      	BlackboxTabular (class in syne_tune.blackbox_repository.blackbox_tabular)


      	BlackBoxYAHPO (class in syne_tune.blackbox_repository.conversion_scripts.scripts.yahpo_import)


      	Block (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon)


      	BO (benchmarking.examples.benchmark_dyhpo.baselines.Methods attribute)

      
        	(benchmarking.examples.benchmark_warping.baselines.Methods attribute)


        	(benchmarking.examples.demo_experiment.baselines.Methods attribute)


        	(benchmarking.examples.fine_tuning_transformer_glue.baselines.Methods attribute)


        	(benchmarking.examples.fine_tuning_transformer_swag.baselines.Methods attribute)


        	(benchmarking.examples.launch_local.baselines.Methods attribute)


        	(benchmarking.examples.launch_sagemaker.baselines.Methods attribute)


      


      	BO_BOXCOX (benchmarking.examples.benchmark_warping.baselines.Methods attribute)


      	BO_WARP (benchmarking.examples.benchmark_warping.baselines.Methods attribute)


      	BO_WARP_BOXCOX (benchmarking.examples.benchmark_warping.baselines.Methods attribute)


      	BOHB (benchmarking.examples.benchmark_dehb.baselines.Methods attribute)

      
        	(benchmarking.examples.benchmark_hypertune.baselines.Methods attribute)


        	(class in syne_tune.optimizer.baselines)


      


      	BOHB() (in module syne_tune.experiments.default_baselines)


      	BOHB_ORD (benchmarking.examples.benchmark_dehb.baselines.Methods attribute)


      	Boolean (class in syne_tune.optimizer.schedulers.searchers.utils.default_arguments)


      	BORE (class in syne_tune.optimizer.baselines)


      	Bore (class in syne_tune.optimizer.schedulers.searchers.bore)

      
        	(class in syne_tune.optimizer.schedulers.searchers.bore.bore)


      


      	BORE() (in module syne_tune.experiments.default_baselines)


      	BoTorch (class in syne_tune.optimizer.baselines)


      	BoTorch() (in module syne_tune.experiments.default_baselines)


      	BoTorchSearcher (class in syne_tune.optimizer.schedulers.searchers.botorch)


      	BotorchSearcher (class in syne_tune.optimizer.schedulers.searchers.botorch)


      	BoTorchSearcher (class in syne_tune.optimizer.schedulers.searchers.botorch.botorch_searcher)


      	BotorchSearcher (class in syne_tune.optimizer.schedulers.searchers.botorch.botorch_searcher)


      	BoTorchTransfer (class in syne_tune.optimizer.schedulers.searchers.botorch.botorch_transfer_searcher)


      	BoTorchTransferSearcher (class in syne_tune.optimizer.schedulers.searchers.botorch.botorch_transfer_searcher)


      	BoundingBox (class in syne_tune.optimizer.schedulers.transfer_learning)

      
        	(class in syne_tune.optimizer.schedulers.transfer_learning.bounding_box)


      


      	box_constraints_internal() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.likelihood.MarginalLikelihood method)


      	BoxCoxTargetTransform (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.target_transform)


      	bracket (syne_tune.optimizer.schedulers.hyperband.TrialInformation attribute)


      	bracket_rungs (syne_tune.optimizer.schedulers.synchronous.hyperband_bracket_manager.SynchronousHyperbandBracketManager property)


      	BracketDistribution (class in syne_tune.optimizer.schedulers.searchers.bracket_distribution)


      	Branin (class in syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy)


      	branin_function() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy)


      	BraninWithR (class in syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy)


      	build_kernel() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects)


      	busy_trial_ids() (syne_tune.backend.local_backend.LocalBackend method)

      
        	(syne_tune.backend.LocalBackend method)


        	(syne_tune.backend.sagemaker_backend.sagemaker_backend.SageMakerBackend method)


        	(syne_tune.backend.SageMakerBackend method)


        	(syne_tune.backend.simulator_backend.simulator_backend.SimulatorBackend method)


        	(syne_tune.backend.trial_backend.TrialBackend method)


      


  





C


  	
      	c0 (syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.cost_model.CostValue attribute)


      	c1 (syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.cost_model.CostValue attribute)


      	callback_for_checkpoint_removal() (syne_tune.callbacks.remove_checkpoints_callback.DefaultRemoveCheckpointsSchedulerMixin method)

      
        	(syne_tune.optimizer.schedulers.hyperband.HyperbandScheduler method)


        	(syne_tune.optimizer.schedulers.HyperbandScheduler method)


        	(syne_tune.optimizer.schedulers.remove_checkpoints.RemoveCheckpointsSchedulerMixin method)


      


      	CandidateGenerator (class in syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes)


      	cap_size_tuning_job_state() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.models.subsample_state_multi_fidelity)

      
        	(in module syne_tune.optimizer.schedulers.searchers.bayesopt.models.subsample_state_single_fidelity)


      


      	cast() (syne_tune.config_space.Categorical method)

      
        	(syne_tune.config_space.Domain method)


        	(syne_tune.config_space.FiniteRange method)


        	(syne_tune.config_space.Integer method)


        	(syne_tune.config_space.OrdinalNearestNeighbor method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon.Block method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon.Parameter method)


      


      	cast_config_values() (in module syne_tune.config_space)


      	cast_int() (syne_tune.config_space.OrdinalNearestNeighbor method)


      	catchtime() (in module syne_tune.util)


      	Categorical (class in syne_tune.config_space)

      
        	(class in syne_tune.optimizer.schedulers.searchers.utils.default_arguments)


      


      	categories_int (syne_tune.config_space.OrdinalNearestNeighbor property)


      	CEIAcquisitionFunction (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl)


      	check_and_merge_defaults() (in module syne_tune.optimizer.schedulers.searchers.utils.default_arguments)


      	check_blackbox_local_files() (in module syne_tune.blackbox_repository.repository)


      	check_if_all_paremeters_present() (syne_tune.experiments.launchers.hpo_main_common.ConfigDict method)


      	check_initial_candidates_scorer() (in module syne_tune.optimizer.schedulers.searchers.model_based_searcher)


      	check_params() (syne_tune.experiments.MultiFidelityParameters method)

      
        	(syne_tune.experiments.visualization.plot_per_trial.MultiFidelityParameters method)


      


      	check_valid_sagemaker_name() (in module syne_tune.util)


      	checkpoint_model_at_rung_level() (in module syne_tune.utils)

      
        	(in module syne_tune.utils.checkpoint)


      


      	checkpoint_trial_id (syne_tune.optimizer.scheduler.TrialSuggestion attribute)


      	checkpoint_trial_path() (syne_tune.backend.local_backend.LocalBackend method)

      
        	(syne_tune.backend.LocalBackend method)


      


      	CheckType (class in syne_tune.optimizer.schedulers.searchers.utils.default_arguments)


      	choice() (in module syne_tune.config_space)


      	cholesky_computations() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_utils)


      	cholesky_factorization() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.custom_op)


      	cholesky_update() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_utils)


      	clean_requirements_file() (syne_tune.remote.remote_launcher.RemoteLauncher method)


      	cleanup_pending() (syne_tune.optimizer.schedulers.searchers.BaseSearcher method)

      
        	(syne_tune.optimizer.schedulers.searchers.botorch.botorch_searcher.BoTorchSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.botorch.BoTorchSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.dyhpo.dyhpo_searcher.DynamicHPOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.dyhpo.DynamicHPOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.gp_multifidelity_searcher.GPMultiFidelitySearcher method)


        	(syne_tune.optimizer.schedulers.searchers.GPMultiFidelitySearcher method)


        	(syne_tune.optimizer.schedulers.searchers.searcher.BaseSearcher method)


      


      	clear() (syne_tune.optimizer.schedulers.utils.simple_profiler.SimpleProfiler method)


      	clone_from_state() (syne_tune.optimizer.schedulers.multiobjective.multi_surrogate_multi_objective_searcher.MultiObjectiveMultiSurrogateSearcher method)

      
        	(syne_tune.optimizer.schedulers.multiobjective.MultiObjectiveMultiSurrogateSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.BaseSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.bore.Bore method)


        	(syne_tune.optimizer.schedulers.searchers.bore.bore.Bore method)


        	(syne_tune.optimizer.schedulers.searchers.botorch.botorch_searcher.BoTorchSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.botorch.BoTorchSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.constrained.constrained_gp_fifo_searcher.ConstrainedGPFIFOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.constrained.ConstrainedGPFIFOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.cost_aware.cost_aware_gp_fifo_searcher.CostAwareGPFIFOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.cost_aware.cost_aware_gp_multifidelity_searcher.CostAwareGPMultiFidelitySearcher method)


        	(syne_tune.optimizer.schedulers.searchers.cost_aware.CostAwareGPFIFOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.cost_aware.CostAwareGPMultiFidelitySearcher method)


        	(syne_tune.optimizer.schedulers.searchers.dyhpo.dyhpo_searcher.DynamicHPOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.dyhpo.DynamicHPOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.gp_fifo_searcher.GPFIFOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.gp_multifidelity_searcher.GPMultiFidelitySearcher method)


        	(syne_tune.optimizer.schedulers.searchers.GPFIFOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.GPMultiFidelitySearcher method)


        	(syne_tune.optimizer.schedulers.searchers.GridSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.kde.kde_searcher.KernelDensityEstimator method)


        	(syne_tune.optimizer.schedulers.searchers.kde.KernelDensityEstimator method)


        	(syne_tune.optimizer.schedulers.searchers.random_grid_searcher.GridSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.random_grid_searcher.RandomSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.RandomSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.regularized_evolution.RegularizedEvolution method)


        	(syne_tune.optimizer.schedulers.searchers.searcher.BaseSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.sklearn.sklearn_surrogate_searcher.SKLearnSurrogateSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.sklearn.SKLearnSurrogateSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.utils.exclusion_list.ExclusionList method)


        	(syne_tune.optimizer.schedulers.transfer_learning.quantile_based.quantile_based_searcher.QuantileBasedSurrogateSearcher method)


      


      	collect_params() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon.Block method)


      	Columns (class in syne_tune.blackbox_repository.blackbox_surrogate)


      	combine_requirements_txt() (in module syne_tune.experiments.launchers.utils)


      	ComparativeResults (class in syne_tune.experiments)

      
        	(class in syne_tune.experiments.visualization.plotting)


      


      	completed (syne_tune.backend.trial_status.Status attribute)


      	CompleteEvent (class in syne_tune.backend.simulator_backend.events)


      	compute_acq() (syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc.MeanStdAcquisitionFunction method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes.AcquisitionFunction method)


      


      	compute_acq_with_gradient() (syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc.MeanStdAcquisitionFunction method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes.AcquisitionFunction method)


      


      	compute_epsilon_net() (in module syne_tune.optimizer.schedulers.multiobjective.non_dominated_priority)


      	compute_hash_benchmark() (in module syne_tune.blackbox_repository.conversion_scripts.utils)


      	compute_hash_binary() (in module syne_tune.blackbox_repository.conversion_scripts.utils)


      	compute_iqm_bootstrap() (in module syne_tune.experiments.visualization.aggregate_results)


      	compute_mean_and_ci() (in module syne_tune.experiments.visualization.aggregate_results)


      	compute_median_percentiles() (in module syne_tune.experiments.visualization.aggregate_results)


      	compute_probabilities_of_getting_resumed() (in module syne_tune.callbacks.hyperband_remove_checkpoints_score)


      	config (syne_tune.backend.trial_status.Trial attribute)

      
        	(syne_tune.optimizer.scheduler.TrialSuggestion attribute)


        	(syne_tune.optimizer.schedulers.hyperband.TrialInformation attribute)


        	(syne_tune.optimizer.schedulers.searchers.regularized_evolution.PopulationElement attribute)


      


      	config_from_argparse() (in module syne_tune.experiments.launchers.hpo_main_common)


      	config_space (syne_tune.experiments.baselines.MethodArguments attribute)

      
        	(syne_tune.experiments.benchmark_definitions.common.RealBenchmarkDefinition attribute)


      


      	config_space_exhausted() (syne_tune.optimizer.schedulers.searchers.utils.exclusion_list.ExclusionList method)


      	config_space_for_sampling (syne_tune.optimizer.schedulers.searchers.utils.hp_ranges.HyperparameterRanges property)

      
        	(syne_tune.optimizer.schedulers.searchers.utils.HyperparameterRanges property)


      


      	config_space_from_json_dict() (in module syne_tune.config_space)


      	config_space_size() (in module syne_tune.config_space)


      	config_space_to_json_dict() (in module syne_tune.config_space)


      	config_to_match_string() (in module syne_tune.config_space)

      
        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges.HyperparameterRanges method)


        	(syne_tune.optimizer.schedulers.searchers.utils.HyperparameterRanges method)


      


      	config_to_tuple() (syne_tune.optimizer.schedulers.searchers.utils.hp_ranges.HyperparameterRanges method)

      
        	(syne_tune.optimizer.schedulers.searchers.utils.HyperparameterRanges method)


      


  

  	
      	ConfigDict (class in syne_tune.experiments.launchers.hpo_main_common)


      	configs_from_df() (in module syne_tune.optimizer.schedulers.searchers.botorch.botorch_transfer_searcher)


      	configuration_space (syne_tune.optimizer.schedulers.transfer_learning.TransferLearningTaskEvaluations attribute)


      	configuration_space_with_max_resource_attr() (syne_tune.blackbox_repository.blackbox.Blackbox method)


      	configure() (syne_tune.optimizer.schedulers.searchers.bracket_distribution.BracketDistribution method)

      
        	(syne_tune.optimizer.schedulers.searchers.bracket_distribution.DefaultHyperbandBracketDistribution method)


        	(syne_tune.optimizer.schedulers.searchers.hypertune.hypertune_bracket_distribution.HyperTuneBracketDistribution method)


      


      	configure_scheduler() (syne_tune.optimizer.schedulers.searchers.BaseSearcher method)

      
        	(syne_tune.optimizer.schedulers.searchers.BayesianOptimizationSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.estimator.Estimator method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_model.GaussProcEstimator method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.gpiss_model.GaussProcAdditiveEstimator method)


        	(syne_tune.optimizer.schedulers.searchers.bore.Bore method)


        	(syne_tune.optimizer.schedulers.searchers.bore.bore.Bore method)


        	(syne_tune.optimizer.schedulers.searchers.bore.multi_fidelity_bore.MultiFidelityBore method)


        	(syne_tune.optimizer.schedulers.searchers.bore.MultiFidelityBore method)


        	(syne_tune.optimizer.schedulers.searchers.botorch.botorch_searcher.BoTorchSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.botorch.BoTorchSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.dyhpo.dyhpo_searcher.DynamicHPOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.dyhpo.DynamicHPOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.gp_multifidelity_searcher.GPMultiFidelitySearcher method)


        	(syne_tune.optimizer.schedulers.searchers.GPMultiFidelitySearcher method)


        	(syne_tune.optimizer.schedulers.searchers.hypertune.hypertune_searcher.HyperTuneSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.hypertune.HyperTuneSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.kde.kde_searcher.KernelDensityEstimator method)


        	(syne_tune.optimizer.schedulers.searchers.kde.KernelDensityEstimator method)


        	(syne_tune.optimizer.schedulers.searchers.kde.multi_fidelity_kde_searcher.MultiFidelityKernelDensityEstimator method)


        	(syne_tune.optimizer.schedulers.searchers.kde.MultiFidelityKernelDensityEstimator method)


        	(syne_tune.optimizer.schedulers.searchers.model_based_searcher.BayesianOptimizationSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.random_grid_searcher.RandomSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.RandomSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.regularized_evolution.RegularizedEvolution method)


        	(syne_tune.optimizer.schedulers.searchers.searcher.BaseSearcher method)


      


      	ConstantPositiveVector (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers)


      	constrained_gp_fifo_searcher_defaults() (in module syne_tune.optimizer.schedulers.searchers.gp_searcher_factory)


      	constrained_gp_fifo_searcher_factory() (in module syne_tune.optimizer.schedulers.searchers.gp_searcher_factory)


      	ConstrainedBayesianOptimization (class in syne_tune.optimizer.baselines)


      	ConstrainedBayesianOptimization() (in module syne_tune.experiments.default_baselines)


      	ConstrainedGPFIFOSearcher (class in syne_tune.optimizer.schedulers.searchers.constrained)

      
        	(class in syne_tune.optimizer.schedulers.searchers.constrained.constrained_gp_fifo_searcher)


      


      	ConstraintCurrentBestProvider (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl)


      	contains() (syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components.DuplicateDetector method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components.DuplicateDetectorIdentical method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components.DuplicateDetectorNoDetection method)


        	(syne_tune.optimizer.schedulers.searchers.utils.exclusion_list.ExclusionList method)


      


      	CONTINUE (syne_tune.optimizer.scheduler.SchedulerDecision attribute)


      	conv_numeric_then_rest() (in module benchmarking.examples.benchmark_dehb.baselines)


      	convert_categorical_to_ordinal() (in module syne_tune.experiments.baselines)


      	convert_categorical_to_ordinal_numeric() (in module syne_tune.experiments.baselines)


      	convert_choice_domain() (in module syne_tune.utils.convert_domain)


      	convert_config_space() (syne_tune.optimizer.schedulers.ray_scheduler.RayTuneScheduler static method)

      
        	(syne_tune.optimizer.schedulers.RayTuneScheduler static method)


      


      	convert_dataset() (in module syne_tune.blackbox_repository.conversion_scripts.scripts.fcnet_import)

      
        	(in module syne_tune.blackbox_repository.conversion_scripts.scripts.nasbench201_import)


      


      	convert_domain() (in module syne_tune.utils.convert_domain)


      	convert_linear_to_log_domain() (in module syne_tune.utils.convert_domain)


      	convert_task() (in module syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench.lcbench)

      
        	(in module syne_tune.blackbox_repository.conversion_scripts.scripts.pd1_import)


      


      	convert_to_min (syne_tune.experiments.PlotParameters attribute)

      
        	(syne_tune.experiments.visualization.plotting.PlotParameters attribute)


      


      	copy() (syne_tune.optimizer.schedulers.searchers.utils.exclusion_list.ExclusionList method)


      	copy_checkpoint() (syne_tune.backend.local_backend.LocalBackend method)

      
        	(syne_tune.backend.LocalBackend method)


        	(syne_tune.backend.sagemaker_backend.sagemaker_backend.SageMakerBackend method)


        	(syne_tune.backend.SageMakerBackend method)


        	(syne_tune.backend.trial_backend.TrialBackend method)


      


      	cost (syne_tune.backend.trial_status.TrialResult property)

      
        	(syne_tune.tuning_status.TuningStatus property)


      


      	cost_aware_coarse_gp_fifo_searcher_factory() (in module syne_tune.optimizer.schedulers.searchers.gp_searcher_factory)


      	cost_aware_fine_gp_fifo_searcher_factory() (in module syne_tune.optimizer.schedulers.searchers.gp_searcher_factory)


      	cost_aware_gp_fifo_searcher_defaults() (in module syne_tune.optimizer.schedulers.searchers.gp_searcher_factory)


      	cost_aware_gp_multifidelity_searcher_defaults() (in module syne_tune.optimizer.schedulers.searchers.gp_searcher_factory)


      	cost_aware_gp_multifidelity_searcher_factory() (in module syne_tune.optimizer.schedulers.searchers.gp_searcher_factory)


      	cost_metric_name (syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.cost_model.CostModel property)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.linear_cost_model.LinearCostModel property)


      


      	cost_per_hour (syne_tune.backend.sagemaker_backend.instance_info.InstanceInfo attribute)


      	CostAwareGPFIFOSearcher (class in syne_tune.optimizer.schedulers.searchers.cost_aware)

      
        	(class in syne_tune.optimizer.schedulers.searchers.cost_aware.cost_aware_gp_fifo_searcher)


      


      	CostAwareGPMultiFidelitySearcher (class in syne_tune.optimizer.schedulers.searchers.cost_aware)

      
        	(class in syne_tune.optimizer.schedulers.searchers.cost_aware.cost_aware_gp_multifidelity_searcher)


      


      	CostEstimator (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost_fifo_model)


      	CostFixedResourcePredictor (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost_fifo_model)


      	CostModel (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.cost_model)


      	CostPromotionRungEntry (class in syne_tune.optimizer.schedulers.hyperband_cost_promotion)


      	CostPromotionRungSystem (class in syne_tune.optimizer.schedulers.hyperband_cost_promotion)


      	CostValue (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.cost_model)


      	CQR (class in syne_tune.optimizer.baselines)


      	create_base_gp_kernel_for_warmstarting() (in module syne_tune.optimizer.schedulers.searchers.utils.warmstarting)


      	create_callback_for_checkpoint_removal() (in module syne_tune.optimizer.schedulers.hyperband_checkpoint_removal)


      	create_encoding() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers)


      	create_exclusion_set() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects)


      	create_filter_observed_data_for_warmstarting() (in module syne_tune.optimizer.schedulers.searchers.utils.warmstarting)


      	create_gaussian_process_estimator() (in module syne_tune.optimizer.baselines)


      	create_hp_ranges_for_warmstarting() (in module syne_tune.optimizer.schedulers.searchers.utils.warmstarting)


      	create_index_for_result_files() (in module syne_tune.experiments.visualization.results_utils)


      	create_initial_candidates_scorer() (in module syne_tune.optimizer.schedulers.searchers.model_based_searcher)


      	create_lbfgs_arguments() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.optimization_utils)


      	create_likelihood() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.gp_model.HyperTuneIndependentGPModel method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.gp_model.HyperTuneJointGPModel method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.gpind_model.IndependentGPPerResourceModel method)


      


      	create_model() (syne_tune.backend.sagemaker_backend.custom_framework.CustomFramework method)


      	create_objects_for_tuner() (in module syne_tune.experiments.launchers.hpo_main_local)


      	create_tuning_job_state() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects)


      	creation_date() (syne_tune.experiments.experiment_result.ExperimentResult method)

      
        	(syne_tune.experiments.ExperimentResult method)


      


      	creation_time (syne_tune.backend.trial_status.Trial attribute)


      	CrossValidationKernelFunction (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel)

      
        	(class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.cross_validation)


      


      	CrossValidationMeanFunction (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel)

      
        	(class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.cross_validation)


      


      	cs_to_synetune() (in module syne_tune.blackbox_repository.conversion_scripts.scripts.yahpo_import)


      	current_best() (syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost_fifo_model.CostFixedResourcePredictor method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_base.BasePredictor method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes.Predictor method)


      


      	CurrentBestProvider (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc)


      	CustomFramework (class in syne_tune.backend.sagemaker_backend.custom_framework)


  





D


  	
      	data() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon.Parameter method)


      	data_precomputations() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.likelihood.GaussAdditiveMarginalLikelihood method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.posterior_state.GaussProcExpDecayPosteriorState static method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.posterior_state.GaussProcISSMPosteriorState static method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.likelihood.MarginalLikelihood method)


      


      	data_to_state() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy)


      	dataframe() (syne_tune.results_callback.StoreResultsCallback method)


      	dataset_name (syne_tune.experiments.benchmark_definitions.common.SurrogateBenchmarkDefinition attribute)


      	dataset_size() (syne_tune.optimizer.schedulers.searchers.BaseSearcher method)

      
        	(syne_tune.optimizer.schedulers.searchers.botorch.botorch_searcher.BoTorchSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.botorch.botorch_transfer_searcher.BoTorchTransferSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.botorch.BoTorchSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.dyhpo.dyhpo_searcher.DynamicHPOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.dyhpo.DynamicHPOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.model_based_searcher.ModelBasedSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.ModelBasedSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.searcher.BaseSearcher method)


      


      	datasets (syne_tune.experiments.benchmark_definitions.common.SurrogateBenchmarkDefinition attribute)


      	debug_log (syne_tune.optimizer.schedulers.searchers.BaseSearcher property)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.estimator.Estimator property)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_model.GaussProcEstimator property)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.gpiss_model.GaussProcAdditiveEstimator property)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm.BayesianOptimizationAlgorithm attribute)


        	(syne_tune.optimizer.schedulers.searchers.dyhpo.dyhpo_searcher.DynamicHPOSearcher property)


        	(syne_tune.optimizer.schedulers.searchers.dyhpo.DynamicHPOSearcher property)


        	(syne_tune.optimizer.schedulers.searchers.model_based_searcher.ModelBasedSearcher property)


        	(syne_tune.optimizer.schedulers.searchers.ModelBasedSearcher property)


        	(syne_tune.optimizer.schedulers.searchers.random_grid_searcher.RandomSearcher property)


        	(syne_tune.optimizer.schedulers.searchers.RandomSearcher property)


        	(syne_tune.optimizer.schedulers.searchers.searcher.BaseSearcher property)


      


      	debug_stats_message() (syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl.EIAcquisitionFunction method)


      	DebugLogPrinter (class in syne_tune.optimizer.schedulers.searchers.bayesopt.utils.debug_log)


      	decode() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.IdentityScalarEncoding method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.LogarithmScalarEncoding method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.PositiveScalarEncoding method)


      


      	decode_bool() (in module syne_tune.remote.remote_main)


      	decode_extended_features() (in module syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl)


      	decode_inputs() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy)


      	decode_resource_values() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.cross_validation)


      	decode_sagemaker_hyperparameter() (in module syne_tune.backend.sagemaker_backend.sagemaker_utils)


      	decode_state() (in module syne_tune.optimizer.schedulers.searchers.gp_searcher_utils)


      	decode_state_from_old_encoding() (in module syne_tune.optimizer.schedulers.searchers.gp_searcher_utils)


      	DeepARRecipe (class in syne_tune.blackbox_repository.conversion_scripts.scripts.icml2020_import)


      	default (syne_tune.experiments.launchers.hpo_main_common.Parameter attribute)


      	default_arguments() (in module syne_tune.experiments.baselines)


      	default_config() (in module syne_tune.backend.sagemaker_backend.sagemaker_utils)


      	default_gpmodel() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects)


      	default_gpmodel_mcmc() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects)


      	default_reference_point() (in module syne_tune.optimizer.schedulers.multiobjective.utils)


      	default_sagemaker_session() (in module syne_tune.backend.sagemaker_backend.sagemaker_utils)


      	default_sampler_cls (syne_tune.config_space.Categorical attribute)

      
        	(syne_tune.config_space.Domain attribute)


        	(syne_tune.config_space.Float attribute)


        	(syne_tune.config_space.Integer attribute)


      


      	DefaultHyperbandBracketDistribution (class in syne_tune.optimizer.schedulers.searchers.bracket_distribution)


      	DefaultRemoveCheckpointsSchedulerMixin (class in syne_tune.callbacks.remove_checkpoints_callback)


      	DEHB (benchmarking.examples.benchmark_dehb.baselines.Methods attribute)

      
        	(class in syne_tune.optimizer.baselines)


      


      	DEHB() (in module syne_tune.experiments.default_baselines)


      	DEHB_ORD (benchmarking.examples.benchmark_dehb.baselines.Methods attribute)


      	delay_complete_after_final_report (syne_tune.backend.simulator_backend.simulator_backend.SimulatorConfig attribute)


      	delay_complete_after_stop (syne_tune.backend.simulator_backend.simulator_backend.SimulatorConfig attribute)


      	delay_on_trial_result (syne_tune.backend.simulator_backend.simulator_backend.SimulatorConfig attribute)


      	delay_start (syne_tune.backend.simulator_backend.simulator_backend.SimulatorConfig attribute)


      	delay_stop (syne_tune.backend.simulator_backend.simulator_backend.SimulatorConfig attribute)


      	delete_checkpoint() (syne_tune.backend.local_backend.LocalBackend method)

      
        	(syne_tune.backend.LocalBackend method)


        	(syne_tune.backend.sagemaker_backend.sagemaker_backend.SageMakerBackend method)


        	(syne_tune.backend.SageMakerBackend method)


        	(syne_tune.backend.trial_backend.TrialBackend method)


      


      	deserialize() (in module syne_tune.blackbox_repository)

      
        	(in module syne_tune.blackbox_repository.blackbox_offline)


        	(in module syne_tune.blackbox_repository.blackbox_tabular)


        	(in module syne_tune.blackbox_repository.conversion_scripts.scripts.pd1_import)


      


      	deserialize_configspace() (in module syne_tune.blackbox_repository.serialize)


      	deserialize_metadata() (in module syne_tune.blackbox_repository.serialize)


      	diagonal() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils.KernelFunctionClampedResource method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base.KernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base.Matern52 method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.cross_validation.CrossValidationKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.CrossValidationKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.exponential_decay.ExponentialDecayResourcesKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.ExponentialDecayResourcesKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.fabolas.FabolasKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.FabolasKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.freeze_thaw.FreezeThawKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.FreezeThawKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.KernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.Matern52 method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.product_kernel.ProductKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.ProductKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.range_kernel.RangeKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.RangeKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.ExponentialDecayBaseKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.ZeroKernel method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.warping.WarpedKernel method)


      


  

  	
      	diagonal_depends_on_X() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils.KernelFunctionClampedResource method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base.KernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base.Matern52 method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.cross_validation.CrossValidationKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.CrossValidationKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.exponential_decay.ExponentialDecayResourcesKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.ExponentialDecayResourcesKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.fabolas.FabolasKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.FabolasKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.freeze_thaw.FreezeThawKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.FreezeThawKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.KernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.Matern52 method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.product_kernel.ProductKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.ProductKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.range_kernel.RangeKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.RangeKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.ExponentialDecayBaseKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.ZeroKernel method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.warping.WarpedKernel method)


      


      	dict_get() (in module syne_tune.util)


      	dictionarize_objective() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.common)


      	Dictionary (class in syne_tune.optimizer.schedulers.searchers.utils.default_arguments)


      	DifferentialEvolutionHyperbandBracket (class in syne_tune.optimizer.schedulers.synchronous.dehb_bracket)


      	DifferentialEvolutionHyperbandBracketManager (class in syne_tune.optimizer.schedulers.synchronous.dehb_bracket_manager)


      	DifferentialEvolutionHyperbandScheduler (class in syne_tune.optimizer.schedulers.synchronous)

      
        	(class in syne_tune.optimizer.schedulers.synchronous.dehb)


      


      	DifferentialevolutionOptimizer (class in syne_tune.optimizer.schedulers.searchers.bore.de)


      	dimension (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base.KernelFunction property)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.KernelFunction property)


      


      	distilbert_imdb_benchmark() (in module benchmarking.benchmark_definitions.distilbert_on_imdb)


      	Distribution (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.distribution)


      	does_mcmc() (syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_model.GaussProcPredictor method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.gpiss_model.GaussProcAdditivePredictor method)


      


      	does_pause_resume() (syne_tune.optimizer.schedulers.hyperband.HyperbandBracketManager static method)

      
        	(syne_tune.optimizer.schedulers.hyperband.HyperbandScheduler method)


        	(syne_tune.optimizer.schedulers.hyperband_promotion.PromotionRungSystem static method)


        	(syne_tune.optimizer.schedulers.hyperband_stopping.RungSystem static method)


        	(syne_tune.optimizer.schedulers.hyperband_stopping.StoppingRungSystem static method)


        	(syne_tune.optimizer.schedulers.HyperbandScheduler method)


      


      	Domain (class in syne_tune.config_space)


      	domain_str (syne_tune.config_space.Categorical property)

      
        	(syne_tune.config_space.Domain property)


        	(syne_tune.config_space.FiniteRange property)


        	(syne_tune.config_space.Float property)


        	(syne_tune.config_space.Integer property)


      


      	download() (in module syne_tune.blackbox_repository.conversion_scripts.scripts.icml2020_import)

      
        	(in module syne_tune.blackbox_repository.conversion_scripts.scripts.yahpo_import)


      


      	download_file() (in module syne_tune.blackbox_repository.conversion_scripts.utils)


      	download_result_files_from_s3() (in module syne_tune.experiments.visualization.results_utils)


      	download_sagemaker_results() (in module syne_tune.backend.sagemaker_backend.sagemaker_utils)


      	download_single_experiment() (in module syne_tune.experiments.experiment_result)


      	dpi (syne_tune.experiments.PlotParameters attribute)

      
        	(syne_tune.experiments.visualization.plotting.PlotParameters attribute)


      


      	drop_pending_evaluation() (syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_transformer.ModelStateTransformer method)


      	dtype (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon.Parameter property)


      	dump_json_with_numpy() (in module syne_tune.util)


      	duplicate_detector (syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm.BayesianOptimizationAlgorithm attribute)


      	DuplicateDetector (class in syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components)


      	DuplicateDetectorIdentical (class in syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components)


      	DuplicateDetectorNoDetection (class in syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components)


      	durations (syne_tune.optimizer.schedulers.utils.simple_profiler.ProfilingBlock attribute)


      	DYHPO (benchmarking.examples.benchmark_dyhpo.baselines.Methods attribute)


      	DyHPO (class in syne_tune.optimizer.baselines)


      	DyHPO() (in module syne_tune.experiments.default_baselines)


      	DyHPORungSystem (class in syne_tune.optimizer.schedulers.searchers.dyhpo.hyperband_dyhpo)


      	DynamicHPOSearcher (class in syne_tune.optimizer.schedulers.searchers.dyhpo)

      
        	(class in syne_tune.optimizer.schedulers.searchers.dyhpo.dyhpo_searcher)


      


  





E


  	
      	effective_random_seed() (in module syne_tune.experiments.launchers.utils)


      	EIAcquisitionFunction (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl)


      	EIpuAcquisitionFunction (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl)


      	elapsed_time_attr (syne_tune.experiments.benchmark_definitions.common.SurrogateBenchmarkDefinition attribute)


      	empty_state() (syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.tuning_job_state.TuningJobState static method)


      	encode_state() (in module syne_tune.optimizer.schedulers.searchers.gp_searcher_utils)


      	encode_unwrap_parameter() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers)


      	encoded_config (syne_tune.optimizer.schedulers.synchronous.dehb.TrialInformation attribute)


      	encoded_ranges (syne_tune.optimizer.schedulers.searchers.utils.hp_ranges.HyperparameterRanges property)

      
        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangesImpl property)


        	(syne_tune.optimizer.schedulers.searchers.utils.HyperparameterRanges property)


        	(syne_tune.optimizer.schedulers.searchers.utils.HyperparameterRangesImpl property)


      


      	enrich_results() (in module syne_tune.experiments.visualization.plotting)


      	ensemble_distribution (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.likelihood.HyperTuneIndependentGPMarginalLikelihood property)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.likelihood.HyperTuneJointGPMarginalLikelihood property)


      


      	entrypoint_name() (syne_tune.experiments.experiment_result.ExperimentResult method)

      
        	(syne_tune.experiments.ExperimentResult method)


      


      	entrypoint_path() (syne_tune.backend.local_backend.LocalBackend method)

      
        	(syne_tune.backend.LocalBackend method)


        	(syne_tune.backend.sagemaker_backend.sagemaker_backend.SageMakerBackend method)


        	(syne_tune.backend.SageMakerBackend method)


        	(syne_tune.backend.trial_backend.TrialBackend method)


      


      	ERR_MSG() (in module syne_tune.experiments.launchers.utils)


      	Estimator (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.estimator)


      	estimator (syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_transformer.ModelStateTransformer property)


      	estimator_for_rung() (syne_tune.callbacks.hyperband_remove_checkpoints_callback.HyperbandRemoveCheckpointsCallback method)


      	estimator_kwargs (syne_tune.experiments.benchmark_definitions.common.RealBenchmarkDefinition attribute)


      	eval_model() (in module syne_tune.optimizer.schedulers.transfer_learning.quantile_based.quantile_based_searcher)


      	eval_regularizer() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.ConstantPositiveVector method)


      	evaluate() (syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.Ackley method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.Branin method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.BraninWithR method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.SimpleQuadratic method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.ThreeHumpCamel method)


      


      	evaluate_blackbox() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy)


      	evaluation_failed() (syne_tune.optimizer.schedulers.searchers.BaseSearcher method)

      
        	(syne_tune.optimizer.schedulers.searchers.BayesianOptimizationSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.botorch.botorch_searcher.BoTorchSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.botorch.BoTorchSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.dyhpo.dyhpo_searcher.DynamicHPOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.dyhpo.DynamicHPOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.gp_multifidelity_searcher.GPMultiFidelitySearcher method)


        	(syne_tune.optimizer.schedulers.searchers.GPMultiFidelitySearcher method)


        	(syne_tune.optimizer.schedulers.searchers.model_based_searcher.BayesianOptimizationSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.searcher.BaseSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.searcher_base.StochasticAndFilterDuplicatesSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.StochasticAndFilterDuplicatesSearcher method)


      


  

  	
      	Event (class in syne_tune.backend.simulator_backend.events)


      	event_time() (syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.cost_model.CostModel static method)


      	evolve() (syne_tune.optimizer.schedulers.searchers.bore.de.DifferentialevolutionOptimizer method)


      	exclusion_candidates (syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm.BayesianOptimizationAlgorithm attribute)


      	ExclusionList (class in syne_tune.optimizer.schedulers.searchers.utils.exclusion_list)


      	ExclusionListFromState (class in syne_tune.optimizer.schedulers.searchers.utils.exclusion_list)


      	expand_base_arguments() (syne_tune.experiments.launchers.hpo_main_common.ConfigDict method)


      	expand_data() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy)


      	expand_fantasies() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_state.IncrementalUpdateGPPosteriorState method)


      	experiment_path() (in module syne_tune.util)


      	ExperimentResult (class in syne_tune.experiments)

      
        	(class in syne_tune.experiments.experiment_result)


      


      	Exploitation (class in syne_tune.optimizer.schedulers.neuralbands.networks)


      	ExponentialDecayBaseKernelFunction (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw)


      	ExponentialDecayResourcesKernelFunction (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel)

      
        	(class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.exponential_decay)


      


      	ExponentialDecayResourcesMeanFunction (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel)

      
        	(class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.exponential_decay)


      


      	extend_features_by_resource() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils.ExtendFeaturesByResourceMixin method)


      	ExtendedConfiguration (class in syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.config_ext)


      	ExtendedSlotInRung (class in syne_tune.optimizer.schedulers.synchronous.dehb)


      	ExtendFeaturesByResourceMixin (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils)


      	extra_metadata() (in module syne_tune.experiments.launchers.hpo_main_common)


      	extra_parameters() (syne_tune.experiments.launchers.hpo_main_common.ConfigDict method)


      	extra_results() (syne_tune.callbacks.hyperband_remove_checkpoints_callback.HyperbandRemoveCheckpointsCommon method)


      	extra_results_keys() (syne_tune.callbacks.hyperband_remove_checkpoints_callback.HyperbandRemoveCheckpointsCommon static method)


      	extract_input_output() (in module syne_tune.optimizer.schedulers.transfer_learning.quantile_based.quantile_based_searcher)


      	extract_random_seed() (in module syne_tune.optimizer.schedulers.searchers)

      
        	(in module syne_tune.optimizer.schedulers.searchers.searcher_base)


      


      	ExtraResultsComposer (class in syne_tune.results_callback)


  





F


  	
      	f_min (syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects.Quadratic3d property)


      	FabolasKernelFunction (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel)

      
        	(class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.fabolas)


      


      	failed (syne_tune.backend.trial_status.Status attribute)


      	fantasies (syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.common.FantasizedPendingEvaluation property)


      	FantasizedPendingEvaluation (class in syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.common)


      	fcnet_benchmark() (in module syne_tune.experiments.benchmark_definitions.fcnet)


      	fcnet_ordinal (syne_tune.experiments.baselines.MethodArguments attribute)


      	FCNETRecipe (class in syne_tune.blackbox_repository.conversion_scripts.scripts.fcnet_import)


      	feature_matrices() (syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.linear_cost_model.BiasOnlyLinearCostModel method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.linear_cost_model.LinearCostModel method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.linear_cost_model.MLPLinearCostModel method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.linear_cost_model.NASBench201LinearCostModel method)


      


      	features (syne_tune.optimizer.schedulers.searchers.bayesopt.models.estimator.TransformedData attribute)


      	fetch_status_results() (syne_tune.backend.simulator_backend.simulator_backend.SimulatorBackend method)

      
        	(syne_tune.backend.trial_backend.TrialBackend method)


      


      	fidelities (syne_tune.experiments.benchmark_definitions.common.SurrogateBenchmarkDefinition attribute)


      	fidelity_name() (syne_tune.blackbox_repository.blackbox.Blackbox method)


      	fidelity_values (syne_tune.blackbox_repository.blackbox.Blackbox property)

      
        	(syne_tune.blackbox_repository.blackbox_surrogate.BlackboxSurrogate property)


        	(syne_tune.blackbox_repository.blackbox_tabular.BlackboxTabular property)


        	(syne_tune.blackbox_repository.conversion_scripts.scripts.yahpo_import.BlackBoxYAHPO property)


      


      	FIFOScheduler (class in syne_tune.optimizer.schedulers)

      
        	(class in syne_tune.optimizer.schedulers.fifo)


      


      	file_md5() (in module syne_tune.backend.python_backend.python_backend)


      	fill_trajectory() (in module syne_tune.experiments.visualization.aggregate_results)


      	filter_by_key() (in module syne_tune.optimizer.schedulers.searchers.utils.default_arguments)


      	filter_final_row_per_trial() (in module syne_tune.experiments.visualization.plotting)


      	filter_for_last_pos_value() (syne_tune.optimizer.schedulers.searchers.utils.hp_ranges.HyperparameterRanges method)

      
        	(syne_tune.optimizer.schedulers.searchers.utils.HyperparameterRanges method)


      


      	filter_none() (in module syne_tune.experiments.launchers.utils)


      	filter_observed_data (syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_base.BasePredictor property)


      	filter_pending_evaluations() (syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_transformer.ModelStateTransformer method)


      	find_first_of_type() (in module syne_tune.util)


      	find_or_create_requirements_txt() (in module syne_tune.experiments.launchers.utils)


      	finetune_transformer_glue_all_benchmarks() (in module benchmarking.benchmark_definitions.finetune_transformer_glue)


      	finetune_transformer_glue_benchmark() (in module benchmarking.benchmark_definitions.finetune_transformer_glue)


      	finetune_transformer_swag_benchmark() (in module benchmarking.benchmark_definitions.finetune_transformer_swag)


      	FiniteRange (class in syne_tune.config_space)


      	finrange() (in module syne_tune.config_space)


      	fit() (syne_tune.blackbox_repository.blackbox_surrogate.Columns method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gp_model.GaussianProcessModel method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gp_model.GaussianProcessOptimizeModel method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gpr_mcmc.GPRegressionMCMC method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.gp_model.HyperTuneIndependentGPModel method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.gp_model.HyperTuneJointGPModel method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_transformer.ModelStateTransformer method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn.estimator.SKLearnEstimator method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn.SKLearnEstimator method)


        	(syne_tune.optimizer.schedulers.searchers.bore.mlp_classififer.MLP method)


      


      	fit_distributions() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.gp_model.HyperTuneModelMixin method)


      	fit_from_state() (syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost_fifo_model.CostEstimator method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.estimator.Estimator method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_model.GaussProcEstimator method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.gpiss_model.GaussProcAdditiveEstimator method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.sklearn_model.SKLearnEstimatorWrapper method)


      


      	fit_model() (in module syne_tune.optimizer.schedulers.transfer_learning.quantile_based.quantile_based_searcher)


      	fit_regressor() (syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.sklearn_cost_model.ScikitLearnCostModel static method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.sklearn_cost_model.UnivariateSplineCostModel static method)


      


      	fit_sagemaker_estimator() (in module syne_tune.experiments.launchers.launch_remote_common)


      	fit_surrogate() (syne_tune.blackbox_repository.blackbox_surrogate.BlackboxSurrogate method)


      	fit_to_regular_grid() (in module syne_tune.utils.convert_domain)


      	fixed_resource (syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost_fifo_model.CostEstimator property)


      	FixedLayersMLPCostModel (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.linear_cost_model)


      	FixedObjectivePriority (class in syne_tune.optimizer.schedulers.multiobjective.multiobjective_priority)


      	flatten_and_concat() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.custom_op)


      	Float (class in syne_tune.config_space)

      
        	(class in syne_tune.optimizer.schedulers.searchers.utils.default_arguments)


      


      	forward (syne_tune.optimizer.schedulers.searchers.gp_searcher_utils.MapReward attribute)


  

  	
      	forward() (syne_tune.optimizer.schedulers.neuralbands.networks.NetworkExploitation method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon.Block method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.ConstantPositiveVector method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils.KernelFunctionClampedResource method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils.MeanFunctionClampedResource method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.likelihood.IndependentGPPerResourceMarginalLikelihood method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base.Matern52 method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base.SquaredDistance method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.cross_validation.CrossValidationKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.cross_validation.CrossValidationMeanFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.CrossValidationKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.CrossValidationMeanFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.exponential_decay.ExponentialDecayResourcesKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.exponential_decay.ExponentialDecayResourcesMeanFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.ExponentialDecayResourcesKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.ExponentialDecayResourcesMeanFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.fabolas.FabolasKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.FabolasKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.freeze_thaw.FreezeThawKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.freeze_thaw.FreezeThawMeanFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.FreezeThawKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.FreezeThawMeanFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.Matern52 method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.product_kernel.ProductKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.ProductKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.range_kernel.RangeKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.RangeKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.ExponentialDecayBaseKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.ZeroKernel method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.ZeroMean method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.likelihood.GaussAdditiveMarginalLikelihood method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.likelihood.GaussianProcessMarginalLikelihood method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.likelihood.MarginalLikelihood method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.mean.ScalarMeanFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.mean.ZeroMeanFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.target_transform.BoxCoxTargetTransform method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.target_transform.IdentityTargetTransform method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.target_transform.ScalarTargetTransform method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.warping.WarpedKernel method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.warping.Warping method)


      


      	framework (syne_tune.experiments.benchmark_definitions.common.RealBenchmarkDefinition attribute)


      	FreezeThawKernelFunction (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel)

      
        	(class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.freeze_thaw)


      


      	FreezeThawMeanFunction (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel)

      
        	(class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.freeze_thaw)


      


      	from_argparse() (syne_tune.experiments.launchers.hpo_main_common.ConfigDict static method)


      	from_dict() (in module syne_tune.config_space)

      
        	(syne_tune.experiments.launchers.hpo_main_common.ConfigDict static method)


      


      	from_function() (in module syne_tune.blackbox_repository.blackbox)


      	from_internal() (syne_tune.optimizer.schedulers.searchers.utils.LinearScaling method)

      
        	(syne_tune.optimizer.schedulers.searchers.utils.LogScaling method)


        	(syne_tune.optimizer.schedulers.searchers.utils.ReverseLogScaling method)


        	(syne_tune.optimizer.schedulers.searchers.utils.scaling.LinearScaling method)


        	(syne_tune.optimizer.schedulers.searchers.utils.scaling.LogScaling method)


        	(syne_tune.optimizer.schedulers.searchers.utils.scaling.ReverseLogScaling method)


        	(syne_tune.optimizer.schedulers.searchers.utils.scaling.Scaling method)


      


      	from_ndarray() (syne_tune.optimizer.schedulers.searchers.utils.hp_ranges.HyperparameterRanges method)

      
        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRange method)


        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeCategoricalBinary method)


        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeCategoricalNonBinary method)


        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeContinuous method)


        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeFiniteRange method)


        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeInteger method)


        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeOrdinalEqual method)


        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeOrdinalNearestNeighbor method)


        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangesImpl method)


        	(syne_tune.optimizer.schedulers.searchers.utils.HyperparameterRanges method)


        	(syne_tune.optimizer.schedulers.searchers.utils.HyperparameterRangesImpl method)


      


      	from_string() (in module syne_tune.optimizer.schedulers.transfer_learning.quantile_based.normalization_transforms)


  





G


  	
      	Gamma (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.distribution)


      	GaussAdditiveMarginalLikelihood (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.likelihood)


      	GaussianProcessLearningCurveModel (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.gpiss_model)


      	GaussianProcessMarginalLikelihood (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.likelihood)


      	GaussianProcessModel (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gp_model)


      	GaussianProcessOptimizeModel (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gp_model)


      	GaussianProcessRegression (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gp_regression)


      	GaussianTransform (class in syne_tune.optimizer.schedulers.transfer_learning.quantile_based.normalization_transforms)


      	GaussProcAdditiveEstimator (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.gpiss_model)


      	GaussProcAdditivePosteriorState (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.posterior_state)


      	GaussProcAdditivePredictor (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.gpiss_model)


      	GaussProcEmpiricalBayesEstimator (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_model)


      	GaussProcEstimator (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_model)


      	GaussProcExpDecayPosteriorState (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.posterior_state)


      	GaussProcISSMPosteriorState (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.posterior_state)


      	GaussProcMCMCEstimator (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_mcmc_model)


      	GaussProcPosteriorState (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_state)


      	GaussProcPosteriorStateAndRungLevels (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils)


      	GaussProcPredictor (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_model)


      	gen_random_direction() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.slice)


      	generate() (syne_tune.blackbox_repository.conversion_scripts.blackbox_recipe.BlackboxRecipe method)


      	generate_candidates() (syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes.CandidateGenerator method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components.RandomFromSetCandidateGenerator method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components.RandomStatefulCandidateGenerator method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects.RepeatedCandidateGenerator method)


      


      	generate_candidates_en_bulk() (syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes.CandidateGenerator method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components.RandomFromSetCandidateGenerator method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components.RandomStatefulCandidateGenerator method)


      


      	generate_fcnet() (in module syne_tune.blackbox_repository.conversion_scripts.scripts.fcnet_import)


      	generate_random_seed() (in module syne_tune.optimizer.schedulers.random_seeds)


      	generate_unique_candidates() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components)


      	geometric() (syne_tune.optimizer.schedulers.synchronous.hyperband_rung_system.SynchronousHyperbandRungSystem static method)


      	GeometricDifferentialEvolutionHyperbandScheduler (class in syne_tune.optimizer.schedulers.synchronous)

      
        	(class in syne_tune.optimizer.schedulers.synchronous.hyperband_impl)


      


      	get() (syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.config_ext.ExtendedConfiguration method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon.ParameterDict method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.ConstantPositiveVector method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.IdentityScalarEncoding method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.LogarithmScalarEncoding method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.PositiveScalarEncoding method)


      


      	get_alpha() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.model_params.IndependentISSModelParameters method)


      	get_batch_configs() (syne_tune.optimizer.schedulers.searchers.BayesianOptimizationSearcher method)

      
        	(syne_tune.optimizer.schedulers.searchers.model_based_searcher.BayesianOptimizationSearcher method)


      


      	get_benchmark() (in module syne_tune.experiments.launchers.hpo_main_local)


      	get_beta() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.model_params.IndependentISSModelParameters method)


      	get_box_constraints_internal() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.ConstantPositiveVector method)


      	get_boxcox_lambda() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.target_transform.BoxCoxTargetTransform method)


      	get_config() (syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench.api.Benchmark method)

      
        	(syne_tune.optimizer.schedulers.multiobjective.nsga2_searcher.NSGA2Searcher method)


        	(syne_tune.optimizer.schedulers.multiobjective.NSGA2Searcher method)


        	(syne_tune.optimizer.schedulers.searchers.BaseSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.dyhpo.dyhpo_searcher.DynamicHPOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.dyhpo.DynamicHPOSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.GridSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.model_based_searcher.ModelBasedSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.ModelBasedSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.random_grid_searcher.GridSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.regularized_evolution.RegularizedEvolution method)


        	(syne_tune.optimizer.schedulers.searchers.searcher.BaseSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.searcher_base.StochasticAndFilterDuplicatesSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.StochasticAndFilterDuplicatesSearcher method)


        	(syne_tune.optimizer.schedulers.transfer_learning.quantile_based.quantile_based_searcher.QuantileBasedSurrogateSearcher method)


        	(syne_tune.optimizer.schedulers.transfer_learning.zero_shot.ZeroShotTransfer method)


      


      	get_cost_model_for_batch_size() (in module benchmarking.utils)

      
        	(in module benchmarking.utils.get_cost_model)


      


      	get_covariance_scale() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.likelihood.IndependentGPPerResourceMarginalLikelihood method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base.Matern52 method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.Matern52 method)


      


      	get_dataframe() (syne_tune.tuning_status.TuningStatus method)


      	get_dataset_names() (syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench.api.Benchmark method)


      	get_execution_role() (in module syne_tune.backend.sagemaker_backend.sagemaker_utils)


      	get_expected_hidden_layer_width() (syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.linear_cost_model.FixedLayersMLPCostModel static method)


      	get_first_milestone() (syne_tune.optimizer.schedulers.hyperband_stopping.RungSystem method)


      	get_gamma() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.model_params.ISSModelParameters method)


      	get_hyperparameters() (in module syne_tune.experiments.launchers.launch_remote_simulator)


      	get_issm_params() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.model_params.IndependentISSModelParameters method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.model_params.ISSModelParameters method)


      


      	get_log() (in module syne_tune.backend.sagemaker_backend.sagemaker_utils)


      	get_master_random_seed() (in module syne_tune.experiments.launchers.utils)


      	get_mean_value() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.mean.ScalarMeanFunction method)


      	get_metadata() (in module syne_tune.experiments)

      
        	(in module syne_tune.experiments.experiment_result)


        	(in module syne_tune.experiments.launchers.hpo_main_common)


      


      	get_metric_names() (syne_tune.remote.remote_metrics_callback.RemoteTuningMetricsCallback static method)


      	get_milestones() (syne_tune.optimizer.schedulers.hyperband_stopping.RungSystem method)


      	get_ndarray_bounds() (syne_tune.optimizer.schedulers.searchers.utils.hp_ranges.HyperparameterRanges method)

      
        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRange method)


        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeCategoricalBinary method)


        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeCategoricalNonBinary method)


        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeContinuous method)


        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeFiniteRange method)


        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeInteger method)


        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeOrdinalEqual method)


        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeOrdinalNearestNeighbor method)


        	(syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangesImpl method)


        	(syne_tune.optimizer.schedulers.searchers.utils.HyperparameterRanges method)


        	(syne_tune.optimizer.schedulers.searchers.utils.HyperparameterRangesImpl method)


      


      	get_noise_variance() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.likelihood.IndependentGPPerResourceMarginalLikelihood method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.likelihood.GaussAdditiveMarginalLikelihood method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.likelihood.GaussianProcessMarginalLikelihood method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.likelihood.MarginalLikelihood method)


      


      	get_num_gpus() (in module syne_tune.num_gpu)


      	get_number_of_configs() (syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench.api.Benchmark method)


      	get_openml_task_ids() (syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench.api.Benchmark method)


      	get_parameters() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.ConstantPositiveVector method)


      	get_params() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gp_model.GaussianProcessOptimizeModel method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils.KernelFunctionClampedResource method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils.MeanFunctionClampedResource method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.likelihood.IndependentGPPerResourceMarginalLikelihood method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base.Matern52 method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base.SquaredDistance method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.cross_validation.CrossValidationKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.cross_validation.CrossValidationMeanFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.CrossValidationKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.CrossValidationMeanFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.exponential_decay.ExponentialDecayResourcesKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.exponential_decay.ExponentialDecayResourcesMeanFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.ExponentialDecayResourcesKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.ExponentialDecayResourcesMeanFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.fabolas.FabolasKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.FabolasKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.freeze_thaw.FreezeThawKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.freeze_thaw.FreezeThawMeanFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.FreezeThawKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.FreezeThawMeanFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.Matern52 method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.product_kernel.ProductKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.ProductKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.range_kernel.RangeKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.RangeKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.ExponentialDecayBaseKernelFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.ZeroKernel method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.ZeroMean method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.likelihood.GaussAdditiveMarginalLikelihood method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.model_params.IndependentISSModelParameters method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.model_params.ISSModelParameters method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.likelihood.GaussianProcessMarginalLikelihood method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.likelihood.MarginalLikelihood method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.mean.MeanFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.mean.ScalarMeanFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.mean.ZeroMeanFunction method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.target_transform.BoxCoxTargetTransform method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.target_transform.IdentityTargetTransform method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.warping.WarpedKernel method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.warping.Warping method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost_fifo_model.CostEstimator method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.estimator.Estimator method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_mcmc_model.GaussProcMCMCEstimator method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_model.GaussProcEmpiricalBayesEstimator method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.gpiss_model.GaussProcAdditiveEstimator method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_transformer.ModelStateTransformer method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.models.sklearn_model.SKLearnEstimatorWrapper method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn.estimator.SKLearnEstimator method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn.SKLearnEstimator method)


      


  

  	
      	get_pareto_optimal() (in module syne_tune.experiments.visualization.pareto_set)


      	get_pareto_set() (in module syne_tune.experiments.visualization.pareto_set)


      	get_posterior_state() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.likelihood.HyperTuneIndependentGPMarginalLikelihood method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.likelihood.HyperTuneJointGPMarginalLikelihood method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.likelihood.IndependentGPPerResourceMarginalLikelihood method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.likelihood.GaussAdditiveMarginalLikelihood method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.likelihood.GaussianProcessMarginalLikelihood method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.likelihood.MarginalLikelihood method)


      


      	get_quantiles() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl)


      	get_queriable_tags() (syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench.api.Benchmark method)


      	get_resource() (syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.config_ext.ExtendedConfiguration method)
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        	(syne_tune.config_space.OrdinalNearestNeighbor method)


        	(syne_tune.config_space.Quantized method)
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        	(in module syne_tune.optimizer.schedulers.searchers.utils.scaling)


      


      	get_source_dir() (syne_tune.remote.remote_launcher.RemoteLauncher method)


      	get_state() (syne_tune.optimizer.schedulers.searchers.BaseSearcher method)

      
        	(syne_tune.optimizer.schedulers.searchers.dyhpo.dyhpo_searcher.DynamicHPOSearcher method)
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        	(syne_tune.optimizer.schedulers.searchers.StochasticAndFilterDuplicatesSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.StochasticSearcher method)


        	(syne_tune.optimizer.schedulers.searchers.utils.exclusion_list.ExclusionList method)


      


      	get_sub_directory_and_name() (in module syne_tune.blackbox_repository.conversion_scripts.utils)


      	get_top_list() (in module syne_tune.optimizer.schedulers.synchronous.hyperband_bracket)


      	get_transfer_learning_evaluations() (in module syne_tune.experiments.launchers.hpo_main_simulator)


      	gp_fifo_searcher_defaults() (in module syne_tune.optimizer.schedulers.searchers.gp_searcher_factory)


      	gp_fifo_searcher_factory() (in module syne_tune.optimizer.schedulers.searchers.gp_searcher_factory)


      	gp_multifidelity_searcher_defaults() (in module syne_tune.optimizer.schedulers.searchers.gp_searcher_factory)
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        	(class in syne_tune.optimizer.schedulers.searchers.gp_fifo_searcher)


      


      	gpmodel (syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_model.GaussProcEstimator property)
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      	grace_condition() (syne_tune.optimizer.schedulers.median_stopping_rule.MedianStoppingRule method)
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      	grad() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon.Parameter method)


      	grad_req (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon.Parameter property)


      	gradient (syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc.HeadWithGradient attribute)


      	greedy_batch_selection (syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm.BayesianOptimizationAlgorithm attribute)


      	Grid (class in syne_tune.config_space)


      	grid (syne_tune.experiments.PlotParameters attribute)
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        	(syne_tune.blackbox_repository.blackbox_surrogate.BlackboxSurrogate method)
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      	HyperparameterRangeContinuous (class in syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl)
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      	HyperparameterRangeInteger (class in syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl)


      	HyperparameterRangeOrdinalEqual (class in syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl)


  

  	
      	HyperparameterRangeOrdinalNearestNeighbor (class in syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl)
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      	hypertune_bracket_distribution() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.gp_model.HyperTuneModelMixin method)


      	hypertune_ensemble_distribution() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.gp_model.HyperTuneIndependentGPModel method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.gp_model.HyperTuneJointGPModel method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.gp_model.HyperTuneModelMixin method)
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      	HYPERTUNE_JOINT (benchmarking.examples.benchmark_hypertune.baselines.Methods attribute)
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      	HyperTuneIndependentGPModel (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.gp_model)
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      	IdentityTargetTransform (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.target_transform)
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      	IndependentISSModelParameters (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.model_params)


      	IndependentThompsonSampling (class in syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components)


      	information_for_rungs() (syne_tune.optimizer.schedulers.hyperband.HyperbandBracketManager method)

      
        	(syne_tune.optimizer.schedulers.hyperband_stopping.RungSystem method)


      


      	initial_candidates_generator (syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm.BayesianOptimizationAlgorithm attribute)
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      	initialize() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon.Block method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon.Parameter method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon.ParameterDict method)


      


      	initialize_sagemaker_session() (syne_tune.backend.sagemaker_backend.sagemaker_backend.SageMakerBackend method)

      
        	(syne_tune.backend.SageMakerBackend method)


      


      	instance_sagemaker_estimator() (in module syne_tune.remote.estimators)


      	instance_type (syne_tune.experiments.benchmark_definitions.common.RealBenchmarkDefinition attribute)


      	InstanceInfo (class in syne_tune.backend.sagemaker_backend.instance_info)


      	InstanceInfos (class in syne_tune.backend.sagemaker_backend.instance_info)


      	instances (syne_tune.blackbox_repository.conversion_scripts.scripts.yahpo_import.BlackBoxYAHPO property)


      	instantiate_yahpo() (in module syne_tune.blackbox_repository.conversion_scripts.scripts.yahpo_import)


      	Integer (class in syne_tune.config_space)

      
        	(class in syne_tune.optimizer.schedulers.searchers.utils.default_arguments)


      


      	IntegerOrNone (class in syne_tune.optimizer.schedulers.searchers.utils.default_arguments)


      	internal_keys (syne_tune.optimizer.schedulers.searchers.utils.hp_ranges.HyperparameterRanges property)

      
        	(syne_tune.optimizer.schedulers.searchers.utils.HyperparameterRanges property)


      


      	inverse() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.target_transform.BoxCoxTargetTransform method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.target_transform.IdentityTargetTransform method)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.target_transform.ScalarTargetTransform method)


      


  

  	
      	is_attribute_fixed() (syne_tune.optimizer.schedulers.searchers.utils.hp_ranges.HyperparameterRanges method)

      
        	(syne_tune.optimizer.schedulers.searchers.utils.HyperparameterRanges method)


      


      	is_bracket_complete() (syne_tune.optimizer.schedulers.synchronous.hyperband_bracket.SynchronousBracket method)


      	is_continue_decision() (in module syne_tune.optimizer.schedulers.hyperband)

      
        	(in module syne_tune.optimizer.schedulers.neuralbands.neuralband)


        	(in module syne_tune.optimizer.schedulers.neuralbands.neuralband_supplement)


      


      	is_dict_of_dict() (in module syne_tune.experiments.launchers.hpo_main_simulator)


      	is_function() (syne_tune.config_space.Domain method)


      	is_grid() (syne_tune.config_space.Domain method)


      	is_increasing() (in module syne_tune.util)


      	is_integer() (in module syne_tune.util)


      	is_labeled() (syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.tuning_job_state.TuningJobState method)


      	is_lambda() (syne_tune.remote.remote_launcher.RemoteLauncher method)


      	is_log_space() (in module syne_tune.config_space)


      	is_multiobjective_scheduler() (syne_tune.optimizer.scheduler.TrialScheduler method)

      
        	(syne_tune.optimizer.schedulers.fifo.FIFOScheduler method)


        	(syne_tune.optimizer.schedulers.FIFOScheduler method)


        	(syne_tune.optimizer.schedulers.multiobjective.linear_scalarizer.LinearScalarizedScheduler method)


        	(syne_tune.optimizer.schedulers.multiobjective.LinearScalarizedScheduler method)


        	(syne_tune.optimizer.schedulers.multiobjective.MOASHA method)


        	(syne_tune.optimizer.schedulers.multiobjective.moasha.MOASHA method)


      


      	is_pending() (syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.tuning_job_state.TuningJobState method)


      	is_positive_integer() (in module syne_tune.util)


      	is_reverse_log_space() (in module syne_tune.config_space)


      	is_source_dir_specified() (syne_tune.remote.remote_launcher.RemoteLauncher method)


      	is_uniform_space() (in module syne_tune.config_space)


      	is_valid() (syne_tune.config_space.Categorical method)

      
        	(syne_tune.config_space.Domain method)


        	(syne_tune.config_space.Float method)


        	(syne_tune.config_space.Integer method)


      


      	issm_likelihood_computations() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm)


      	issm_likelihood_precomputations() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm)


      	issm_likelihood_slow_computations() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm)


      	ISSModelParameters (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.model_params)


      	items() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon.ParameterDict method)
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      	KDE (class in syne_tune.optimizer.baselines)


      	KDE() (in module syne_tune.experiments.default_baselines)


      	keep_case (syne_tune.optimizer.schedulers.hyperband.TrialInformation attribute)


      	kernel_with_warping() (in module syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.warping)


      	KernelDensityEstimator (class in syne_tune.optimizer.schedulers.searchers.kde)

      
        	(class in syne_tune.optimizer.schedulers.searchers.kde.kde_searcher)


      


      	KernelFunction (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel)

      
        	(class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base)


      


  

  	
      	KernelFunctionClampedResource (class in syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils)


      	keys() (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon.ParameterDict method)

      
        	(syne_tune.results_callback.ExtraResultsComposer method)


      


      	keys_predict() (syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost_fifo_model.CostFixedResourcePredictor static method)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes.Predictor method)


      


      	kwargs (syne_tune.experiments.SubplotParameters attribute)

      
        	(syne_tune.experiments.visualization.plotting.SubplotParameters attribute)
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      	label_trial() (syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_transformer.ModelStateTransformer method)


      	largest_update_resource (syne_tune.optimizer.schedulers.hyperband.TrialInformation attribute)


      	last_checkpoint (syne_tune.optimizer.schedulers.pbt.PBTTrialState attribute)


      	last_perturbation_time (syne_tune.optimizer.schedulers.pbt.PBTTrialState attribute)


      	last_score (syne_tune.optimizer.schedulers.pbt.PBTTrialState attribute)


      	LATEST_VERSION (syne_tune.backend.sagemaker_backend.custom_framework.CustomFramework attribute)


      	launch_remote() (in module syne_tune.experiments.launchers.launch_remote_simulator)


      	launch_remote_experiments_simulator() (in module syne_tune.experiments.launchers.launch_remote_simulator)


      	launch_tuning_job_on_sagemaker() (syne_tune.remote.remote_launcher.RemoteLauncher method)


      	lbfgs_maxiter (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.constants.OptimizationConfig attribute)


      	lbfgs_tol (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.constants.OptimizationConfig attribute)


      	LBFGSOptimizeAcquisition (class in syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components)


      	LCBAcquisitionFunction (class in syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl)


      	lcbench_benchmark() (in module syne_tune.experiments.benchmark_definitions.lcbench)


      	LCBenchRecipe (class in syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench.lcbench)


      	legend_no (syne_tune.experiments.SubplotParameters attribute)

      
        	(syne_tune.experiments.visualization.plotting.SubplotParameters attribute)


      


      	level (syne_tune.callbacks.hyperband_remove_checkpoints_callback.TrialInformation attribute)

      
        	(syne_tune.optimizer.schedulers.synchronous.dehb.TrialInformation attribute)


        	(syne_tune.optimizer.schedulers.synchronous.hyperband_bracket.SlotInRung attribute)


      


      	level_to_prev_level() (syne_tune.optimizer.schedulers.synchronous.hyperband_bracket_manager.SynchronousHyperbandBracketManager method)


      	likelihood (syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gp_model.GaussianProcessOptimizeModel property)

      
        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gp_regression.GaussianProcessRegression property)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.gpind_model.IndependentGPPerResourceModel property)


        	(syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.gpiss_model.GaussianProcessLearningCurveModel property)
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ResNet-18 Trained on CIFAR-10


benchmarking/training_scripts/resnet_cifar10/resnet_cifar10.py

import os
import argparse
import logging
import time
from pathlib import Path

try:
    # Benchmark-specific imports are done here, in order to avoid import
    # errors if the dependencies are not installed (such errors should happen
    # only when the code is really called)
    from filelock import SoftFileLock, Timeout
    import numpy as np
    from tqdm import tqdm
    import torch
    import torch.nn.functional as F
    from torch.utils.data.sampler import SubsetRandomSampler
    from torchvision import datasets, transforms
    from torchvision.models import resnet18
except ImportError:
    logging.info(
        f"Please install benchmark-specific dependencies ({Path(__file__).parent / 'requirements.txt'})"
    )

from syne_tune import Reporter
from syne_tune.config_space import randint, uniform, loguniform, add_to_argparse
from syne_tune.utils import (
    resume_from_checkpointed_model,
    checkpoint_model_at_rung_level,
    add_checkpointing_to_argparse,
    pytorch_load_save_functions,
)


BATCH_SIZE_LOWER = 8

BATCH_SIZE_UPPER = 256

BATCH_SIZE_KEY = "batch_size"

METRIC_NAME = "objective"

RESOURCE_ATTR = "epoch"

MAX_RESOURCE_ATTR = "epochs"

ELAPSED_TIME_ATTR = "elapsed_time"


_config_space = {
    BATCH_SIZE_KEY: randint(BATCH_SIZE_LOWER, BATCH_SIZE_UPPER),
    "momentum": uniform(0, 0.99),
    "weight_decay": loguniform(1e-5, 1e-3),
    "lr": loguniform(1e-3, 0.1),
}


# ATTENTION: train_dataset, valid_dataset are both based on the CIFAR10
# training set, but train_dataset uses data augmentation. Make sure to
# only use disjoint parts for training and validation further down.
def get_CIFAR10(root):
    input_size = 32
    num_classes = 10
    normalize = [(0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)]
    train_transform = transforms.Compose(
        [
            transforms.RandomCrop(32, padding=4),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize(*normalize),
        ]
    )
    local_path = os.path.join(root, "CIFAR10")
    train_dataset = datasets.CIFAR10(
        local_path, train=True, transform=train_transform, download=True
    )

    valid_transform = transforms.Compose(
        [
            transforms.ToTensor(),
            transforms.Normalize(*normalize),
        ]
    )
    valid_dataset = datasets.CIFAR10(
        local_path, train=True, transform=valid_transform, download=True
    )

    return input_size, num_classes, train_dataset, valid_dataset


def train(model, train_loader, optimizer):
    model.train()
    total_loss = []
    for data, target in tqdm(train_loader):
        if torch.cuda.is_available():
            data = data.cuda()
            target = target.cuda()
        optimizer.zero_grad()
        prediction = model(data)
        loss = F.nll_loss(prediction, target)
        loss.backward()
        optimizer.step()
        total_loss.append(loss.item())
    avg_loss = sum(total_loss) / len(total_loss)


def valid(model, valid_loader):
    model.eval()
    loss = 0
    correct = 0
    for data, target in valid_loader:
        with torch.no_grad():
            if torch.cuda.is_available():
                data = data.cuda()
                target = target.cuda()
            prediction = model(data)
            loss += F.nll_loss(prediction, target, reduction="sum")
            prediction = prediction.max(1)[1]
            correct += prediction.eq(target.view_as(prediction)).sum().item()
    n_valid = len(valid_loader.sampler)
    loss /= n_valid
    valid_error = correct / n_valid
    return loss, valid_error


def _download_data(config):
    path = config["dataset_path"]
    os.makedirs(path, exist_ok=True)
    # Lock protection is needed for backends which run multiple worker
    # processes on the same instance
    lock_path = os.path.join(path, "lock")
    lock = SoftFileLock(lock_path)
    try:
        with lock.acquire(timeout=120, poll_intervall=1):
            input_size, num_classes, train_dataset, valid_dataset = get_CIFAR10(
                root=path
            )
    except Timeout:
        print(
            "WARNING: Could not obtain lock for dataset files. Trying anyway...",
            flush=True,
        )
        input_size, num_classes, train_dataset, valid_dataset = get_CIFAR10(root=path)
    return input_size, num_classes, train_dataset, valid_dataset


def _create_data_loaders(config, train_dataset, valid_dataset):
    indices = list(range(train_dataset.data.shape[0]))
    train_idx, valid_idx = indices[:40000], indices[40000:]
    train_sampler = SubsetRandomSampler(train_idx)
    valid_sampler = SubsetRandomSampler(valid_idx)
    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=config[BATCH_SIZE_KEY],
        # shuffle=True,
        num_workers=0,
        sampler=train_sampler,
        pin_memory=True,
    )
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=128,
        # shuffle=False,
        num_workers=0,
        sampler=valid_sampler,
        pin_memory=True,
    )
    return train_loader, valid_loader


def _create_training_objects(config):
    model = Model()
    if torch.cuda.is_available():
        model = model.cuda()
        device = torch.device("cuda")
        model = torch.nn.DataParallel(
            model, device_ids=[i for i in range(config["num_gpus"])]
        ).to(device)
    milestones = [25, 40]
    optimizer = torch.optim.SGD(
        model.parameters(),
        lr=config["lr"],
        momentum=config["momentum"],
        weight_decay=config["weight_decay"],
    )
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer, milestones=milestones, gamma=0.1
    )
    return model, optimizer, scheduler


def objective(config):
    torch.manual_seed(np.random.randint(10000))
    # Download data, setup data loaders
    input_size, num_classes, train_dataset, valid_dataset = _download_data(config)
    train_loader, valid_loader = _create_data_loaders(
        config, train_dataset, valid_dataset
    )
    # Do not want to count the time to download the dataset, which can be
    # substantial the first time
    ts_start = time.time()
    report = Reporter()
    # Create model, optimizer, LR scheduler
    model, optimizer, scheduler = _create_training_objects(config)
    # Checkpointing for PyTorch model
    load_model_fn, save_model_fn = pytorch_load_save_functions(
        {"model": model, "optimizer": optimizer, "lr_scheduler": scheduler}
    )
    # Resume from checkpoint (optional)
    resume_from = resume_from_checkpointed_model(config, load_model_fn)

    for epoch in range(resume_from + 1, config[MAX_RESOURCE_ATTR] + 1):
        train(model, train_loader, optimizer)
        scheduler.step()
        elapsed_time = time.time() - ts_start
        # Write checkpoint (optional)
        checkpoint_model_at_rung_level(config, save_model_fn, epoch)
        # Evaluate and send metrics back to Syne Tune
        _, valid_error = valid(model, valid_loader)
        report(
            **{
                RESOURCE_ATTR: epoch,
                METRIC_NAME: valid_error,
                ELAPSED_TIME_ATTR: elapsed_time,
            }
        )


if __name__ == "__main__":
    # Superclass reference torch.nn.Module requires torch to be defined
    class Model(torch.nn.Module):
        def __init__(self):
            super().__init__()
            self.resnet = resnet18(pretrained=False, num_classes=10)
            self.resnet.conv1 = torch.nn.Conv2d(
                3, 64, kernel_size=3, stride=1, padding=1, bias=False
            )
            self.resnet.maxpool = torch.nn.Identity()

        def forward(self, x):
            x = self.resnet(x)
            x = F.log_softmax(x, dim=1)
            return x

    root = logging.getLogger()
    root.setLevel(logging.INFO)

    parser = argparse.ArgumentParser()
    parser.add_argument(f"--{MAX_RESOURCE_ATTR}", type=int, required=True)
    parser.add_argument("--dataset_path", type=str, required=True)
    parser.add_argument("--num_gpus", type=int, default=1)
    add_to_argparse(parser, _config_space)
    add_checkpointing_to_argparse(parser)

    args, _ = parser.parse_known_args()

    objective(config=vars(args))









Transformer Trained on WikiText-2


benchmarking/training_scripts/transformer_wikitext2/training_script.py

import argparse
import os
import logging
import math
from pathlib import Path
import time

try:
    # Benchmark-specific imports are done here, in order to avoid import
    # errors if the dependencies are not installed (such errors should happen
    # only when the code is really called)
    import numpy as np
    from filelock import SoftFileLock, Timeout
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
except ImportError:
    logging.info(
        f"Please install benchmark-specific dependencies ({Path(__file__).parent / 'requirements.txt'})"
    )
try:
    from apex import amp
except ImportError:
    print("Failed to import apex. You can still train with --precision {float|double}.")

from syne_tune.report import Reporter
from syne_tune.config_space import randint, uniform, loguniform, add_to_argparse
from syne_tune.utils import (
    resume_from_checkpointed_model,
    checkpoint_model_at_rung_level,
    add_checkpointing_to_argparse,
    pytorch_load_save_functions,
)


BATCH_SIZE_LOWER = 16

BATCH_SIZE_UPPER = 48

BATCH_SIZE_KEY = "batch_size"

METRIC_NAME = "val_loss"

RESOURCE_ATTR = "epoch"

MAX_RESOURCE_ATTR = "epochs"

ELAPSED_TIME_ATTR = "elapsed_time"


_config_space = {
    "lr": loguniform(1e-6, 1e-3),
    "dropout": uniform(0, 0.99),
    BATCH_SIZE_KEY: randint(BATCH_SIZE_LOWER, BATCH_SIZE_UPPER),
    "momentum": uniform(0, 0.99),
    "clip": uniform(0, 1),
}


DATASET_PATH = "https://raw.githubusercontent.com/pytorch/examples/master/word_language_model/data/wikitext-2/"


def download_wikitext2_dataset(root):
    import urllib

    path = os.path.join(root, "wikitext-2")
    for fname in ("train.txt", "valid.txt", "test.txt"):
        fh = os.path.join(path, fname)
        if not os.path.exists(fh):
            os.makedirs(path, exist_ok=True)
            urllib.request.urlretrieve(DATASET_PATH + fname, fh)


class Dictionary(object):
    def __init__(self):
        self.word2idx = {}
        self.idx2word = []

    def add_word(self, word):
        if word not in self.word2idx:
            self.idx2word.append(word)
            self.word2idx[word] = len(self.idx2word) - 1
        return self.word2idx[word]

    def __len__(self):
        return len(self.idx2word)


class Corpus(object):
    def __init__(self, path):
        self.dictionary = Dictionary()
        self.train = None
        self.valid = None
        self.test = None
        if not self.load_cache(path):
            self.train = self.tokenize(os.path.join(path, "train.txt"))
            self.valid = self.tokenize(os.path.join(path, "valid.txt"))
            self.test = self.tokenize(os.path.join(path, "test.txt"))
            self.save_cache(path)

    def load_cache(self, path):
        for cache in ["dict.pt", "train.pt", "valid.pt", "test.pt"]:
            cache_path = os.path.join(path, cache)
            if not os.path.exists(cache_path):
                return False
        self.dictionary = torch.load(os.path.join(path, "dict.pt"))
        self.train = torch.load(os.path.join(path, "train.pt"))
        self.valid = torch.load(os.path.join(path, "valid.pt"))
        self.test = torch.load(os.path.join(path, "test.pt"))
        return True

    def save_cache(self, path):
        torch.save(self.dictionary, os.path.join(path, "dict.pt"))
        torch.save(self.train, os.path.join(path, "train.pt"))
        torch.save(self.valid, os.path.join(path, "valid.pt"))
        torch.save(self.test, os.path.join(path, "test.pt"))

    def tokenize(self, path):
        """Tokenizes a text file."""
        assert os.path.exists(path)
        # Add words to the dictionary
        with open(path, "r", encoding="utf8") as f:
            for line in f:
                words = line.split() + ["<eos>"]
                for word in words:
                    self.dictionary.add_word(word)

        # Tokenize file content
        with open(path, "r", encoding="utf8") as f:
            idss = []
            for line in f:
                words = line.split() + ["<eos>"]
                ids = []
                for word in words:
                    ids.append(self.dictionary.word2idx[word])
                idss.append(torch.tensor(ids).type(torch.int64))
            ids = torch.cat(idss)

        return ids


def get_batch(source, i, bptt):
    seq_len = min(bptt, len(source) - 1 - i)
    data = source[i : i + seq_len]
    target = source[i + 1 : i + 1 + seq_len].view(-1)
    return data, target


def batchloader(train_data, bptt):
    for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
        yield get_batch(train_data, i, bptt)


def batchify(data, bsz, device):
    # Work out how cleanly we can divide the dataset into bsz parts.
    nbatch = data.size(0) // bsz
    # Trim off any extra elements that wouldn't cleanly fit (remainders).
    data = data.narrow(0, 0, nbatch * bsz)
    # Evenly divide the data across the bsz batches.
    data = data.view(bsz, -1).t().contiguous()
    return data.to(device)


def setprec(t, precision):
    if precision == "half":
        # do nothing since this is handled by AMP
        return t
    elif precision == "float":
        return t.float()
    elif precision == "double":
        return t.double()
    else:
        raise ValueError(f"invalid precision string {precision}")


def download_dataset(config):
    path = config["input_data_dir"]
    os.makedirs(path, exist_ok=True)
    # Lock protection is needed for backends which run multiple worker
    # processes on the same instance
    lock_path = os.path.join(path, "lock")
    lock = SoftFileLock(lock_path)
    try:
        with lock.acquire(timeout=120, poll_intervall=1):
            # Make sure files are present locally
            download_wikitext2_dataset(path)
            corpus = Corpus(os.path.join(path, "wikitext-2"))
    except Timeout:
        print(
            "WARNING: Could not obtain lock for dataset files. Trying anyway...",
            flush=True,
        )
        # Make sure files are present locally
        download_wikitext2_dataset(path)
        corpus = Corpus(os.path.join(path, "wikitext-2"))
    return corpus


def evaluate(model, valid_data, criterion, config, ntokens):
    # Turn on evaluation mode which disables dropout
    model.eval()
    bptt = config["bptt"]
    total_loss = 0.0
    with torch.no_grad():
        for i in range(0, valid_data.size(0) - 1, bptt):
            data, targets = get_batch(valid_data, i, bptt)
            output = model(data)
            output = output.view(-1, ntokens)
            total_loss += len(data) * criterion(output, targets).item()
    return total_loss / (len(valid_data) - 1)


def train(model, train_data, optimizer, criterion, config, ntokens, epoch):
    # Turn on training mode which enables dropout
    model.train()
    bptt = config["bptt"]
    precision = config["precision"]
    log_interval = config["log_interval"]
    total_loss = 0.0
    epoch_loss = 0.0
    start_time = time.time()
    first_loss = None
    for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
        data, targets = get_batch(train_data, i, bptt)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        optimizer.zero_grad()
        output = model(data)
        output = output.view(-1, ntokens)
        loss = criterion(output, targets)
        if torch.isnan(loss):
            exit(0)
        if precision == "half":
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()
        clip = config["clip"]
        if clip > 0:
            # ``clip_grad_norm`` helps prevent the exploding gradient problem in RNNs / LSTMs.
            if precision == "half":
                params = amp.master_params(optimizer)
            else:
                params = model.parameters()
            torch.nn.utils.clip_grad_norm_(params, clip)
        optimizer.step()
        total_loss += loss.item()
        epoch_loss += len(data) * loss.item()
        if batch % log_interval == 0 and batch > 0:
            cur_loss = total_loss / log_interval
            elapsed = time.time() - start_time
            print(
                "| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.5f} | ms/batch {:5.2f} | "
                "loss {:5.2f} | ppl {:8.2f}".format(
                    epoch,
                    batch,
                    len(train_data) // bptt,
                    config["lr"],
                    elapsed * 1000 / log_interval,
                    cur_loss,
                    np.exp(cur_loss),
                )
            )
            total_loss = 0
            start_time = time.time()
            if first_loss is None:
                first_loss = cur_loss
    return epoch_loss / (len(train_data) - 1), first_loss


def create_training_objects(config, ntokens, device):
    precision = config["precision"]
    d_model = config["d_model"]
    model = TransformerModel(
        ntokens,
        ninp=d_model,
        nhead=config["nhead"],
        nhid=d_model * config["ffn_ratio"],
        nlayers=config["nlayers"],
        dropout=config["dropout"],
    )
    model = model.to(device)
    model = setprec(model, precision)
    criterion = nn.NLLLoss()
    if config["optimizer_name"] == "sgd":
        optimizer = torch.optim.SGD(
            model.parameters(),
            lr=config["lr"],
            momentum=config["momentum"],
        )
    elif config["optimizer_name"] == "adam":
        optimizer = torch.optim.Adam(
            model.parameters(),
            lr=config["lr"],
            betas=(config["momentum"], 0.999),
        )
    else:
        raise ValueError(f"optimizer_name = {config['optimizer_name']} not supported")
    # half-precision black magic
    if precision == "half":
        model, optimizer = amp.initialize(
            model, optimizer, opt_level="O1", min_loss_scale=0.0001, verbosity=0
        )
    return model, optimizer, criterion


def objective(config):
    torch.manual_seed(config["seed"])
    use_cuda = config["use_cuda"]
    if torch.cuda.is_available() and not use_cuda:
        print("WARNING: You have a CUDA device, so you should run with --use-cuda 1")
    device = torch.device("cuda" if use_cuda else "cpu")
    # Download data, setup data loaders
    corpus = download_dataset(config)
    ntokens = len(corpus.dictionary)
    train_data = batchify(corpus.train, bsz=config["batch_size"], device=device)
    valid_data = batchify(corpus.valid, bsz=10, device=device)
    # Do not want to count the time to download the dataset, which can be
    # substantial the first time
    ts_start = time.time()
    # Used for reporting metrics to Syne Tune
    report = Reporter()
    # Create model and optimizer
    model, optimizer, criterion = create_training_objects(config, ntokens, device)
    # Checkpointing
    state_dict_objects = {
        "model": model,
        "optimizer": optimizer,
    }
    if config["precision"] == "half":
        state_dict_objects["amp"] = amp
    load_model_fn, save_model_fn = pytorch_load_save_functions(
        state_dict_objects=state_dict_objects,
    )
    # Resume from checkpoint (optional)
    resume_from = resume_from_checkpointed_model(config, load_model_fn)

    # At any point you can hit Ctrl + C to break out of training early.
    try:
        for epoch in range(resume_from + 1, config[MAX_RESOURCE_ATTR] + 1):
            epoch_start_time = time.time()
            train(model, train_data, optimizer, criterion, config, ntokens, epoch)
            val_loss = evaluate(model, valid_data, criterion, config, ntokens)
            curr_ts = time.time()
            elapsed_time = curr_ts - ts_start
            duration = curr_ts - epoch_start_time
            print("-" * 89)
            print(
                "| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | "
                "valid ppl {:8.2f}".format(epoch, duration, val_loss, np.exp(val_loss))
            )
            print("-" * 89)
            # Write checkpoint (optional)
            checkpoint_model_at_rung_level(config, save_model_fn, epoch)
            # Report metrics back to Syne Tune
            report_kwargs = {
                RESOURCE_ATTR: epoch,
                METRIC_NAME: val_loss,
                ELAPSED_TIME_ATTR: elapsed_time,
            }
            report(**report_kwargs)
    except KeyboardInterrupt:
        print("-" * 89)
        print("Exiting from training early")


if __name__ == "__main__":
    # Temporarily leave PositionalEncoding module here. Will be moved somewhere else.
    class PositionalEncoding(nn.Module):
        r"""Inject some information about the relative or absolute position of the tokens
            in the sequence. The positional encodings have the same dimension as
            the embeddings, so that the two can be summed. Here, we use sine and cosine
            functions of different frequencies.
        .. math::
            \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
            \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
            \text{where pos is the word position and i is the embed idx)
        Args:
            d_model: the embed dim (required).
            dropout: the dropout value (default=0.1).
            max_len: the max. length of the incoming sequence (default=5000).
        Examples:
            >>> pos_encoder = PositionalEncoding(d_model)
        """

        def __init__(self, d_model, dropout=0.1, max_len=5000):
            super(PositionalEncoding, self).__init__()
            self.dropout = nn.Dropout(p=dropout)

            pe = torch.zeros(max_len, d_model)
            position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
            div_term = torch.exp(
                torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)
            )
            pe[:, 0::2] = torch.sin(position * div_term)
            pe[:, 1::2] = torch.cos(position * div_term)
            pe = pe.unsqueeze(0).transpose(0, 1)
            self.register_buffer("pe", pe)

        def forward(self, x):
            r"""Inputs of forward function
            Args:
                x: the sequence fed to the positional encoder model (required).
            Shape:
                x: [sequence length, batch size, embed dim]
                output: [sequence length, batch size, embed dim]
            Examples:
                >>> output = pos_encoder(x)
            """

            x = x + self.pe[: x.size(0), :]
            return self.dropout(x)

    class TransformerModel(nn.Module):
        """Container module with an encoder, a recurrent or transformer module, and a decoder."""

        def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
            super(TransformerModel, self).__init__()
            try:
                from torch.nn import TransformerEncoder, TransformerEncoderLayer
            except ImportError:
                raise ImportError(
                    "TransformerEncoder module does not exist in PyTorch 1.1 or lower."
                )
            self.model_type = "Transformer"
            self.src_mask = None
            self.pos_encoder = PositionalEncoding(ninp, dropout)
            encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
            self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
            self.encoder = nn.Embedding(ntoken, ninp)
            self.ninp = ninp
            self.decoder = nn.Linear(ninp, ntoken)

            self.init_weights()

        @staticmethod
        def _generate_square_subsequent_mask(sz):
            mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
            mask = (
                mask.float()
                .masked_fill(mask == 0, float("-inf"))
                .masked_fill(mask == 1, float(0.0))
            )
            return mask

        def init_weights(self):
            initrange = 0.1
            nn.init.uniform_(self.encoder.weight, -initrange, initrange)
            nn.init.zeros_(self.decoder.bias)
            nn.init.uniform_(self.decoder.weight, -initrange, initrange)

        def forward(self, src, has_mask=True):
            if has_mask:
                device = src.device
                if self.src_mask is None or self.src_mask.size(0) != len(src):
                    mask = self._generate_square_subsequent_mask(len(src)).to(device)
                    self.src_mask = mask
            else:
                self.src_mask = None

            src = self.encoder(src) * math.sqrt(self.ninp)
            src = self.pos_encoder(src)
            output = self.transformer_encoder(src, self.src_mask)
            output = self.decoder(output)
            return F.log_softmax(output, dim=-1)

    root = logging.getLogger()
    root.setLevel(logging.INFO)

    parser = argparse.ArgumentParser(
        description="PyTorch Wikitext-2 Transformer Language Model",
        formatter_class=argparse.RawTextHelpFormatter,
    )
    parser.add_argument(
        "--" + MAX_RESOURCE_ATTR, type=int, default=40, help="upper epoch limit"
    )
    parser.add_argument("--use_cuda", type=int, default=1)
    parser.add_argument(
        "--input_data_dir",
        type=str,
        default="./",
        help="location of the data corpus",
    )
    parser.add_argument(
        "--optimizer_name", type=str, default="sgd", choices=["sgd", "adam"]
    )
    parser.add_argument("--bptt", type=int, default=35, help="sequence length")
    parser.add_argument("--seed", type=int, default=1111, help="random seed")
    parser.add_argument(
        "--precision", type=str, default="float", help="float | double | half"
    )
    parser.add_argument(
        "--log_interval",
        type=int,
        default=200,
        help="report interval",
    )
    # These could become hyperparameters as well (more like NAS)
    parser.add_argument("--d_model", type=int, default=256, help="width of the model")
    parser.add_argument(
        "--ffn_ratio", type=int, default=1, help="the ratio of d_ffn to d_model"
    )
    parser.add_argument("--nlayers", type=int, default=2, help="number of layers")
    parser.add_argument(
        "--nhead",
        type=int,
        default=2,
        help="the number of heads in the encoder/decoder of the transformer model",
    )
    add_to_argparse(parser, _config_space)
    add_checkpointing_to_argparse(parser)

    args, _ = parser.parse_known_args()
    args.use_cuda = bool(args.use_cuda)

    objective(config=vars(args))









Multi-layer Perceptron Trained on Fashion MNIST


benchmarking/training_scripts/mlp_on_fashion_mnist/mlp_on_fashion_mnist.py

"""
Two-layer MLP trained on Fashion MNIST
"""
import os
import argparse
import logging
import time
from pathlib import Path

try:
    # Benchmark-specific imports are done here, in order to avoid import
    # errors if the dependencies are not installed (such errors should happen
    # only when the code is really called)
    from filelock import SoftFileLock, Timeout
    import torch
    import torch.nn as nn
    from torch.utils.data.sampler import SubsetRandomSampler
    from torchvision import datasets
    from torchvision import transforms
except ImportError:
    logging.info(
        f"Please install benchmark-specific dependencies ({Path(__file__).parent / 'requirements.txt'})"
    )

from syne_tune import Reporter
from syne_tune.config_space import (
    randint,
    lograndint,
    uniform,
    loguniform,
    add_to_argparse,
)
from syne_tune.utils import (
    resume_from_checkpointed_model,
    checkpoint_model_at_rung_level,
    add_checkpointing_to_argparse,
    pytorch_load_save_functions,
    parse_bool,
)


NUM_UNITS_1 = "n_units_1"

NUM_UNITS_2 = "n_units_2"

METRIC_NAME = "accuracy"

RESOURCE_ATTR = "epoch"

ELAPSED_TIME_ATTR = "elapsed_time"


_config_space = {
    NUM_UNITS_1: lograndint(4, 1024),
    NUM_UNITS_2: lograndint(4, 1024),
    "batch_size": randint(8, 128),
    "dropout_1": uniform(0, 0.99),
    "dropout_2": uniform(0, 0.99),
    "learning_rate": loguniform(1e-6, 1),
    "weight_decay": loguniform(1e-8, 1),
}


# Boilerplate for objective


def download_data(config):
    path = os.path.join(config["dataset_path"], "FashionMNIST")
    os.makedirs(path, exist_ok=True)
    # Lock protection is needed for backends which run multiple worker
    # processes on the same instance
    lock_path = os.path.join(path, "lock")
    lock = SoftFileLock(lock_path)
    try:
        with lock.acquire(timeout=120, poll_intervall=1):
            data_train = datasets.FashionMNIST(
                root=path, train=True, download=True, transform=transforms.ToTensor()
            )
    except Timeout:
        print(
            "WARNING: Could not obtain lock for dataset files. Trying anyway...",
            flush=True,
        )
        data_train = datasets.FashionMNIST(
            root=path, train=True, download=True, transform=transforms.ToTensor()
        )
    return data_train


def split_data(config, data_train):
    # We use 50000 samples for training and 10000 samples for validation
    indices = list(range(data_train.data.shape[0]))
    train_idx, valid_idx = indices[:50000], indices[50000:]
    train_sampler = SubsetRandomSampler(train_idx)
    valid_sampler = SubsetRandomSampler(valid_idx)
    batch_size = config["batch_size"]
    train_loader = torch.utils.data.DataLoader(
        data_train, batch_size=batch_size, sampler=train_sampler, drop_last=True
    )
    valid_loader = torch.utils.data.DataLoader(
        data_train, batch_size=batch_size, sampler=valid_sampler, drop_last=True
    )
    return train_loader, valid_loader


def model_and_optimizer(config):
    n_units_1 = config["n_units_1"]
    n_units_2 = config["n_units_2"]
    dropout_1 = config["dropout_1"]
    dropout_2 = config["dropout_2"]
    learning_rate = config["learning_rate"]
    weight_decay = config["weight_decay"]
    # Define the network architecture
    comp_list = [
        nn.Linear(28 * 28, n_units_1),
        nn.Dropout(p=dropout_1),
        nn.ReLU(),
        nn.Linear(n_units_1, n_units_2),
        nn.Dropout(p=dropout_2),
        nn.ReLU(),
        nn.Linear(n_units_2, 10),
    ]
    model = nn.Sequential(*comp_list)
    optimizer = torch.optim.Adam(
        model.parameters(), lr=learning_rate, weight_decay=weight_decay
    )
    criterion = nn.CrossEntropyLoss()
    return {"model": model, "optimizer": optimizer, "criterion": criterion}


def train_model(config, state, train_loader):
    model = state["model"]
    optimizer = state["optimizer"]
    criterion = state["criterion"]
    batch_size = config["batch_size"]
    model.train()
    for data, target in train_loader:
        optimizer.zero_grad()
        output = model(data.view(batch_size, -1))
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()


def validate_model(config, state, valid_loader):
    batch_size = config["batch_size"]
    model = state["model"]
    model.eval()
    correct = 0
    total = 0
    for data, target in valid_loader:
        output = model(data.view(batch_size, -1))
        _, predicted = torch.max(output.data, 1)
        total += target.size(0)
        correct += (predicted == target).sum().item()
    return correct / total  # Validation accuracy


def objective(config):
    report_current_best = parse_bool(config["report_current_best"])

    data_train = download_data(config)

    # Do not want to count the time to download the dataset, which can be
    # substantial the first time
    ts_start = time.time()
    report = Reporter()

    train_loader, valid_loader = split_data(config, data_train)

    state = model_and_optimizer(config)

    # Checkpointing
    load_model_fn, save_model_fn = pytorch_load_save_functions(
        {"model": state["model"], "optimizer": state["optimizer"]}
    )
    # Resume from checkpoint (optional)
    resume_from = resume_from_checkpointed_model(config, load_model_fn)

    current_best = None
    for epoch in range(resume_from + 1, config["epochs"] + 1):
        train_model(config, state, train_loader)
        accuracy = validate_model(config, state, valid_loader)
        elapsed_time = time.time() - ts_start
        if current_best is None or accuracy > current_best:
            current_best = accuracy
        # Write checkpoint (optional)
        checkpoint_model_at_rung_level(config, save_model_fn, epoch)
        # Feed the score back to Tune.
        objective = current_best if report_current_best else accuracy
        report(
            **{
                RESOURCE_ATTR: epoch,
                METRIC_NAME: objective,
                ELAPSED_TIME_ATTR: elapsed_time,
            }
        )


if __name__ == "__main__":
    root = logging.getLogger()
    root.setLevel(logging.INFO)

    parser = argparse.ArgumentParser()
    parser.add_argument("--epochs", type=int, required=True)
    parser.add_argument("--dataset_path", type=str, required=True)
    parser.add_argument("--report_current_best", type=str, default="False")
    add_to_argparse(parser, _config_space)
    add_checkpointing_to_argparse(parser)

    args, _ = parser.parse_known_args()

    objective(config=vars(args))










            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.conversion_scripts.scripts.fcnet_import module


	Convert tabular data from
	Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization
Aaron Klein Frank Hutter
https://arxiv.org/pdf/1905.04970.pdf.






	
syne_tune.blackbox_repository.conversion_scripts.scripts.fcnet_import.convert_dataset(dataset_path, max_rows=None)

	




	
syne_tune.blackbox_repository.conversion_scripts.scripts.fcnet_import.generate_fcnet()

	




	
syne_tune.blackbox_repository.conversion_scripts.scripts.fcnet_import.plot_learning_curves()

	




	
class syne_tune.blackbox_repository.conversion_scripts.scripts.fcnet_import.FCNETRecipe

	Bases: BlackboxRecipe








            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.conversion_scripts.scripts.icml2020_import module


	Convert evaluations from
	A Quantile-based Approach for Hyperparameter Transfer Learning
David Salinas Huibin Shen Valerio Perrone
http://proceedings.mlr.press/v119/salinas20a/salinas20a.pdf






	
syne_tune.blackbox_repository.conversion_scripts.scripts.icml2020_import.download(blackbox)

	




	
syne_tune.blackbox_repository.conversion_scripts.scripts.icml2020_import.serialize_deepar()

	




	
syne_tune.blackbox_repository.conversion_scripts.scripts.icml2020_import.serialize_xgboost()

	‘hp_log2_min_child_weight’, ‘hp_subsample’, ‘hp_colsample_bytree’,
‘hp_log2_gamma’, ‘hp_log2_lambda’, ‘hp_eta’, ‘hp_max_depth_index’,
‘hp_log2_alpha’, ‘metric_error’, ‘blackbox’, ‘task’






	
class syne_tune.blackbox_repository.conversion_scripts.scripts.icml2020_import.XGBoostRecipe

	Bases: BlackboxRecipe






	
class syne_tune.blackbox_repository.conversion_scripts.scripts.icml2020_import.DeepARRecipe

	Bases: BlackboxRecipe








            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench.api module


	
class syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench.api.Benchmark(data_dir, cache=False, cache_dir='cached/')

	Bases: object

API for TabularBench.


	
query(dataset_name, tag, config_id)

	Query a run.

Keyword arguments:
dataset_name – str, the name of the dataset in the benchmark
tag – str, the tag you want to query
config_id – int, an identifier for which run you want to query, if too large will query the last run






	
query_best(dataset_name, tag, criterion, position=0)

	Query the n-th best run. “Best” here means achieving the largest value at any epoch/step,

Keyword arguments:
dataset_name – str, the name of the dataset in the benchmark
tag – str, the tag you want to query
criterion – str, the tag you want to use for the ranking
position – int, an identifier for which position in the ranking you want to query






	
get_queriable_tags(dataset_name=None, config_id=None)

	Returns a list of all queriable tags






	
get_dataset_names()

	Returns a list of all availabe dataset names like defined on openml






	
get_openml_task_ids()

	Returns a list of openml task ids






	
get_number_of_configs(dataset_name)

	Returns the number of configurations for a dataset






	
get_config(dataset_name, config_id)

	Returns the configuration of a run specified by dataset name and config id






	
plot_by_name(dataset_names, x_col, y_col, n_configs=10, show_best=False, xscale='linear', yscale='linear', criterion=None)

	Plot multiple datasets and multiple runs.

Keyword arguments:
dataset_names – list
x_col – str, tag to plot on x-axis
y_col – str, tag to plot on y-axis
n_configs – int, number of configs to plot for each dataset
show_best – bool, weather to show the n_configs best (according to query_best())
xscale – str, set xscale, options as in matplotlib: “linear”, “log”, “symlog”, “logit”, …
yscale – str, set yscale, options as in matplotlib: “linear”, “log”, “symlog”, “logit”, …
criterion – str, tag used as criterion for query_best()












            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench.lcbench module


	
syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench.lcbench.convert_task(bench, dataset_name)

	




	
class syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench.lcbench.LCBenchRecipe

	Bases: BlackboxRecipe








            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench package


Submodules



	syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench.api module
	Benchmark
	Benchmark.query()

	Benchmark.query_best()

	Benchmark.get_queriable_tags()

	Benchmark.get_dataset_names()

	Benchmark.get_openml_task_ids()

	Benchmark.get_number_of_configs()

	Benchmark.get_config()

	Benchmark.plot_by_name()









	syne_tune.blackbox_repository.conversion_scripts.scripts.lcbench.lcbench module
	convert_task()

	LCBenchRecipe













            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.conversion_scripts.scripts.nasbench201_import module


	
syne_tune.blackbox_repository.conversion_scripts.scripts.nasbench201_import.str_to_list(arch_str)

	




	
syne_tune.blackbox_repository.conversion_scripts.scripts.nasbench201_import.convert_dataset(data, dataset)

	




	
class syne_tune.blackbox_repository.conversion_scripts.scripts.nasbench201_import.NASBench201Recipe

	Bases: BlackboxRecipe








            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.conversion_scripts.scripts.pd1_import module


	
syne_tune.blackbox_repository.conversion_scripts.scripts.pd1_import.convert_task(task_data)

	




	
class syne_tune.blackbox_repository.conversion_scripts.scripts.pd1_import.PD1Recipe

	Bases: BlackboxRecipe






	
syne_tune.blackbox_repository.conversion_scripts.scripts.pd1_import.serialize(bb_dict, path, metadata=None)

	




	
syne_tune.blackbox_repository.conversion_scripts.scripts.pd1_import.deserialize(path)

	Deserialize blackboxes contained in a path that were saved with serialize above.
TODO: the API is currently dissonant with serialize, deserialize for BlackboxOffline as serialize is there a member.
A possible way to unify is to have serialize also be a free function for BlackboxOffline.
:type path: str
:param path: a path that contains blackboxes that were saved with serialize
:rtype: Dict[str, BlackboxTabular]
:return: a dictionary from task name to blackbox








            

          

      

      

    

  

    
      
          
            
  
syne_tune.blackbox_repository.conversion_scripts.scripts.yahpo_import module

Wrap Surrogates from 
YAHPO Gym - An Efficient Multi-Objective Multi-Fidelity Benchmark for Hyperparameter Optimization
Florian Pfisterer, Lennart Schneider, Julia Moosbauer, Martin Binder, Bernd Bischl


	
syne_tune.blackbox_repository.conversion_scripts.scripts.yahpo_import.download(target_path, version)

	




	
class syne_tune.blackbox_repository.conversion_scripts.scripts.yahpo_import.BlackBoxYAHPO(benchmark, fidelities=None)

	Bases: Blackbox

A wrapper that allows putting a ‘YAHPO’ BenchmarkInstance into a Blackbox.

If fidelities is given, it restricts fidelity_values to these values.
The sequence must be positive int and increasing. This works only if there
is a single fidelity attribute with integer values (but note that for
some specific YAHPO benchmarks, a fractional fidelity is transformed to
an integer one).

Even though YAHPO interpolates between fidelities, it can make sense
to restrict them to the values which have really been acquired in the
data. Note that this restricts multi-fidelity schedulers like
HyperbandScheduler, in that all
their rungs levels have to be fidelity values.

For example, for YAHPO iaml, the fidelity trainsize has been
acquired at [0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1], this is transformed
to [1, 2, 4, 8, 12, 16, 20]. By default, the fidelity is
represented by cs.randint(1, 20), but if fidelities is passed,
it uses cs.ordinal(fidelities).


	Parameters:

	
	benchmark (BenchmarkSet) – YAHPO BenchmarkSet


	fidelities (Optional[List[int]]) – See above









	
set_instance(instance)

	Set an instance for the underlying YAHPO Benchmark.






	
property instances: array

	




	
property fidelity_values: array

	
	Returns:

	Fidelity values; or None if the blackbox has none










	
property time_attribute: str

	Name of the time column










	
syne_tune.blackbox_repository.conversion_scripts.scripts.yahpo_import.cs_to_synetune(config_space)

	Convert ConfigSpace.ConfigSpace to a synetune configspace.

TODO cover all possible hyperparameters of ConfigSpace.ConfigSpace, right now we only convert the one we need.






	
syne_tune.blackbox_repository.conversion_scripts.scripts.yahpo_import.instantiate_yahpo(scenario, check=False, fidelities=None)

	Instantiates a dict of BlackBoxYAHPO, one entry for each instance.


	Parameters:

	
	scenario (str) – 


	check (bool) – If False, objective_function of the blackbox does not
check whether the input configuration is valid. This is faster, but
calls fail silently if configurations are invalid.






	Returns:

	










	
syne_tune.blackbox_repository.conversion_scripts.scripts.yahpo_import.serialize_yahpo(scenario, target_path, version='1.0')

	




	
class syne_tune.blackbox_repository.conversion_scripts.scripts.yahpo_import.YAHPORecipe(name)

	Bases: BlackboxRecipe








            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.multiobjective.linear_scalarizer module


	
class syne_tune.optimizer.schedulers.multiobjective.linear_scalarizer.LinearScalarizedScheduler(config_space, metric, mode='min', scalarization_weights=None, base_scheduler_factory=None, **base_scheduler_kwargs)

	Bases: TrialScheduler

Scheduler with linear scalarization of multiple objectives

This method optimizes a single objective equal to the linear scalarization
of given two objectives. The scalarized single objective is named:
"scalarized_<metric1>_<metric2>_..._<metricN>".


	Parameters:

	
	base_scheduler_factory (Optional[Callable[[Any], TrialScheduler]]) – Factory method for the single-objective scheduler
used on the scalarized objective. It will be initialized inside this scheduler.
Defaults to FIFOScheduler.


	config_space (Dict[str, Any]) – Configuration space for evaluation function


	metric (List[str]) – Names of metrics to optimize


	mode (Union[List[str], str]) – Modes of metrics to optimize (“min” or “max”). All must be matching.


	scalarization_weights (Union[ndarray, List[float], None]) – Weights used to scalarize objectives. Defaults to
an array of 1s


	base_scheduler_kwargs – Additional arguments to base_scheduler_factory
beyond config_space, metric, mode









	
scalarization_weights: ndarray

	




	
single_objective_metric: str

	




	
base_scheduler: TrialScheduler

	




	
on_trial_add(trial)

	Called when a new trial is added to the trial runner.
See the docstring of the chosen base_scheduler for details






	
on_trial_error(trial)

	Called when a trial has failed.
See the docstring of the chosen base_scheduler for details






	
on_trial_result(trial, result)

	Called on each intermediate result reported by a trial.
See the docstring of the chosen base_scheduler for details


	Return type:

	str










	
on_trial_complete(trial, result)

	Notification for the completion of trial.
See the docstring of the chosen base_scheduler for details






	
on_trial_remove(trial)

	Called to remove trial.
See the docstring of the chosen base_scheduler for details






	
trials_checkpoints_can_be_removed()

	See the docstring of the chosen base_scheduler for details
:rtype: List[int]
:return: IDs of paused trials for which checkpoints can be removed






	
metric_names()

	
	Return type:

	List[str]



	Returns:

	List of metric names.










	
metric_mode()

	
	Return type:

	Union[str, List[str]]



	Returns:

	“min” if target metric is minimized, otherwise “max”.










	
metadata()

	
	Return type:

	Dict[str, Any]



	Returns:

	Metadata of the scheduler










	
is_multiobjective_scheduler()

	Return True if a scheduler is multi-objective.


	Return type:

	bool
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.multiobjective.moasha module


	
class syne_tune.optimizer.schedulers.multiobjective.moasha.MOASHA(config_space, metrics, mode=None, time_attr='training_iteration', multiobjective_priority=None, max_t=100, grace_period=1, reduction_factor=3, brackets=1)

	Bases: TrialScheduler

Implements MultiObjective Asynchronous Successive HAlving with different
multiobjective sort options. References:



A multi-objective perspective on jointly tuning hardware and hyperparameters

David Salinas, Valerio Perrone, Cedric Archambeau and Olivier Cruchant

NAS workshop, ICLR2021.






and



Multi-objective multi-fidelity hyperparameter optimization with application to fairness

Robin Schmucker, Michele Donini, Valerio Perrone, Cédric Archambeau







	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space


	metrics (List[str]) – List of metric names MOASHA optimizes over


	mode (Union[str, List[str], None]) – One of {"min", "max"} or a list of these values (same
size as metrics). Determines whether objectives are minimized or
maximized. Defaults to “min”


	time_attr (str) – A training result attr to use for comparing time.
Note that you can pass in something non-temporal such as
training_iteration as a measure of progress, the only requirement
is that the attribute should increase monotonically.
Defaults to “training_iteration”


	multiobjective_priority (Optional[MOPriority]) – The multiobjective priority that is used
to sort multiobjective candidates. We support several choices such
as non-dominated sort or linear scalarization, default is
non-dominated sort.


	max_t (int) – max time units per trial. Trials will be stopped after
max_t time units (determined by time_attr) have passed.
Defaults to 100


	grace_period (int) – Only stop trials at least this old in time.
The units are the same as the attribute named by time_attr.
Defaults to 1


	reduction_factor (float) – Used to set halving rate and amount. This
is simply a unit-less scalar. Defaults to 3


	brackets (int) – Number of brackets. Each bracket has a different
grace_period and number of rung levels. Defaults to 1









	
metric_names()

	
	Return type:

	List[str]



	Returns:

	List of metric names. The first one is the target
metric optimized over, unless the scheduler is a genuine
multi-objective metric (for example, for sampling the Pareto front)










	
metric_mode()

	
	Return type:

	str



	Returns:

	“min” if target metric is minimized, otherwise “max”.
Here, “min” should be the default. For a genuine multi-objective
scheduler, a list of modes is returned










	
on_trial_add(trial)

	Called when a new trial is added to the trial runner.

Additions are normally triggered by suggest.


	Parameters:

	trial (Trial) – Trial to be added










	
on_trial_result(trial, result)

	Called on each intermediate result reported by a trial.

At this point, the trial scheduler can make a decision by returning
one of SchedulerDecision.CONTINUE,
SchedulerDecision.PAUSE, or SchedulerDecision.STOP.
This will only be called when the trial is currently running.


	Parameters:

	
	trial (Trial) – Trial for which results are reported


	result (Dict[str, Any]) – Result dictionary






	Return type:

	str



	Returns:

	Decision what to do with the trial










	
on_trial_complete(trial, result)

	Notification for the completion of trial.

Note that on_trial_result() is called with the same result before.
However, if the scheduler only uses one final report from each
trial, it may ignore on_trial_result() and just use result here.


	Parameters:

	
	trial (Trial) – Trial which is completing


	result (Dict[str, Any]) – Result dictionary













	
on_trial_remove(trial)

	Called to remove trial.

This is called when the trial is in PAUSED or PENDING state. Otherwise,
call on_trial_complete().


	Parameters:

	trial (Trial) – Trial to be removed










	
is_multiobjective_scheduler()

	Return True if a scheduler is multi-objective.


	Return type:

	bool
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.multiobjective.multi_objective_regularized_evolution module


	
class syne_tune.optimizer.schedulers.multiobjective.multi_objective_regularized_evolution.MultiObjectiveRegularizedEvolution(config_space, metric, mode, points_to_evaluate=None, population_size=100, sample_size=10, multiobjective_priority=None, **kwargs)

	Bases: RegularizedEvolution

Adapts regularized evolution algorithm by Real et al. to the multi-objective setting. Elements in the
populations are scored via a multi-objective priority that is set to non-dominated sort by default. Parents are sampled from the population based on
this score.

Additional arguments on top of parent class
syne_tune.optimizer.schedulers.searchers.StochasticSearcher:


	Parameters:

	
	mode (Union[List[str], str]) – Mode to use for the metric given, can be “min” or “max”,
defaults to “min”


	population_size (int) – Size of the population, defaults to 100


	sample_size (int) – Size of the candidate set to obtain a parent for the
mutation, defaults to 10















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.multiobjective.multi_surrogate_multi_objective_searcher module


	
class syne_tune.optimizer.schedulers.multiobjective.multi_surrogate_multi_objective_searcher.MultiObjectiveMultiSurrogateSearcher(config_space, metric, estimators, mode='min', points_to_evaluate=None, scoring_class=None, num_initial_candidates=250, num_initial_random_choices=3, allow_duplicates=False, restrict_configurations=None, clone_from_state=False, **kwargs)

	Bases: BayesianOptimizationSearcher

Multi Objective Multi Surrogate Searcher for FIFO scheduler

This searcher must be used with
FIFOScheduler. It provides
Bayesian optimization, based on a scikit-learn estimator based surrogate model.

Additional arguments on top of parent class
StochasticSearcher:


	Parameters:

	
	estimator – Instance of
SKLearnEstimator
to be used as surrogate model


	scoring_class (Optional[Callable[[Any], ScoringFunction]]) – The scoring function (or acquisition
function) class and any extra parameters used to instantiate it. If
None, expected improvement (EI) is used. Note that the acquisition
function is not locally optimized with this searcher.


	num_initial_candidates (int) – Number of candidates sampled for scoring with
acquisition function.


	num_initial_random_choices (int) – Number of randomly chosen candidates before
surrogate model is used.


	allow_duplicates (bool) – If True, allow for the same candidate to be
selected more than once.


	restrict_configurations (Optional[List[Dict[str, Any]]]) – If given, the searcher only suggests
configurations from this list. If allow_duplicates == False,
entries are popped off this list once suggested.









	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state – See above



	Returns:

	New searcher object
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.multiobjective.multiobjective_priority module


	
class syne_tune.optimizer.schedulers.multiobjective.multiobjective_priority.MOPriority(metrics=None)

	Bases: object


	
priority_unsafe(objectives)

	
	Return type:

	array














	
class syne_tune.optimizer.schedulers.multiobjective.multiobjective_priority.LinearScalarizationPriority(metrics=None, weights=None)

	Bases: MOPriority


	
priority_unsafe(objectives)

	
	Return type:

	array














	
class syne_tune.optimizer.schedulers.multiobjective.multiobjective_priority.FixedObjectivePriority(metrics=None, dim=None)

	Bases: MOPriority


	
priority_unsafe(objectives)

	
	Return type:

	array














	
class syne_tune.optimizer.schedulers.multiobjective.multiobjective_priority.NonDominatedPriority(metrics=None, dim=0, max_num_samples=None)

	Bases: MOPriority


	
priority_unsafe(objectives)

	
	Return type:

	array
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.multiobjective.non_dominated_priority module


	
syne_tune.optimizer.schedulers.multiobjective.non_dominated_priority.pareto_efficient(X)

	Evaluates for each allocation in the provided array whether it is Pareto efficient. The costs
are assumed to be improved by lowering them (eg lower is better).


	Return type:

	ndarray






Parameters


	X: np.ndarray [N, D]
	The allocations to check where N is the number of allocations and D the number of costs per
allocation.







Returns


	np.ndarray [N]
	A boolean array, indicating for each allocation whether it is Pareto efficient.











	
syne_tune.optimizer.schedulers.multiobjective.non_dominated_priority.compute_epsilon_net(X, dim=None)

	Outputs an order of the items in the provided array such that the items are spaced well. This
means that after choosing a seed item, the next item is chosen to be the farthest from the seed
item. The third item is then chosen to maximize the distance to the existing points and so on.

This algorithm is taken from “Nearest-Neighbor Searching and Metric Space Dimensions”
(Clarkson, 2005, p.17).


	Return type:

	ndarray






Parameters


	X: np.ndarray [N, D]
	The items to sparsify where N is the number of items and D their dimensionality.



	dim: Optional[int], default: None
	The index of the dimension which to use to choose the seed item. If None, an item is
chosen at random, otherwise the item with the lowest value in the specified dimension is
used.







Returns


	np.ndarray [N]
	A list of item indices, defining a sparsified order of the items.











	
syne_tune.optimizer.schedulers.multiobjective.non_dominated_priority.nondominated_sort(X, dim=None, max_items=None, flatten=True)

	Performs a multi-objective sort by iteratively computing the Pareto front and sparsifying the
items within the Pareto front. This is a non-dominated sort leveraging an epsilon-net.


	Return type:

	Union[List[int], List[List[int]]]






Parameters


	X: np.ndarray [N, D]
	The multi-dimensional items to sort.



	dim: Optional[int], default: None
	The feature (metric) to prefer when ranking items within the Pareto front. If None, items
are chosen randomly.



	max_items: Optional[int], default: None
	The maximum number of items that should be returned. When this is None, all items are
sorted.



	flatten: bool, default: True
	Whether to flatten the resulting array.







Returns


	Union[List[int], List[List[int]]]
	The indices of the sorted items, either globally or within each of the Pareto front
depending on the value of flatten.













            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.multiobjective.nsga2_searcher module


	
class syne_tune.optimizer.schedulers.multiobjective.nsga2_searcher.NSGA2Searcher(config_space, metric, mode='min', points_to_evaluate=None, population_size=20, **kwargs)

	Bases: StochasticSearcher

This is a wrapper around the NSGA-2 [1] implementation of pymoo [2].



[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan.

A fast and elitist multiobjective genetic algorithm: nsga-II.

Trans. Evol. Comp, 6(2):182–197, April 2002.




[2] J. Blank and K. Deb

pymoo: Multi-Objective Optimization in Python

IEEE Access, 2020







	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space


	metric (List[str]) – Name of metric passed to update(). Can be obtained from
scheduler in configure_scheduler(). In the case of multi-objective optimization,


metric is a list of strings specifying all objectives to be optimized.







	points_to_evaluate (Optional[List[dict]]) – List of configurations to be evaluated
initially (in that order). Each config in the list can be partially
specified, or even be an empty dict. For each hyperparameter not
specified, the default value is determined using a midpoint heuristic.
If None (default), this is mapped to [dict()], a single default config
determined by the midpoint heuristic. If [] (empty list), no initial
configurations are specified.


	mode (Union[List[str], str]) – Should metric be minimized (“min”, default) or maximized
(“max”). In the case of multi-objective optimization, mode can be a list defining for
each metric if it is minimized or maximized


	population_size (int) – Size of the population









	
get_config(**kwargs)

	Suggest a new configuration.

Note: Query _next_initial_config() for initial configs to return
first.


	Parameters:

	kwargs – Extra information may be passed from scheduler to
searcher



	Return type:

	Optional[Dict[str, Any]]



	Returns:

	New configuration. The searcher may return None if a new
configuration cannot be suggested. In this case, the tuning will
stop. This happens if searchers never suggest the same config more
than once, and all configs in the (finite) search space are
exhausted.
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.multiobjective.random_scalarization module


	
class syne_tune.optimizer.schedulers.multiobjective.random_scalarization.MultiObjectiveLCBRandomLinearScalarization(predictor, active_metric=None, weights_sampler=None, kappa=0.5, normalize_acquisition=True, random_seed=None)

	Bases: ScoringFunction

Note: This is the multi objective random scalarization scoring function based on the work of Biswajit et al. [1].
This scoring function uses Lower Confidence Bound as the acquisition for the scalarized objective
\(h(\mu, \sigma) = \mu - \kappa * \sigma\)



[1] Paria, Biswajit, Kirthevasan Kandasamy and Barnabás Póczos.

A Flexible Framework for Multi-Objective Bayesian Optimization using Random Scalarizations.

Conference on Uncertainty in Artificial Intelligence (2018).







	Parameters:

	
	predictor (Dict[str, Predictor]) – Surrogate predictor for statistics of predictive distribution


	weights_sampler (Optional[Callable[[], Dict[str, float]]]) – Callable that can generate weights for each objective.
Once called it will return a dictionary mapping metric name to scalarization weight as
{


<name of metric 1> : <weight for metric 1>,
<name of metric 2> : <weight for metric 2>,
…




}




	kappa (float) – Hyperparameter used for the LCM portion of the scoring


	normalize_acquisition (bool) – If True, use rank-normalization on the acquisition function results before weighting.


	random_seed (Optional[int]) – The random seed used for default weights_sampler if not provided.









	
score(candidates, predictor=None)

	
	Parameters:

	
	candidates (Iterable[Dict[str, Union[int, float, str]]]) – Configurations for which scores are to be computed


	predictor (Optional[Dict[str, Predictor]]) – Overrides default  predictor






	Return type:

	List[float]



	Returns:

	List of score values, length of candidates
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.multiobjective.utils module


	
syne_tune.optimizer.schedulers.multiobjective.utils.default_reference_point(results_array)

	
	Return type:

	ndarray










	
syne_tune.optimizer.schedulers.multiobjective.utils.hypervolume(results_array, reference_point=None)

	Compute the hypervolume of all results based on reference points


	Parameters:

	
	results_array (ndarray) – Array with experiment results ordered by time with
shape (npoints, ndimensions).


	reference_point (Optional[ndarray]) – Reference points for hypervolume calculations.
If None, the maximum values of each dimension of results_array is
used.






	Return type:

	float





:return Hypervolume indicator






	
syne_tune.optimizer.schedulers.multiobjective.utils.linear_interpolate(hv_indicator, indices)

	




	
syne_tune.optimizer.schedulers.multiobjective.utils.hypervolume_cumulative(results_array, reference_point=None, increment=1)

	Compute the cumulative hypervolume of all results based on reference points
Returns an array with hypervolumes given by an increasing range of points.
return_array[idx] = hypervolume(results_array[0 : (idx + 1)]).

The current implementation is very slow, since the hypervolume index is not
computed incrementally. A solution for now is to use increment > 1,
in which case the HV index is only computed every increment entry, and
linearly interpolated in between.


	Parameters:

	
	results_array (ndarray) – Array with experiment results ordered by time with
shape (npoints, ndimensions).


	reference_point (Optional[ndarray]) – Reference points for hypervolume calculations.
If None, the maximum values of each dimension of results_array is
used.






	Return type:

	ndarray



	Returns:

	Cumulative hypervolume array, shape (npoints,)












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.neuralbands.networks module


	
class syne_tune.optimizer.schedulers.neuralbands.networks.NetworkExploitation(dim, hidden_size=100)

	Bases: Module


	
forward(x1, b)

	Define the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.








	
training: bool

	








	
class syne_tune.optimizer.schedulers.neuralbands.networks.Exploitation(dim, lr=0.001, hidden=100)

	Bases: object


	
add_data(x, reward)

	




	
predict(x)

	
	Return type:

	Tensor










	
train()

	
	Return type:

	float
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.neuralbands.neuralband module


	
syne_tune.optimizer.schedulers.neuralbands.neuralband.is_continue_decision(trial_decision)

	
	Return type:

	bool










	
class syne_tune.optimizer.schedulers.neuralbands.neuralband.NeuralbandScheduler(config_space, gamma=0.01, nu=0.01, step_size=30, max_while_loop=100, **kwargs)

	Bases: NeuralbandSchedulerBase

NeuralBand is a neural-bandit based HPO algorithm for the multi-fidelity setting. It uses a budget-aware neural
network together with a feedback perturbation to efficiently explore the input space across fidelities.
NeuralBand uses a novel configuration selection criterion to actively choose the configuration in each trial
and incrementally exploits the knowledge of every past trial.


	Parameters:

	
	config_space (Dict) – 


	gamma (float) – Control aggressiveness of configuration selection criterion


	nu (float) – Control aggressiveness of perturbing feedback for exploration


	step_size (int) – How many trials we train network once


	max_while_loop (int) – Maximal number of times we can draw a configuration from configuration space


	kwargs – 









	
on_trial_result(trial, result)

	We simply relay result to the searcher. Other decisions are done
in on_trial_complete.


	Return type:

	str
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.neuralbands.neuralband_supplement module


	
syne_tune.optimizer.schedulers.neuralbands.neuralband_supplement.is_continue_decision(trial_decision)

	
	Return type:

	bool










	
class syne_tune.optimizer.schedulers.neuralbands.neuralband_supplement.NeuralbandSchedulerBase(config_space, step_size, max_while_loop, **kwargs)

	Bases: HyperbandScheduler


	
on_trial_result(trial, result)

	We simply relay result to the searcher. Other decisions are done
in on_trial_complete.


	Return type:

	str














	
class syne_tune.optimizer.schedulers.neuralbands.neuralband_supplement.NeuralbandEGreedyScheduler(config_space, epsilon=0.1, step_size=30, max_while_loop=100, **kwargs)

	Bases: NeuralbandSchedulerBase






	
class syne_tune.optimizer.schedulers.neuralbands.neuralband_supplement.NeuralbandTSScheduler(config_space, lamdba=0.1, nu=0.01, step_size=30, max_while_loop=100, **kwargs)

	Bases: NeuralbandSchedulerBase






	
class syne_tune.optimizer.schedulers.neuralbands.neuralband_supplement.NeuralbandUCBScheduler(config_space, lamdba=0.01, nu=0.01, step_size=30, max_while_loop=100, **kwargs)

	Bases: NeuralbandSchedulerBase








            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.common module


	
syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.common.dictionarize_objective(x)

	




	
class syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.common.TrialEvaluations(trial_id, metrics)

	Bases: object

For each fixed k, metrics[k] is either a single value or a dict. The
latter is used, for example, for multi-fidelity schedulers, where
metrics[k][str(r)] is the value at resource level r.


	
trial_id: str

	




	
metrics: Dict[str, Union[float, Dict[str, float]]]

	




	
num_cases(metric_name='target', resource=None)

	Counts the number of observations for metric metric_name.


	Parameters:

	
	metric_name (str) – Defaults to INTERNAL_METRIC_NAME


	resource (Optional[int]) – In the multi-fidelity case, we only count observations
at this resource level






	Return type:

	int



	Returns:

	Number of observations














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.common.PendingEvaluation(trial_id, resource=None)

	Bases: object

Maintains information for pending candidates (i.e. candidates which have
been queried for labeling, but target feedback has not yet been obtained.

The minimum information is the candidate which has been queried.


	
property trial_id: str

	




	
property resource: int | None

	








	
class syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.common.FantasizedPendingEvaluation(trial_id, fantasies, resource=None)

	Bases: PendingEvaluation

Here, latent target values are integrated out by Monte Carlo samples,
also called “fantasies”.


	
property fantasies

	










            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.config_ext module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.config_ext.ExtendedConfiguration(hp_ranges, resource_attr_key, resource_attr_range)

	Bases: object

This class facilitates handling extended configs, which consist of a normal
config and a resource attribute.

The config space hp_ranges is extended by an additional resource
attribute. Note that this is not a hyperparameter we optimize over,
but it is under the control of the scheduler.
Its allowed range is [1, resource_attr_range[1]], which can be larger than
[resource_attr_range[0], resource_attr_range[1]]. This is because extended
configs with resource values outside of resource_attr_range may arise (for
example, in the early stopping context, we may receive data from
epoch < resource_attr_range[0]).


	
get(config, resource)

	Create extended config with resource added.


	Parameters:

	
	config (Dict[str, Union[int, float, str]]) – Non-extended config


	resource (int) – Resource value






	Return type:

	Dict[str, Union[int, float, str]]



	Returns:

	Extended config










	
remove_resource(config_ext)

	Strips away resource attribute and returns normal config. If
config_ext is already normal, it is returned as is.


	Parameters:

	config_ext (Dict[str, Union[int, float, str]]) – Extended config



	Return type:

	Dict[str, Union[int, float, str]]



	Returns:

	config_ext without resource attribute










	
split(config_ext)

	Split extended config into normal config and resource value.


	Parameters:

	config_ext (Dict[str, Union[int, float, str]]) – Extended config



	Return type:

	(Dict[str, Union[int, float, str]], int)



	Returns:

	(config, resource_value)










	
get_resource(config_ext)

	
	Parameters:

	config_ext (Dict[str, Union[int, float, str]]) – Extended config



	Return type:

	int



	Returns:

	Value of resource attribute
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.tuning_job_state module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.tuning_job_state.TuningJobState(hp_ranges, config_for_trial, trials_evaluations, failed_trials=None, pending_evaluations=None)

	Bases: object

Collects all data determining the state of a tuning experiment. Trials
are indexed by trial_id. The configurations associated with trials are
listed in config_for_trial.
trials_evaluations contains observations, failed_trials lists
trials for which evaluations have failed, pending_evaluations lists
trials for which observations are pending.

trials_evaluations may store values for different metrics in each
record, and each such value may be a dict (see:class:TrialEvaluations).
For example, for multi-fidelity schedulers,
trials_evaluations[i].metrics[k][str(r)] is the value for metric k
and trial trials_evaluations[i].trial_id observed at resource level
r.


	
static empty_state(hp_ranges)

	
	Return type:

	TuningJobState










	
metrics_for_trial(trial_id, config=None)

	Helper for inserting new entry into trials_evaluations. If trial_id
is already contained there, the corresponding eval.metrics is
returned. Otherwise, a new entry new_eval is appended to
trials_evaluations and its new_eval.metrics is returned
(empty dict). In the latter case, config needs to be passed,
because it may not yet feature in config_for_trial.


	Return type:

	Union[float, Dict[str, float]]










	
num_observed_cases(metric_name='target', resource=None)

	Counts the number of observations for metric metric_name.


	Parameters:

	
	metric_name (str) – Defaults to INTERNAL_METRIC_NAME


	resource (Optional[int]) – In the multi-fidelity case, we only count observations
at this resource level






	Return type:

	int



	Returns:

	Number of observations










	
observed_data_for_metric(metric_name='target', resource_attr_name=None)

	Extracts datapoints from trials_evaluations for particular
metric metric_name, in the form of a list of configs and a list of
metric values.
If metric_name is a dict-valued metric, the dict keys must be
resource values, and the returned configs are extended. Here, the
name of the resource attribute can be passed in resource_attr_name
(if not given, it can be obtained from hp_ranges if this is extended).

Note: Implements the default behaviour, namely to return extended
configs for dict-valued metrics, which also require hp_ranges to be
extended. This is not correct for some specific multi-fidelity
surrogate models, which should access the data directly.


	Parameters:

	
	metric_name (str) – 


	resource_attr_name (Optional[str]) – 






	Return type:

	(List[Dict[str, Union[int, float, str]]], List[float])



	Returns:

	configs, metric_values










	
is_pending(trial_id, resource=None)

	
	Return type:

	bool










	
is_labeled(trial_id, metric_name='target', resource=None)

	Checks whether trial_id has observed data under metric_name. If
resource is given, the observation must be at that resource level.


	Return type:

	bool










	
append_pending(trial_id, config=None, resource=None)

	Appends new pending evaluation. If the trial has not been registered
here, config must be given. Otherwise, it is ignored.






	
remove_pending(trial_id, resource=None)

	
	Return type:

	bool










	
pending_configurations(resource_attr_name=None)

	Returns list of configurations corresponding to pending evaluations.
If the latter have resource values, the configs are extended.


	Return type:

	List[Dict[str, Union[int, float, str]]]










	
all_configurations(filter_observed_data=None)

	Returns list of configurations for all trials represented here, whether
observed, pending, or failed. If filter_observed_data is given, the
configurations for observed trials are filtered with this predicate.


	Parameters:

	filter_observed_data (Optional[Callable[[Dict[str, Union[int, float, str]]], bool]]) – See above, optional



	Return type:

	List[Dict[str, Union[int, float, str]]]



	Returns:

	List of all configurations
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes package


Submodules



	syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.common module
	dictionarize_objective()

	TrialEvaluations
	TrialEvaluations.trial_id

	TrialEvaluations.metrics

	TrialEvaluations.num_cases()





	PendingEvaluation
	PendingEvaluation.trial_id

	PendingEvaluation.resource





	FantasizedPendingEvaluation
	FantasizedPendingEvaluation.fantasies









	syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.config_ext module
	ExtendedConfiguration
	ExtendedConfiguration.get()

	ExtendedConfiguration.remove_resource()

	ExtendedConfiguration.split()

	ExtendedConfiguration.get_resource()









	syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.tuning_job_state module
	TuningJobState
	TuningJobState.empty_state()

	TuningJobState.metrics_for_trial()

	TuningJobState.num_observed_cases()

	TuningJobState.observed_data_for_metric()

	TuningJobState.is_pending()

	TuningJobState.is_labeled()

	TuningJobState.append_pending()

	TuningJobState.remove_pending()

	TuningJobState.pending_configurations()

	TuningJobState.all_configurations()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.constants module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.constants.OptimizationConfig(lbfgs_tol, lbfgs_maxiter, verbose, n_starts)

	Bases: object


	
lbfgs_tol: float

	




	
lbfgs_maxiter: int

	




	
verbose: bool

	




	
n_starts: int

	








	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.constants.MCMCConfig(n_samples, n_burnin, n_thinning)

	Bases: object

n_samples is the total number of samples drawn. The first n_burnin of
these are dropped (burn-in), and every n_thinning of the rest is
returned. This means we return
(n_samples - n_burnin) // n_thinning samples.


	
n_samples: int

	




	
n_burnin: int

	




	
n_thinning: int

	










            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.custom_op module


	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.custom_op.AddJitterOp(*args, **kwargs)

	Finds smaller jitter to add to diagonal of square matrix to render the
matrix positive definite (in that linalg.potrf works).

Given input x (positive semi-definite matrix) and sigsq_init (nonneg
scalar), find sigsq_final (nonneg scalar), so that:



sigsq_final = sigsq_init + jitter, jitter >= 0,

x + sigsq_final * Id positive definite (so that potrf call works)






We return the matrix x + sigsq_final * Id, for which potrf has not failed.

For the gradient, the dependence of jitter on the inputs is ignored.

The values tried for sigsq_final are:



sigsq_init, sigsq_init + initial_jitter * (jitter_growth ** k),
k = 0, 1, 2, ...,

initial_jitter = initial_jitter_factor * max(mean(diag(x)), 1)






Note: The scaling of initial_jitter with mean(diag(x)) is taken from GPy.
The rationale is that the largest eigenvalue of x is >= mean(diag(x)), and
likely of this magnitude.

There is no guarantee that the Cholesky factor returned is well-conditioned
enough for subsequent computations to be reliable. A better solution
would be to estimate the condition number of the Cholesky factor, and to add
jitter until this is bounded below a threshold we tolerate. See



Higham, N.

A Survey of Condition Number Estimation for Triangular Matrices

MIMS EPrint: 2007.10






Algorithm 4.1 could work for us.






	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.custom_op.flatten_and_concat(x, sigsq_init)

	




	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.custom_op.cholesky_factorization(*args, **kwargs)

	Replacement for autograd.numpy.linalg.cholesky(). Our backward (vjp)
is faster and simpler, while somewhat less general (only works if
a.ndim == 2).

See https://arxiv.org/abs/1710.08717 for derivation of backward (vjp)
expression.


	Parameters:

	a – Symmmetric positive definite matrix A



	Returns:

	Lower-triangular Cholesky factor L of A












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.distribution module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.distribution.Distribution

	Bases: object


	
negative_log_density(x)

	Negative log density. lower and upper limits are ignored.
If x is not a scalar, the distribution is i.i.d. over all
entries.










	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.distribution.Gamma(mean, alpha)

	Bases: Distribution

Gamma(mean, alpha):


p(x) = C(alpha, beta) x^{alpha - 1} exp( -beta x), beta = alpha / mean,
C(alpha, beta) = beta^alpha / Gamma(alpha)





	
negative_log_density(x)

	Negative log density. lower and upper limits are ignored.
If x is not a scalar, the distribution is i.i.d. over all
entries.










	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.distribution.Uniform(lower, upper)

	Bases: Distribution


	
negative_log_density(x)

	Negative log density. lower and upper limits are ignored.
If x is not a scalar, the distribution is i.i.d. over all
entries.










	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.distribution.Normal(mean, sigma)

	Bases: Distribution


	
negative_log_density(x)

	Negative log density. lower and upper limits are ignored.
If x is not a scalar, the distribution is i.i.d. over all
entries.










	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.distribution.LogNormal(mean, sigma)

	Bases: Distribution


	
negative_log_density(x)

	Negative log density. lower and upper limits are ignored.
If x is not a scalar, the distribution is i.i.d. over all
entries.










	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.distribution.Horseshoe(s)

	Bases: Distribution


	
negative_log_density(x)

	Negative log density. lower and upper limits are ignored.
If x is not a scalar, the distribution is i.i.d. over all
entries.












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon module

Gluon APIs for autograd


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon.Block(prefix=None, params=None)

	Bases: object

Base class for all neural network layers and models. Your models should
subclass this class.
Block can be nested recursively in a tree structure. You can create and
assign child Block as regular attributes:

from mxnet.gluon import Block, nn
from mxnet import ndarray as F
class Model(Block):
    def __init__(self, **kwargs):
        super(Model, self).__init__(**kwargs)
        # use name_scope to give child Blocks appropriate names.
        with self.name_scope():
            self.dense0 = nn.Dense(20)
            self.dense1 = nn.Dense(20)
    def forward(self, x):
        x = F.relu(self.dense0(x))
        return F.relu(self.dense1(x))
model = Model()
model.initialize(ctx=mx.cpu(0))
model(F.zeros((10, 10), ctx=mx.cpu(0)))





Child Block assigned this way will be registered and collect_params()
will collect their Parameters recursively. You can also manually register
child blocks with register_child().
Parameters
———-
prefix : str


Prefix acts like a name space. All children blocks created in parent block’s
name_scope() will have parent block’s prefix in their name.
Please refer to
naming tutorial
for more info on prefix and naming.





	paramsParameterDict or None
	ParameterDict for sharing weights with the new Block. For example,
if you want dense1 to share dense0’s weights, you can do:

dense0 = nn.Dense(20)
dense1 = nn.Dense(20, params=dense0.collect_params())










	
property prefix

	Prefix of this Block.






	
property name

	Name of this Block, without ‘_’ in the end.






	
name_scope()

	Returns a name space object managing a child Block and parameter
names. Should be used within a with statement:

with self.name_scope():
    self.dense = nn.Dense(20)





Please refer to
the naming tutorial
for more info on prefix and naming.






	
property params

	Returns this Block’s parameter dictionary (does not include its
children’s parameters).






	
collect_params(select=None)

	Returns a ParameterDict containing this Block and all of its
children’s Parameters(default), also can returns the select ParameterDict
which match some given regular expressions.
For example, collect the specified parameters in [‘conv1_weight’, ‘conv1_bias’, ‘fc_weight’,
‘fc_bias’]:

model.collect_params('conv1_weight|conv1_bias|fc_weight|fc_bias')





or collect all parameters whose names end with ‘weight’ or ‘bias’, this can be done
using regular expressions:

model.collect_params('.*weight|.*bias')






Parameters


	selectstr
	regular expressions







Returns

The selected ParameterDict







	
register_child(block, name=None)

	Registers block as a child of self. Block s assigned to self as
attributes will be registered automatically.






	
apply(fn)

	Applies fn recursively to every child block as well as self.
Parameters
———-
fn : callable


Function to be applied to each submodule, of form fn(block).





Returns

this block







	
initialize(init=None, ctx=None, verbose=False, force_reinit=False)

	Initializes Parameter s of this Block and its children.
Equivalent to block.collect_params().initialize(...)
Parameters
———-
init : Initializer


Global default Initializer to be used when Parameter.init() is None.
Otherwise, Parameter.init() takes precedence.





	ctxContext or list of Context
	Keeps a copy of Parameters on one or many context(s).



	verbosebool, default False
	Whether to verbosely print out details on initialization.



	force_reinitbool, default False
	Whether to force re-initialization if parameter is already initialized.










	
hybridize(active=True, **kwargs)

	Please refer description of HybridBlock hybridize().






	
cast(dtype)

	Cast this Block to use another data type.
Parameters
———-
dtype : str or numpy.dtype


The new data type.









	
forward(*args)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
hybrid_forward(*args)

	








	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon.Parameter(name, grad_req='write', shape=None, dtype=<class 'numpy.float64'>, lr_mult=1.0, wd_mult=1.0, init=None, allow_deferred_init=False, differentiable=True, stype='default', grad_stype='default')

	Bases: object

A Container holding parameters (weights) of Blocks.
Parameter holds a copy of the parameter on each Context after
it is initialized with Parameter.initialize(...). If grad_req is
not 'null', it will also hold a gradient array on each Context:

x = np.zeros((16, 100))
w = Parameter('fc_weight', shape=(16, 100), init=np.random.uniform)
w.initialize()
b.initialize()
z = x + w.data






Parameters


	namestr
	Name of this parameter.



	grad_req{‘write’, ‘add’, ‘null’}, default ‘write’
	Specifies how to update gradient to grad arrays.
- 'write' means everytime gradient is written to grad NDArray.
- 'add' means everytime gradient is added to the grad NDArray. You need


to manually call zero_grad() to clear the gradient buffer before each
iteration when using this option.





	‘null’ means gradient is not requested for this parameter. gradient arrays
will not be allocated.






	shapeint or tuple of int, default None
	Shape of this parameter. By default shape is not specified. Parameter with
unknown shape can be used for Symbol API, but init will throw an error
when using NDArray API.



	dtypenumpy.dtype or str, default ‘float64’
	Data type of this parameter. For example, numpy.float64 or 'float64'.



	lr_multfloat, default 1.0
	Learning rate multiplier. Learning rate will be multiplied by lr_mult
when updating this parameter with optimizer.



	wd_multfloat, default 1.0
	Weight decay multiplier (L2 regularizer coefficient). Works similar to lr_mult.



	initInitializer, default None
	Initializer of this parameter. Will use the global initializer by default.



	stype: {‘default’, ‘row_sparse’, ‘csr’}, defaults to ‘default’.
	The storage type of the parameter.



	grad_stype: {‘default’, ‘row_sparse’, ‘csr’}, defaults to ‘default’.
	The storage type of the parameter’s gradient.







Attributes


	grad_req{‘write’, ‘add’, ‘null’}
	This can be set before or after initialization. Setting grad_req to 'null'
with x.grad_req = 'null' saves memory and computation when you don’t
need gradient w.r.t x.



	lr_multfloat
	Local learning rate multiplier for this Parameter. The actual learning rate
is calculated with learning_rate * lr_mult. You can set it with
param.lr_mult = 2.0



	wd_multfloat
	Local weight decay multiplier for this Parameter.






	
property grad_req

	




	
property dtype

	The type of the parameter.
Setting the dtype value is equivalent to casting the value of the parameter






	
property shape

	The shape of the parameter.
By default, an unknown dimension size is 0. However, when the NumPy semantic
is turned on, unknown dimension size is -1.






	
initialize(init=None, ctx=None, default_init=None, force_reinit=False)

	Initializes parameter and gradient arrays. Only used for NDArray API.
Parameters
———-
init : Initializer


The initializer to use. Overrides Parameter.init() and default_init.





	ctxContext or list of Context, defaults to context.current_context().
	Initialize Parameter on given context. If ctx is a list of Context, a
copy will be made for each context.
.. note:

Copies are independent arrays. User is responsible for keeping
their values consistent when updating.
Normally :py:class:`gluon.Trainer` does this for you.







	default_initInitializer
	Default initializer is used when both init()
and Parameter.init() are None.



	force_reinitbool, default False
	Whether to force re-initialization if parameter is already initialized.






Examples

>>> weight = mx.gluon.Parameter('weight', shape=(2, 2))
>>> weight.initialize(ctx=mx.cpu(0))
>>> weight.data()
[[-0.01068833  0.01729892]
 [ 0.02042518 -0.01618656]]
<NDArray 2x2 @cpu(0)>
>>> weight.grad()
[[ 0.  0.]
 [ 0.  0.]]
<NDArray 2x2 @cpu(0)>
>>> weight.initialize(ctx=[mx.gpu(0), mx.gpu(1)])
>>> weight.data(mx.gpu(0))
[[-0.00873779 -0.02834515]
 [ 0.05484822 -0.06206018]]
<NDArray 2x2 @gpu(0)>
>>> weight.data(mx.gpu(1))
[[-0.00873779 -0.02834515]
 [ 0.05484822 -0.06206018]]
<NDArray 2x2 @gpu(1)>











	
reset_ctx(ctx)

	Re-assign Parameter to other contexts.
Parameters
———-
ctx : Context or list of Context, default context.current_context().


Assign Parameter to given context. If ctx is a list of Context, a
copy will be made for each context.









	
set_data(data)

	Sets this parameter’s value on all contexts.






	
data(ctx=None)

	Returns a copy of this parameter on one context. Must have been
initialized on this context before. For sparse parameters, use
Parameter.row_sparse_data() instead.
Parameters
———-
ctx : Context


Desired context.





Returns

NDArray on ctx







	
list_data()

	Returns copies of this parameter on all contexts, in the same order
as creation. For sparse parameters, use Parameter.list_row_sparse_data()
instead.
Returns
——-
list of NDArrays






	
grad(ctx=None)

	Returns a gradient buffer for this parameter on one context.
Parameters
———-
ctx : Context


Desired context.









	
list_grad()

	Returns gradient buffers on all contexts, in the same order
as values().






	
list_ctx()

	Returns a list of contexts this parameter is initialized on.






	
zero_grad()

	Sets gradient buffer on all contexts to 0. No action is taken if
parameter is uninitialized or doesn’t require gradient.






	
cast(dtype)

	Cast data and gradient of this Parameter to a new data type.
Parameters
———-
dtype : str or numpy.dtype


The new data type.














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon.ParameterDict(prefix='', shared=None)

	Bases: object

A dictionary managing a set of parameters.
Parameters
———-
prefix : str, default ''


The prefix to be prepended to all Parameters’ names created by this dict.





	sharedParameterDict or None
	If not None, when this dict’s get() method creates a new parameter, will
first try to retrieve it from “shared” dict. Usually used for sharing
parameters with another Block.






	
items()

	




	
keys()

	




	
values()

	




	
property prefix

	Prefix of this dict. It will be prepended to Parameter`s' name created
with :py:func:`get.






	
get(name, **kwargs)

	Retrieves a Parameter with name self.prefix+name. If not found,
get() will first try to retrieve it from “shared” dict. If still not
found, get() will create a new Parameter with key-word arguments and
insert it to self.
Parameters
———-
name : str


Name of the desired Parameter. It will be prepended with this dictionary’s
prefix.





	**kwargsDict[str, Any]
	The rest of key-word arguments for the created Parameter.






Returns


	Parameter
	The created or retrieved Parameter.











	
update(other)

	Copies all Parameters in other to self.






	
initialize(init=None, ctx=None, verbose=False, force_reinit=False)

	Initializes all Parameters managed by this dictionary to be used for NDArray
API. It has no effect when using Symbol API.
Parameters
———-
init : Initializer


Global default Initializer to be used when Parameter.init() is None.
Otherwise, Parameter.init() takes precedence.





	ctxContext or list of Context
	Keeps a copy of Parameters on one or many context(s).



	verbosebool, default False
	Whether to verbosely print out details on initialization.



	force_reinitbool, default False
	Whether to force re-initialization if parameter is already initialized.










	
reset_ctx(ctx)

	Re-assign all Parameters to other contexts.
Parameters
———-
ctx : Context or list of Context, default context.current_context().


Assign Parameter to given context. If ctx is a list of Context, a
copy will be made for each context.









	
list_ctx()

	Returns a list of all the contexts on which the underlying Parameters
are initialized.






	
setattr(name, value)

	Set an attribute to a new value for all Parameters.
For example, set grad_req to null if you don’t need gradient w.r.t a
model’s Parameters:

model.collect_params().setattr('grad_req', 'null')






	or change the learning rate multiplier::
	model.collect_params().setattr(‘lr_mult’, 0.5)






Parameters


	namestr
	Name of the attribute.



	valuevalid type for attribute name
	The new value for the attribute.

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.ConstantPositiveVector(param_name, encoding, size_cols, **kwargs)

	Bases: Block

Represents constant vector, with positive entry value represented as Gluon
parameter, to be used in the context of wrapper classes in
gluon_blocks.py. Shape, dtype, and context are determined from the
features argument:


	If features.shape = (n, d):
shape = (d, 1) if size_cols = True (number cols of features)
shape = (n, 1) if size_cols = False (number rows of features)


	dtype = features.dtype, ctx = features.ctx




Encoding and internal Gluon parameter:
The positive scalar parameter is encoded via encoding (see
ScalarEncodingBase). The internal Gluon parameter (before encoding)
has the name param_name + "_internal".


	
forward(features, param_internal)

	Returns constant positive vector

If features.shape = (n, d), the shape of the vector returned is
(d, 1) if size_cols = True, (n, 1) otherwise.


	Parameters:

	
	features – Matrix for shape, dtype, ctx


	param_internal – Unwrapped parameter






	Returns:

	Constant positive vector










	
set(val)

	




	
get()

	




	
get_box_constraints_internal()

	




	
log_parameters()

	




	
get_parameters()

	




	
switch_updating(flag)

	Is the underlying parameter updated during learning?

By default, the parameter takes part in learning (its grad_req
attribute is ‘write’). For flag == False, the attribute is
flipped to ‘null’, and the parameter remains constant during
learning.


	Parameters:

	flag – Update parameter during learning?










	
has_regularizer()

	




	
eval_regularizer(features)

	








	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.PositiveScalarEncoding(lower, constr_upper=None, init_val=None, regularizer=None, dimension=1)

	Bases: ScalarEncodingBase

Provides encoding for positive scalar and vector: param > lower.
Here, param is represented as gluon.Parameter. The param
is with shape (dimension,) where dimension is 1 by default.

The encoding is given as:


param = softrelu(param_internal) + lower,
softrelu(x) = log(1 + exp(x))




If constr_upper is used, the constraint


param_internal < dec(constr_upper)




can be enforced by an optimizer. Since dec is increasing, this translates
to param < constr_upper.
Note: While lower is enforced by the encoding, the upper bound is not, has
to be enforced by an optimizer.


	
get(param_internal)

	




	
decode(val, name)

	








	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.IdentityScalarEncoding(constr_lower=None, constr_upper=None, init_val=None, regularizer=None, dimension=1)

	Bases: ScalarEncodingBase

Identity encoding for scalar and vector:


param = param_internal




This does not ensure that param is positive! Use this only if positivity
is otherwise guaranteed.


	
get(param_internal)

	




	
decode(val, name)

	








	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.LogarithmScalarEncoding(constr_lower=None, constr_upper=None, init_val=None, regularizer=None, dimension=1)

	Bases: ScalarEncodingBase

Logarithmic encoding for scalar and vector:


param = exp(param_internal),
param_internal = param





	
get(param_internal)

	




	
decode(val, name)

	








	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.unwrap_parameter(param_internal, some_arg=None)

	




	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.encode_unwrap_parameter(param_internal, encoding, some_arg=None)

	




	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.param_to_pretty_string(gluon_param, encoding)

	Take a gluon parameter and transform it to a string amenable to plotting
If need be, the gluon parameter is appropriately encoded (e.g., log-exp
transform).


	Parameters:

	
	gluon_param (Parameter) – gluon parameter


	encoding (ScalarEncodingBase) – object in charge of encoding/decoding the gluon_param






	Return type:

	str










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.register_parameter(params, name, encoding, shape=(1, ), dtype=<class 'numpy.float64'>)

	




	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers.create_encoding(encoding_name, init_val, constr_lower, constr_upper, dimension, prior)

	






            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gp_model module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gp_model.GaussianProcessModel(random_seed=None)

	Bases: object

Base class for Gaussian-linear models which support parameter fitting and
prediction.


	
property random_state: RandomState

	




	
property states: List[PosteriorState] | None

	
	Returns:

	Current posterior states (one per MCMC sample; just a single
state if model parameters are optimized)










	
fit(data)

	Adjust model parameters based on training data data. Can be done via
optimization or MCMC sampling. The posterior states are computed at the
end as well.


	Parameters:

	data (Dict[str, Any]) – Training data










	
recompute_states(data)

	Recomputes posterior states for current model parameters.


	Parameters:

	data (Dict[str, Any]) – Training data










	
predict(features_test)

	Compute the posterior mean(s) and variance(s) for the points in features_test.
If the posterior state is based on m target vectors, a (n, m) matrix is returned for posterior means.


	Parameters:

	features_test (ndarray) – Data matrix X_test of size (n, d) (type np.ndarray) for which n predictions are made



	Returns:

	posterior_means, posterior_variances










	
multiple_targets()

	
	Returns:

	Posterior state based on multiple (fantasized) target










	
sample_marginals(features_test, num_samples=1)

	Draws marginal samples from predictive distribution at n test points.
Notice we concat the samples for each state. Let n_states = len(self._states)

If the posterior state is based on m > 1 target vectors, a
(n, m, num_samples * n_states) tensor is returned, for m == 1 we return a
(n, num_samples * n_states) matrix.


	Parameters:

	
	features_test (ndarray) – Test input points, shape (n, d)


	num_samples (int) – Number of samples






	Returns:

	Samples with shape (n, num_samples * n_states) or
(n, m, num_samples * n_states) if m > 1










	
sample_joint(features_test, num_samples=1)

	Draws joint samples from predictive distribution at n test points.
This scales cubically with n.
the posterior state must be based on a single target vector
(m > 1 is not supported).


	Parameters:

	
	features_test (ndarray) – Test input points, shape (n, d)


	num_samples (int) – Number of samples






	Returns:

	Samples, shape (n, num_samples)














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gp_model.GaussianProcessOptimizeModel(optimization_config=None, random_seed=None, fit_reset_params=True)

	Bases: GaussianProcessModel

Base class for models where parameters are fit by maximizing the marginal
likelihood.


	
property states: List[PosteriorState] | None

	
	Returns:

	Current posterior states (one per MCMC sample; just a single
state if model parameters are optimized)










	
property likelihood: MarginalLikelihood

	




	
fit(data)

	Fit the model parameters by optimizing the marginal likelihood,
and set posterior states.

We catch exceptions during the optimization restarts. If any restarts
fail, log messages are written. If all restarts fail, the current
parameters are not changed.


	Parameters:

	data (Dict[str, Any]) – Input data










	
recompute_states(data)

	Recomputes posterior states for current model parameters.


	Parameters:

	data (Dict[str, Any]) – Training data










	
get_params()

	
	Return type:

	Dict[str, Any]










	
set_params(param_dict)

	




	
reset_params()

	Reset hyperparameters to their initial values (or resample them).












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gp_regression module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gp_regression.GaussianProcessRegression(kernel, mean=None, target_transform=None, initial_noise_variance=None, optimization_config=None, random_seed=None, fit_reset_params=True)

	Bases: GaussianProcessOptimizeModel

Gaussian Process Regression

Takes as input a mean function (which depends on X only) and a kernel
function.


	Parameters:

	
	kernel (KernelFunction) – Kernel function


	mean (Optional[MeanFunction]) – Mean function which depends on the input X only (by default,
a scalar fitted while optimizing the likelihood)


	target_transform (Optional[ScalarTargetTransform]) – Invertible transform of target values y to
latent values z, which are then modelled as Gaussian. Defaults to
the identity


	initial_noise_variance (Optional[float]) – Initial value for noise variance parameter


	optimization_config (Optional[OptimizationConfig]) – Configuration that specifies the behavior of
the optimization of the marginal likelihood.


	random_seed – Random seed to be used (optional)


	fit_reset_params (bool) – Reset parameters to initial values before running
‘fit’? If False, ‘fit’ starts from the current values









	
property likelihood: MarginalLikelihood

	










            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gpr_mcmc module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gpr_mcmc.GPRegressionMCMC(build_kernel, mcmc_config=MCMCConfig(n_samples=300, n_burnin=250, n_thinning=5), random_seed=None)

	Bases: GaussianProcessModel


	
property states: List[GaussProcPosteriorState] | None

	
	Returns:

	Current posterior states (one per MCMC sample; just a single
state if model parameters are optimized)










	
property number_samples: int

	




	
fit(data)

	Adjust model parameters based on training data data. Can be done via
optimization or MCMC sampling. The posterior states are computed at the
end as well.


	Parameters:

	data (Dict[str, Any]) – Training data










	
recompute_states(data)

	Supports fantasizing, in that targets can be a matrix. Then,
ycols = targets.shape[1] must be a multiple of self.number_samples.












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.gp_model module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.gp_model.HyperTuneDistributionArguments(num_samples, num_brackets=None)

	Bases: object


	
num_samples: int

	




	
num_brackets: Optional[int] = None

	








	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.gp_model.HyperTuneModelMixin(hypertune_distribution_args)

	Bases: object


	
hypertune_bracket_distribution()

	Distribution [w_k] of support size num_supp_brackets, where
num_supp_brackets <= args.num_brackets (the latter is maximum if
not given) is maximum such that the first num_supp_brackets
brackets have >= 6 labeled datapoints each.

If num_supp_brackets < args.num_brackets, the distribution must be
extended to full size before being used to sample the next bracket.


	Return type:

	Optional[ndarray]










	
hypertune_ensemble_distribution()

	Distribution [theta_r] which is used to create an ensemble predictive
distribution fed into the acquisition function.
The ensemble distribution runs over all sufficiently supported rung
levels, independent of the number of brackets.


	Return type:

	Optional[Dict[int, float]]










	
fit_distributions(poster_state, data, resource_attr_range, random_state)

	
	Return type:

	Optional[Dict[int, float]]














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.gp_model.HyperTuneIndependentGPModel(kernel, mean_factory, resource_attr_range, hypertune_distribution_args, target_transform=None, separate_noise_variances=False, initial_noise_variance=None, initial_covariance_scale=None, optimization_config=None, random_seed=None, fit_reset_params=True)

	Bases: IndependentGPPerResourceModel, HyperTuneModelMixin

Variant of IndependentGPPerResourceModel which implements additional
features of the Hyper-Tune algorithm, see



Yang Li et al

Hyper-Tune: Towards Efficient Hyper-parameter Tuning at Scale

VLDB 2022






Our implementation differs from the Hyper-Tune paper in a number of ways.
Most importantly, their method requires a sufficient number of observed
points at the starting rung of the highest bracket. In contrast, we
estimate ranking loss values already when the starting rung of the 2nd
bracket is sufficiently occupied. This allows us to estimate the head
of the distribution only (over all brackets with sufficiently occupied
starting rungs), and we use the default distribution over the remaining
tail. Eventually, we do the same as Hyper-Tune, but we move away from the
default distribution earlier on.


	Parameters:

	hypertune_distribution_args (HyperTuneDistributionArguments) – Parameters for Hyper-Tune






	
create_likelihood(rung_levels)

	Delayed creation of likelihood, needs to know rung levels of Hyperband
scheduler.

Note: last entry of rung_levels must be max_t, even if this is not
a rung level in Hyperband.


	Parameters:

	rung_levels (List[int]) – Rung levels










	
hypertune_ensemble_distribution()

	Distribution [theta_r] which is used to create an ensemble predictive
distribution fed into the acquisition function.
The ensemble distribution runs over all sufficiently supported rung
levels, independent of the number of brackets.


	Return type:

	Optional[Dict[int, float]]










	
fit(data)

	Fit the model parameters by optimizing the marginal likelihood,
and set posterior states.

We catch exceptions during the optimization restarts. If any restarts
fail, log messages are written. If all restarts fail, the current
parameters are not changed.


	Parameters:

	data (Dict[str, Any]) – Input data














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.gp_model.HyperTuneJointGPModel(kernel, resource_attr_range, hypertune_distribution_args, mean=None, target_transform=None, initial_noise_variance=None, optimization_config=None, random_seed=None, fit_reset_params=True)

	Bases: GaussianProcessRegression, HyperTuneModelMixin

Variant of GaussianProcessRegression which implements additional
features of the Hyper-Tune algorithm, see


Yang Li et al
Hyper-Tune: Towards Efficient Hyper-parameter Tuning at Scale
VLDB 2022




See also HyperTuneIndependentGPModel


	Parameters:

	hypertune_distribution_args (HyperTuneDistributionArguments) – Parameters for Hyper-Tune






	
create_likelihood(rung_levels)

	Delayed creation of likelihood, needs to know rung levels of Hyperband
scheduler.

Note: last entry of rung_levels must be max_t, even if this is not
a rung level in Hyperband.


	Parameters:

	rung_levels (List[int]) – Rung levels










	
hypertune_ensemble_distribution()

	Distribution [theta_r] which is used to create an ensemble predictive
distribution fed into the acquisition function.
The ensemble distribution runs over all sufficiently supported rung
levels, independent of the number of brackets.


	Return type:

	Optional[Dict[int, float]]










	
fit(data)

	Fit the model parameters by optimizing the marginal likelihood,
and set posterior states.

We catch exceptions during the optimization restarts. If any restarts
fail, log messages are written. If all restarts fail, the current
parameters are not changed.


	Parameters:

	data (Dict[str, Any]) – Input data
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.likelihood module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.likelihood.HyperTuneIndependentGPMarginalLikelihood(kernel, mean, resource_attr_range, ensemble_distribution, target_transform=None, separate_noise_variances=False, initial_noise_variance=None, initial_covariance_scale=None, encoding_type=None, **kwargs)

	Bases: IndependentGPPerResourceMarginalLikelihood

Variant of IndependentGPPerResourceMarginalLikelihood, which has the
same internal model and marginal likelihood function, but whose posterior
state is of HyperTuneIndependentGPPosteriorState, which uses an
ensemble predictive distribution, whose weighting distribution has to be
passed here at construction.


	
property ensemble_distribution: Dict[int, float]

	




	
set_ensemble_distribution(distribution)

	




	
get_posterior_state(data)

	
	Return type:

	PosteriorState














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.likelihood.HyperTuneJointGPMarginalLikelihood(kernel, mean, resource_attr_range, ensemble_distribution, target_transform=None, initial_noise_variance=None, encoding_type=None, **kwargs)

	Bases: GaussianProcessMarginalLikelihood

Variant of GaussianProcessMarginalLikelihood, which has the
same internal model and marginal likelihood function, but whose posterior
state is of HyperTuneJointGPPosteriorState, which uses an
ensemble predictive distribution, whose weighting distribution has to be
passed here at construction.


	
property ensemble_distribution: Dict[int, float]

	




	
set_ensemble_distribution(distribution)

	




	
get_posterior_state(data)

	
	Return type:

	PosteriorState
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.posterior_state module


	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.posterior_state.assert_ensemble_distribution(distribution, all_resources)

	




	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.posterior_state.HyperTuneIndependentGPPosteriorState(features, targets, kernel, mean, covariance_scale, noise_variance, resource_attr_range, ensemble_distribution, debug_log=False)

	Bases: IndependentGPPerResourcePosteriorState

Special case of IndependentGPPerResourcePosteriorState, where
methods predict, backward_gradient, sample_marginals, sample_joint
are over a random function \(f_{MF}(x)\), obtained by first sampling the
resource level \(r \sim [\theta_r]\), then use
\(f_{MF}(x) = f(x, r)\). Predictive means and variances are:


	..math::
	mu_{MF}(x) = sum_r theta_r mu(x, r)
sigma_{MF}^2(x) = sum_r theta_r^2 sigma_{MF}^2(x, r)





Here, \([\theta_k]\) is a distribution over a subset of rung levels.

Note: This posterior state is unusual, in that sample_marginals,
sample_joint have to work both with (a) extended inputs (x, r) and (b)
non-extended inputs x. For case (a), they behave like the superclass
methods, this is needed to support fitting model parameters, for example
for drawing fantasy samples. For case (b), they use the ensemble
distribution detailed above, which supports optimizing the acquisition
function.


	
predict(test_features)

	Computes marginal statistics (means, variances) for a number of test
features.


	Parameters:

	test_features (ndarray) – Features for test configs



	Return type:

	Tuple[ndarray, ndarray]



	Returns:

	posterior_means, posterior_variances










	
sample_marginals(test_features, num_samples=1, random_state=None)

	If test_features are non-extended features (no resource attribute),
we sample from the ensemble predictive distribution. Otherwise, we
call the superclass method.


	Return type:

	ndarray










	
sample_joint(test_features, num_samples=1, random_state=None)

	If test_features are non-extended features (no resource attribute),
we sample from the ensemble predictive distribution. Otherwise, we
call the superclass method.


	Return type:

	ndarray










	
backward_gradient(input, head_gradients, mean_data, std_data)

	Implements Predictor.backward_gradient, see comments there.
This is for a single posterior state. If the Predictor uses
MCMC, have to call this for every sample.


	Parameters:

	
	input (ndarray) – Single input point x, shape (d,)


	head_gradients (Dict[str, ndarray]) – See Predictor.backward_gradient


	mean_data (float) – Mean used to normalize targets


	std_data (float) – Stddev used to normalize targets






	Return type:

	ndarray



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.posterior_state.HyperTuneJointGPPosteriorState(features, targets, mean, kernel, noise_variance, resource_attr_range, ensemble_distribution, debug_log=False)

	Bases: GaussProcPosteriorState

Special case of GaussProcPosteriorState, where methods predict,
backward_gradient, sample_marginals, sample_joint are over a random
function \(f_{MF}(x)\), obtained by first sampling the resource level
\(r \sim [\theta_r]\), then use \(f_{MF}(x) = f(x, r)\).
Predictive means and variances are:


	..math::
	mu_{MF}(x) = sum_r theta_r mu(x, r)
sigma_{MF}^2(x) = sum_r theta_r^2 sigma_{MF}^2(x, r)





Here, \([\theta_k]\) is a distribution over a subset of rung levels.

Note: This posterior state is unusual, in that sample_marginals,
sample_joint have to work both with (a) extended inputs (x, r) and (b)
non-extended inputs x. For case (a), they behave like the superclass
methods, this is needed to support fitting model parameters, for example
for drawing fantasy samples. For case (b), they use the ensemble
distribution detailed above, which supports optimizing the acquisition
function.


	
predict(test_features)

	Computes marginal statistics (means, variances) for a number of test
features.


	Parameters:

	test_features (ndarray) – Features for test configs



	Return type:

	Tuple[ndarray, ndarray]



	Returns:

	posterior_means, posterior_variances










	
sample_marginals(test_features, num_samples=1, random_state=None)

	If test_features are non-extended features (no resource attribute),
we sample from the ensemble predictive distribution. Otherwise, we
call the superclass method.


	Return type:

	ndarray










	
sample_joint(test_features, num_samples=1, random_state=None)

	If test_features are non-extended features (no resource attribute),
we sample from the ensemble predictive distribution. Otherwise, we
call the superclass method.


	Return type:

	ndarray










	
backward_gradient(input, head_gradients, mean_data, std_data)

	Implements Predictor.backward_gradient, see comments there.
This is for a single posterior state. If the Predictor uses
MCMC, have to call this for every sample.

The posterior represented here is based on normalized data, while
the acquisition function is based on the de-normalized predictive
distribution, which is why we need ‘mean_data’, ‘std_data’ here.


	Parameters:

	
	input (ndarray) – Single input point x, shape (d,)


	head_gradients (Dict[str, ndarray]) – See Predictor.backward_gradient


	mean_data (float) – Mean used to normalize targets


	std_data (float) – Stddev used to normalize targets






	Return type:

	ndarray



	Returns:

	
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils.ExtendFeaturesByResourceMixin(resource, resource_attr_range)

	Bases: object


	
extend_features_by_resource(test_features)

	
	Return type:

	ndarray














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils.PosteriorStateClampedResource(poster_state_extended, resource, resource_attr_range)

	Bases: PosteriorStateWithSampleJoint, ExtendFeaturesByResourceMixin

Converts posterior state of PosteriorStateWithSampleJoint
over extended inputs into posterior state over non-extended inputs, where
the resource attribute is clamped to a fixed value.


	Parameters:

	
	poster_state_extended (PosteriorStateWithSampleJoint) – Posterior state over extended inputs


	resource (int) – Value to which resource attribute is clamped


	resource_attr_range (Tuple[int, int]) – \((r_{min}, r_{max})\)









	
property num_data

	




	
property num_features

	




	
property num_fantasies

	




	
neg_log_likelihood()

	
	Return type:

	ndarray



	Returns:

	Negative log marginal likelihood










	
predict(test_features)

	Computes marginal statistics (means, variances) for a number of test
features.


	Parameters:

	test_features (ndarray) – Features for test configs



	Return type:

	Tuple[ndarray, ndarray]



	Returns:

	posterior_means, posterior_variances










	
sample_marginals(test_features, num_samples=1, random_state=None)

	See comments of predict.


	Parameters:

	
	test_features (ndarray) – Input points for test configs


	num_samples (int) – Number of samples


	random_state (Optional[RandomState]) – PRNG






	Return type:

	ndarray



	Returns:

	Marginal samples, (num_test, num_samples)










	
sample_joint(test_features, num_samples=1, random_state=None)

	See comments of predict.


	Parameters:

	
	test_features (ndarray) – Input points for test configs


	num_samples (int) – Number of samples


	random_state (Optional[RandomState]) – PRNG






	Return type:

	ndarray



	Returns:

	Joint samples, (num_test, num_samples)










	
backward_gradient(input, head_gradients, mean_data, std_data)

	Implements Predictor.backward_gradient, see comments there.
This is for a single posterior state. If the Predictor uses
MCMC, have to call this for every sample.


	Parameters:

	
	input (ndarray) – Single input point x, shape (d,)


	head_gradients (Dict[str, ndarray]) – See Predictor.backward_gradient


	mean_data (float) – Mean used to normalize targets


	std_data (float) – Stddev used to normalize targets






	Return type:

	ndarray



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils.MeanFunctionClampedResource(mean_extended, resource, resource_attr_range, **kwargs)

	Bases: MeanFunction, ExtendFeaturesByResourceMixin


	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	










	
forward(X)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.













	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils.KernelFunctionClampedResource(kernel_extended, resource, resource_attr_range, **kwargs)

	Bases: KernelFunction, ExtendFeaturesByResourceMixin


	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	










	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
forward(X1, X2)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.













	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils.GaussProcPosteriorStateAndRungLevels(poster_state, rung_levels)

	Bases: PosteriorStateWithSampleJoint


	
property poster_state: GaussProcPosteriorState

	




	
property num_data

	




	
property num_features

	




	
property num_fantasies

	




	
neg_log_likelihood()

	
	Return type:

	ndarray



	Returns:

	Negative log marginal likelihood










	
predict(test_features)

	Computes marginal statistics (means, variances) for a number of test
features.


	Parameters:

	test_features (ndarray) – Features for test configs



	Return type:

	Tuple[ndarray, ndarray]



	Returns:

	posterior_means, posterior_variances










	
sample_marginals(test_features, num_samples=1, random_state=None)

	See comments of predict.


	Parameters:

	
	test_features (ndarray) – Input points for test configs


	num_samples (int) – Number of samples


	random_state (Optional[RandomState]) – PRNG






	Return type:

	ndarray



	Returns:

	Marginal samples, (num_test, num_samples)










	
sample_joint(test_features, num_samples=1, random_state=None)

	See comments of predict.


	Parameters:

	
	test_features (ndarray) – Input points for test configs


	num_samples (int) – Number of samples


	random_state (Optional[RandomState]) – PRNG






	Return type:

	ndarray



	Returns:

	Joint samples, (num_test, num_samples)










	
backward_gradient(input, head_gradients, mean_data, std_data)

	Implements Predictor.backward_gradient, see comments there.
This is for a single posterior state. If the Predictor uses
MCMC, have to call this for every sample.


	Parameters:

	
	input (ndarray) – Single input point x, shape (d,)


	head_gradients (Dict[str, ndarray]) – See Predictor.backward_gradient


	mean_data (float) – Mean used to normalize targets


	std_data (float) – Stddev used to normalize targets






	Return type:

	ndarray



	Returns:

	










	
property rung_levels: List[int]

	








	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils.hypertune_ranking_losses(poster_state, data, num_samples, resource_attr_range, random_state=None)

	Samples ranking loss values as defined in the Hyper-Tune paper. We return a
matrix of size (num_supp_levels, num_samples), where
num_supp_levels <= poster_state.rung_levels is the number of rung levels
supported by at least 6 labeled datapoints.

The loss values depend on the cases in data at the level
poster_state.rung_levels[num_supp_levels - 1]. We must have
num_supp_levels >= 2.

Loss values at this highest supported level are estimated by
cross-validation (so the data at this level is split into training and
test, where the training part is used to obtain the posterior state). The
number of CV folds is <= 5, and such that each fold has at least two
points.


	Parameters:

	
	poster_state (Union[IndependentGPPerResourcePosteriorState, GaussProcPosteriorStateAndRungLevels]) – Posterior state over rung levels


	data (Dict[str, Any]) – Training data


	num_samples (int) – Number of independent loss samples


	resource_attr_range (Tuple[int, int]) – (r_min, r_max)


	random_state (Optional[RandomState]) – PRNG state






	Return type:

	ndarray



	Returns:

	See above










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils.number_supported_levels_and_data_highest_level(rung_levels, data, resource_attr_range)

	Finds num_supp_levels as maximum such that
rung levels up to there have >= 6 labeled datapoints. The set
of labeled datapoints of level num_supp_levels - 1 is
returned as well.

If num_supp_levels == 1, no level except for the lowest
has >= 6 datapoints. In this case, data_max_resource returned
is invalid.


	Parameters:

	
	rung_levels (List[int]) – Rung levels


	data (Dict[str, Any]) – Training data (only data at highest level is used)


	resource_attr_range (Tuple[int, int]) – (r_min, r_max)






	Return type:

	Tuple[int, dict]



	Returns:

	(num_supp_levels, data_max_resource)












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune package


Submodules



	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.gp_model module
	HyperTuneDistributionArguments
	HyperTuneDistributionArguments.num_samples

	HyperTuneDistributionArguments.num_brackets





	HyperTuneModelMixin
	HyperTuneModelMixin.hypertune_bracket_distribution()

	HyperTuneModelMixin.hypertune_ensemble_distribution()

	HyperTuneModelMixin.fit_distributions()





	HyperTuneIndependentGPModel
	HyperTuneIndependentGPModel.create_likelihood()

	HyperTuneIndependentGPModel.hypertune_ensemble_distribution()

	HyperTuneIndependentGPModel.fit()





	HyperTuneJointGPModel
	HyperTuneJointGPModel.create_likelihood()

	HyperTuneJointGPModel.hypertune_ensemble_distribution()

	HyperTuneJointGPModel.fit()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.likelihood module
	HyperTuneIndependentGPMarginalLikelihood
	HyperTuneIndependentGPMarginalLikelihood.ensemble_distribution

	HyperTuneIndependentGPMarginalLikelihood.set_ensemble_distribution()

	HyperTuneIndependentGPMarginalLikelihood.get_posterior_state()





	HyperTuneJointGPMarginalLikelihood
	HyperTuneJointGPMarginalLikelihood.ensemble_distribution

	HyperTuneJointGPMarginalLikelihood.set_ensemble_distribution()

	HyperTuneJointGPMarginalLikelihood.get_posterior_state()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.posterior_state module
	assert_ensemble_distribution()

	HyperTuneIndependentGPPosteriorState
	HyperTuneIndependentGPPosteriorState.predict()

	HyperTuneIndependentGPPosteriorState.sample_marginals()

	HyperTuneIndependentGPPosteriorState.sample_joint()

	HyperTuneIndependentGPPosteriorState.backward_gradient()





	HyperTuneJointGPPosteriorState
	HyperTuneJointGPPosteriorState.predict()

	HyperTuneJointGPPosteriorState.sample_marginals()

	HyperTuneJointGPPosteriorState.sample_joint()

	HyperTuneJointGPPosteriorState.backward_gradient()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils module
	ExtendFeaturesByResourceMixin
	ExtendFeaturesByResourceMixin.extend_features_by_resource()





	PosteriorStateClampedResource
	PosteriorStateClampedResource.num_data

	PosteriorStateClampedResource.num_features

	PosteriorStateClampedResource.num_fantasies

	PosteriorStateClampedResource.neg_log_likelihood()

	PosteriorStateClampedResource.predict()

	PosteriorStateClampedResource.sample_marginals()

	PosteriorStateClampedResource.sample_joint()

	PosteriorStateClampedResource.backward_gradient()





	MeanFunctionClampedResource
	MeanFunctionClampedResource.param_encoding_pairs()

	MeanFunctionClampedResource.get_params()

	MeanFunctionClampedResource.set_params()

	MeanFunctionClampedResource.forward()





	KernelFunctionClampedResource
	KernelFunctionClampedResource.param_encoding_pairs()

	KernelFunctionClampedResource.get_params()

	KernelFunctionClampedResource.set_params()

	KernelFunctionClampedResource.diagonal()

	KernelFunctionClampedResource.diagonal_depends_on_X()

	KernelFunctionClampedResource.forward()





	GaussProcPosteriorStateAndRungLevels
	GaussProcPosteriorStateAndRungLevels.poster_state

	GaussProcPosteriorStateAndRungLevels.num_data

	GaussProcPosteriorStateAndRungLevels.num_features

	GaussProcPosteriorStateAndRungLevels.num_fantasies

	GaussProcPosteriorStateAndRungLevels.neg_log_likelihood()

	GaussProcPosteriorStateAndRungLevels.predict()

	GaussProcPosteriorStateAndRungLevels.sample_marginals()

	GaussProcPosteriorStateAndRungLevels.sample_joint()

	GaussProcPosteriorStateAndRungLevels.backward_gradient()

	GaussProcPosteriorStateAndRungLevels.rung_levels





	hypertune_ranking_losses()

	number_supported_levels_and_data_highest_level()













            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.gpind_model module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.gpind_model.IndependentGPPerResourceModel(kernel, mean_factory, resource_attr_range, target_transform=None, separate_noise_variances=False, initial_noise_variance=None, initial_covariance_scale=None, optimization_config=None, random_seed=None, fit_reset_params=True)

	Bases: GaussianProcessOptimizeModel

GP multi-fidelity model over f(x, r), where for each r, f(x, r) is
represented by an independent GP. The different processes share the same
kernel, but have their own mean functions mu_r and covariance scales c_r.

The likelihood object is not created at construction, but only with
create_likelihood. This is because we need to know the rung levels of
the Hyperband scheduler.


	Parameters:

	
	kernel (KernelFunction) – Kernel function without covariance scale, shared by models
for all resources r


	mean_factory (Callable[[int], MeanFunction]) – Factory function for mean functions mu_r(x)


	resource_attr_range (Tuple[int, int]) – (r_min, r_max)


	target_transform (Optional[ScalarTargetTransform]) – Invertible transform of target values y to
latent values z, which are then modelled as Gaussian. Shared across
different \(r\). Defaults to the identity


	separate_noise_variances (bool) – Separate noise variance for each r?
Otherwise, noise variance is shared


	initial_noise_variance (Optional[float]) – Initial value for noise variance parameter


	initial_covariance_scale (Optional[float]) – Initial value for covariance scale
parameters c_r


	optimization_config (Optional[OptimizationConfig]) – Configuration that specifies the behavior of
the optimization of the marginal likelihood.


	random_seed – Random seed to be used (optional)


	fit_reset_params (bool) – Reset parameters to initial values before running
‘fit’? If False, ‘fit’ starts from the current values









	
create_likelihood(rung_levels)

	Delayed creation of likelihood, needs to know rung levels of Hyperband
scheduler.

Note: last entry of rung_levels must be max_t, even if this is not
a rung level in Hyperband.


	Parameters:

	rung_levels (List[int]) – Rung levels










	
property likelihood: MarginalLikelihood

	










            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.likelihood module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.likelihood.IndependentGPPerResourceMarginalLikelihood(kernel, mean, resource_attr_range, target_transform=None, separate_noise_variances=False, initial_noise_variance=None, initial_covariance_scale=None, encoding_type=None, **kwargs)

	Bases: MarginalLikelihood

Marginal likelihood for GP multi-fidelity model over \(f(x, r)\),
where for each \(r\), \(f(x, r)\) is represented by an independent
GP. The different processes share the same kernel, but have their own mean
functions \(\mu_r\) and covariance scales \(c_r\).
If separate_noise_variances == True, each process has its own noise
variance, otherwise all processes share the same noise variance.


	Parameters:

	
	kernel (KernelFunction) – Shared kernel function \(k(x, x')\)


	mean (Dict[int, MeanFunction]) – Maps rung level \(r\) to mean function \(\mu_r\)


	resource_attr_range (Tuple[int, int]) – \((r_{min}, r_{max})\)


	target_transform (Optional[ScalarTargetTransform]) – Invertible transform of target values y to
latent values z, which are then modelled as Gaussian. Shared across
different \(r\). Defaults to the identity


	separate_noise_variances (bool) – See above. Defaults to False


	initial_noise_variance (Optional[float]) – Initial value for noise variance(s).
Defaults to
INITIAL_NOISE_VARIANCE


	initial_covariance_scale (Optional[float]) – Initial value for covariance scales.
Defaults to
INITIAL_COVARIANCE_SCALE


	encoding_type (Optional[str]) – Encoding used for noise variance(s) and covariance
scales. Defaults to
DEFAULT_ENCODING









	
get_posterior_state(data)

	
	Return type:

	PosteriorState










	
forward(data)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
param_encoding_pairs()

	Return a list of tuples with the Gluon parameters of the likelihood
and their respective encodings


	Return type:

	List[tuple]










	
get_noise_variance(as_ndarray=False)

	




	
get_covariance_scale(resource, as_ndarray=False)

	




	
set_covariance_scale(resource, val)

	




	
get_params()

	
	Return type:

	Dict[str, ndarray]










	
set_params(param_dict)

	




	
on_fit_start(data)

	Called at the beginning of fit.


	Parameters:

	data (Dict[str, Any]) – Argument passed to fit
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.posterior_state module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.posterior_state.IndependentGPPerResourcePosteriorState(features, targets, kernel, mean, covariance_scale, noise_variance, resource_attr_range, debug_log=False)

	Bases: PosteriorStateWithSampleJoint

Posterior state for model over f(x, r), where for a fixed set of resource
levels r, each f(x, r) is represented by an independent Gaussian process.
These processes share a common covariance function k(x, x), but can have
their own mean functions mu_r and covariance scales c_r. They can also
have their own noise variances, or the noise variance is shared.

Attention: Predictions can only be done at (x, r) where r has at least
one training datapoint. This is because a posterior state cannot
represent the prior.


	
state(resource)

	
	Return type:

	GaussProcPosteriorState










	
property num_data

	




	
property num_features

	




	
property num_fantasies

	




	
neg_log_likelihood()

	
	Return type:

	ndarray



	Returns:

	Negative log marginal likelihood










	
predict(test_features)

	Computes marginal statistics (means, variances) for a number of test
features.


	Parameters:

	test_features (ndarray) – Features for test configs



	Return type:

	Tuple[ndarray, ndarray]



	Returns:

	posterior_means, posterior_variances










	
sample_marginals(test_features, num_samples=1, random_state=None)

	Different to predict, entries in test_features
may have resources not covered by data in posterior state. For such
entries, we return the prior mean. We do not sample from the prior.
If sample_marginals is used to draw fantasy values, this corresponds to
the Kriging believer heuristic.


	Return type:

	ndarray










	
sample_joint(test_features, num_samples=1, random_state=None)

	Different to predict, entries in test_features
may have resources not covered by data in posterior state. For such
entries, we return the prior mean. We do not sample from the prior.
If sample_joint is used to draw fantasy values, this corresponds to
the Kriging believer heuristic.


	Return type:

	ndarray










	
backward_gradient(input, head_gradients, mean_data, std_data)

	Implements Predictor.backward_gradient, see comments there.
This is for a single posterior state. If the Predictor uses
MCMC, have to call this for every sample.


	Parameters:

	
	input (ndarray) – Single input point x, shape (d,)


	head_gradients (Dict[str, ndarray]) – See Predictor.backward_gradient


	mean_data (float) – Mean used to normalize targets


	std_data (float) – Stddev used to normalize targets






	Return type:

	ndarray



	Returns:

	
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent package


Submodules



	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.gpind_model module
	IndependentGPPerResourceModel
	IndependentGPPerResourceModel.create_likelihood()

	IndependentGPPerResourceModel.likelihood









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.likelihood module
	IndependentGPPerResourceMarginalLikelihood
	IndependentGPPerResourceMarginalLikelihood.get_posterior_state()

	IndependentGPPerResourceMarginalLikelihood.forward()

	IndependentGPPerResourceMarginalLikelihood.param_encoding_pairs()

	IndependentGPPerResourceMarginalLikelihood.get_noise_variance()

	IndependentGPPerResourceMarginalLikelihood.get_covariance_scale()

	IndependentGPPerResourceMarginalLikelihood.set_covariance_scale()

	IndependentGPPerResourceMarginalLikelihood.get_params()

	IndependentGPPerResourceMarginalLikelihood.set_params()

	IndependentGPPerResourceMarginalLikelihood.on_fit_start()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.posterior_state module
	IndependentGPPerResourcePosteriorState
	IndependentGPPerResourcePosteriorState.state()

	IndependentGPPerResourcePosteriorState.num_data

	IndependentGPPerResourcePosteriorState.num_features

	IndependentGPPerResourcePosteriorState.num_fantasies

	IndependentGPPerResourcePosteriorState.neg_log_likelihood()

	IndependentGPPerResourcePosteriorState.predict()

	IndependentGPPerResourcePosteriorState.sample_marginals()

	IndependentGPPerResourcePosteriorState.sample_joint()

	IndependentGPPerResourcePosteriorState.backward_gradient()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base.KernelFunction(dimension, **kwargs)

	Bases: MeanFunction

Base class of kernel (or covariance) function math:k(x, x')


	Parameters:

	dimension (int) – Dimensionality of input points after encoding into
ndarray






	
property dimension

	
	Returns:

	Dimension d of input points










	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base.SquaredDistance(dimension, ARD=False, encoding_type='logarithm', **kwargs)

	Bases: Block

Block that is responsible for the computation of matrices of squared
distances. The distances can possibly be weighted (e.g., ARD
parametrization). For instance:


\[ \begin{align}\begin{aligned}m_{i j} = \sum_{k=1}^d ib_k^2 (x_{1: i k} - x_{2: j k})^2\\\mathbf{X}_1 = [x_{1: i j}],\quad \mathbf{X}_2 = [x_{2: i j}]\end{aligned}\end{align} \]

Here, \([ib_k]\) is the vector inverse_bandwidth.
if ARD == False, inverse_bandwidths is equal to a scalar broadcast to the
d components (with d = dimension, i.e., the number of features in X).


	Parameters:

	
	dimension (int) – Dimensionality \(d\) of input vectors


	ARD (bool) – Automatic relevance determination (inverse_bandwidth vector
of size d)? Defaults to False


	encoding_type (str) – Encoding for inverse_bandwidth. Defaults to
DEFAULT_ENCODING









	
forward(X1, X2)

	Computes matrix of squared distances


	Parameters:

	
	X1 – input matrix, shape (n1, d)


	X2 – input matrix, shape (n2, d)













	
get_params()

	Parameter keys are “inv_bw<k> “if dimension > 1, and “inv_bw” if
dimension == 1.


	Return type:

	Dict[str, Any]










	
set_params(param_dict)

	








	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base.Matern52(dimension, ARD=False, encoding_type='logarithm', has_covariance_scale=True, **kwargs)

	Bases: KernelFunction

Block that is responsible for the computation of Matern 5/2 kernel.

if ARD == False, inverse_bandwidths is equal to a scalar broadcast to the
d components (with d = dimension, i.e., the number of features in X).

Arguments on top of base class SquaredDistance:


	Parameters:

	has_covariance_scale (bool) – Kernel has covariance scale parameter? Defaults
to True






	
property ARD: bool

	




	
forward(X1, X2)

	Computes Matern 5/2 kernel matrix


	Parameters:

	
	X1 – input matrix, shape (n1,d)


	X2 – input matrix, shape (n2,d)













	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_covariance_scale()

	




	
set_covariance_scale(covariance_scale)

	




	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.cross_validation module


	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.cross_validation.decode_resource_values(res_encoded, num_folds)

	We assume the resource attribute r is encoded as
randint(1, num_folds). Internally, r is taken as value in the
real interval [0.5, num_folds + 0.5], which is linearly transformed to
[0, 1] for encoding.


	Parameters:

	
	res_encoded – Encoded values r


	num_folds – Maximum number of folds






	Returns:

	Original values r (not rounded to int)










	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.cross_validation.CrossValidationKernelFunction(kernel_main, kernel_residual, mean_main, num_folds, **kwargs)

	Bases: KernelFunction

Kernel function suitable for \(f(x, r)\) being the average of r
validation metrics evaluated on different (train, validation) splits.

More specifically, there are ‘num_folds`` such splits, and \(f(x, r)\)
is the average over the first r of them.

We model the score on fold k as \(e_k(x) = f(x) + g_k(x)\),
where \(f(x)\) and the \(g_k(x)\) are a priori independent Gaussian
processes with kernels kernel_main and kernel_residual (all \(g_k\)
share the same kernel). Moreover, the \(g_k\) are zero-mean, while
\(f(x)\) may have a mean function. Then:


\[ \begin{align}\begin{aligned}f(x, r) = r^{-1} sum_{k \le r} e_k(x),\\k((x, r), (x', r')) = k_{main}(x, x') +
   \frac{k_{residual}(x, x')}{\mathrm{max}(r, r')}\end{aligned}\end{align} \]

Note that kernel_main, kernel_residual are over inputs \(x\)
(dimension d), while the kernel represented here is over inputs
\((x, r)\) of dimension d + 1, where the resource attribute \(r\)
(number of folds) is last.

Inputs are encoded. We assume a linear encoding for r with bounds 1 and
num_folds.
TODO: Right now, all HPs are encoded, and the resource attribute counts as
HP, even if it is not optimized over. This creates a dependence to how
inputs are encoded.


	
forward(X1, X2, **kwargs)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
mean_function(X)

	




	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.cross_validation.CrossValidationMeanFunction(kernel, **kwargs)

	Bases: MeanFunction


	
forward(X)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.exponential_decay module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.exponential_decay.ExponentialDecayResourcesKernelFunction(kernel_x, mean_x, encoding_type='logarithm', alpha_init=1.0, mean_lam_init=0.5, gamma_init=0.5, delta_fixed_value=None, delta_init=0.5, max_metric_value=1.0, **kwargs)

	Bases: KernelFunction

Variant of the kernel function for modeling exponentially decaying
learning curves, proposed in:



Swersky, K., Snoek, J., & Adams, R. P. (2014).

Freeze-Thaw Bayesian Optimization.

https://arxiv.org/abs/1406.3896






The argument in that paper actually justifies using a non-zero mean
function (see ExponentialDecayResourcesMeanFunction) and
centralizing the kernel proposed there. This is done here. Details in:



Tiao, Klein, Archambeau, Seeger (2020)

Model-based Asynchronous Hyperparameter Optimization

https://arxiv.org/abs/2003.10865






We implement a new family of kernel functions, for which the additive
Freeze-Thaw kernel is one instance (delta == 0).
The kernel has parameters alpha, mean_lam, gamma > 0, and
0 <= delta <= 1.
Note that beta = alpha / mean_lam is used in the Freeze-Thaw paper (the
Gamma distribution over lambda is parameterized differently).
The additive Freeze-Thaw kernel is obtained for delta == 0 (use
delta_fixed_value = 0).

In fact, this class is configured with a kernel and a mean function over
inputs x (dimension d) and represents a kernel (and mean function) over
inputs (x, r) (dimension d + 1), where the resource attribute r >= 0
is last.


	
forward(X1, X2, **kwargs)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
mean_function(X)

	




	
get_params()

	Parameter keys are “alpha”, “mean_lam”, “gamma”, “delta” (only if not
fixed to delta_fixed_value), as well as those of self.kernel_x (prefix
“kernelx_”) and of self.mean_x (prefix “meanx_”).


	Return type:

	Dict[str, Any]










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.exponential_decay.ExponentialDecayResourcesMeanFunction(kernel, **kwargs)

	Bases: MeanFunction


	
forward(X)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.fabolas module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.fabolas.FabolasKernelFunction(dimension=1, encoding_type='logarithm', u1_init=1.0, u3_init=0.0, **kwargs)

	Bases: KernelFunction

The kernel function proposed in:


Klein, A., Falkner, S., Bartels, S., Hennig, P., & Hutter, np. (2016).
Fast Bayesian Optimization of Machine Learning Hyperparameters
on Large Datasets, in AISTATS 2017.
ArXiv:1605.07079 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1605.07079




Please note this is only one of the components of the factorized kernel
proposed in the paper. This is the finite-rank (“degenerate”) kernel for
modelling data subset fraction sizes. Defined as:


k(x, y) = (U phi(x))^T (U phi(y)),  x, y in [0, 1],
phi(x) = [1, (1 - x)^2]^T,  U = [[u1, u3], [0, u2]] upper triangular,
u1, u2 > 0.





	
forward(X1, X2)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.freeze_thaw module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.freeze_thaw.FreezeThawKernelFunction(kernel_x, mean_x, encoding_type='logarithm', alpha_init=1.0, mean_lam_init=0.5, gamma_init=0.5, max_metric_value=1.0, **kwargs)

	Bases: KernelFunction

Variant of the kernel function for modeling exponentially decaying
learning curves, proposed in:


Swersky, K., Snoek, J., & Adams, R. P. (2014).
Freeze-Thaw Bayesian Optimization.
ArXiv:1406.3896 [Cs, Stat).
Retrieved from http://arxiv.org/abs/1406.3896




The argument in that paper actually justifies using a non-zero mean
function (see ExponentialDecayResourcesMeanFunction) and
centralizing the kernel proposed there. This is done here.

As in the Freeze-Thaw paper, learning curves for different configs are
conditionally independent.

This class is configured with a kernel and a mean function over
inputs x (dimension d) and represents a kernel (and mean function) over
inputs (x, r) (dimension d + 1), where the resource attribute r >= 0 is
last.

Note: This kernel is mostly for debugging! Its conditional independence
assumptions allow for faster inference, as implemented in
GaussProcExpDecayPosteriorState.


	
forward(X1, X2, **kwargs)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
mean_function(X)

	




	
get_params()

	Parameter keys are alpha, mean_lam, gamma, delta (only if not fixed
to delta_fixed_value), as well as those of self.kernel_x (prefix
‘kernelx_’) and of self.mean_x (prefix ‘meanx_’).


	Return type:

	Dict[str, Any]










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.freeze_thaw.FreezeThawMeanFunction(kernel, **kwargs)

	Bases: MeanFunction


	
forward(X)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.product_kernel module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.product_kernel.ProductKernelFunction(kernel1, kernel2, name_prefixes=None, **kwargs)

	Bases: KernelFunction

Given two kernel functions K1, K2, this class represents the product kernel
function given by


\[((x_1, x_2), (y_1, y_2)) \mapsto K(x_1, y_1) \cdot K(x_2, y_2)\]

We assume that parameters of K1 and K2 are disjoint.


	
forward(X1, X2)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
param_encoding_pairs()

	Note: We assume that K1 and K2 have disjoint parameters, otherwise
there will be a redundancy here.






	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.range_kernel module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.range_kernel.RangeKernelFunction(dimension, kernel, start, **kwargs)

	Bases: KernelFunction

Given kernel function K and range R, this class represents


\[(x, y) \mapsto K(x_R, y_R)\]


	
forward(X1, X2)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
param_encoding_pairs()

	Note: We assume that K1 and K2 have disjoint parameters, otherwise
there will be a redundancy here.






	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel package


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.KernelFunction(dimension, **kwargs)

	Bases: MeanFunction

Base class of kernel (or covariance) function math:k(x, x')


	Parameters:

	dimension (int) – Dimensionality of input points after encoding into
ndarray






	
property dimension

	
	Returns:

	Dimension d of input points










	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.Matern52(dimension, ARD=False, encoding_type='logarithm', has_covariance_scale=True, **kwargs)

	Bases: KernelFunction

Block that is responsible for the computation of Matern 5/2 kernel.

if ARD == False, inverse_bandwidths is equal to a scalar broadcast to the
d components (with d = dimension, i.e., the number of features in X).

Arguments on top of base class SquaredDistance:


	Parameters:

	has_covariance_scale (bool) – Kernel has covariance scale parameter? Defaults
to True






	
property ARD: bool

	




	
forward(X1, X2)

	Computes Matern 5/2 kernel matrix


	Parameters:

	
	X1 – input matrix, shape (n1,d)


	X2 – input matrix, shape (n2,d)













	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_covariance_scale()

	




	
set_covariance_scale(covariance_scale)

	




	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.ExponentialDecayResourcesKernelFunction(kernel_x, mean_x, encoding_type='logarithm', alpha_init=1.0, mean_lam_init=0.5, gamma_init=0.5, delta_fixed_value=None, delta_init=0.5, max_metric_value=1.0, **kwargs)

	Bases: KernelFunction

Variant of the kernel function for modeling exponentially decaying
learning curves, proposed in:



Swersky, K., Snoek, J., & Adams, R. P. (2014).

Freeze-Thaw Bayesian Optimization.

https://arxiv.org/abs/1406.3896






The argument in that paper actually justifies using a non-zero mean
function (see ExponentialDecayResourcesMeanFunction) and
centralizing the kernel proposed there. This is done here. Details in:



Tiao, Klein, Archambeau, Seeger (2020)

Model-based Asynchronous Hyperparameter Optimization

https://arxiv.org/abs/2003.10865






We implement a new family of kernel functions, for which the additive
Freeze-Thaw kernel is one instance (delta == 0).
The kernel has parameters alpha, mean_lam, gamma > 0, and
0 <= delta <= 1.
Note that beta = alpha / mean_lam is used in the Freeze-Thaw paper (the
Gamma distribution over lambda is parameterized differently).
The additive Freeze-Thaw kernel is obtained for delta == 0 (use
delta_fixed_value = 0).

In fact, this class is configured with a kernel and a mean function over
inputs x (dimension d) and represents a kernel (and mean function) over
inputs (x, r) (dimension d + 1), where the resource attribute r >= 0
is last.


	
forward(X1, X2, **kwargs)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
mean_function(X)

	




	
get_params()

	Parameter keys are “alpha”, “mean_lam”, “gamma”, “delta” (only if not
fixed to delta_fixed_value), as well as those of self.kernel_x (prefix
“kernelx_”) and of self.mean_x (prefix “meanx_”).


	Return type:

	Dict[str, Any]










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.ExponentialDecayResourcesMeanFunction(kernel, **kwargs)

	Bases: MeanFunction


	
forward(X)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.FabolasKernelFunction(dimension=1, encoding_type='logarithm', u1_init=1.0, u3_init=0.0, **kwargs)

	Bases: KernelFunction

The kernel function proposed in:


Klein, A., Falkner, S., Bartels, S., Hennig, P., & Hutter, np. (2016).
Fast Bayesian Optimization of Machine Learning Hyperparameters
on Large Datasets, in AISTATS 2017.
ArXiv:1605.07079 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1605.07079




Please note this is only one of the components of the factorized kernel
proposed in the paper. This is the finite-rank (“degenerate”) kernel for
modelling data subset fraction sizes. Defined as:


k(x, y) = (U phi(x))^T (U phi(y)),  x, y in [0, 1],
phi(x) = [1, (1 - x)^2]^T,  U = [[u1, u3], [0, u2]] upper triangular,
u1, u2 > 0.





	
forward(X1, X2)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.ProductKernelFunction(kernel1, kernel2, name_prefixes=None, **kwargs)

	Bases: KernelFunction

Given two kernel functions K1, K2, this class represents the product kernel
function given by


\[((x_1, x_2), (y_1, y_2)) \mapsto K(x_1, y_1) \cdot K(x_2, y_2)\]

We assume that parameters of K1 and K2 are disjoint.


	
forward(X1, X2)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
param_encoding_pairs()

	Note: We assume that K1 and K2 have disjoint parameters, otherwise
there will be a redundancy here.






	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.FreezeThawKernelFunction(kernel_x, mean_x, encoding_type='logarithm', alpha_init=1.0, mean_lam_init=0.5, gamma_init=0.5, max_metric_value=1.0, **kwargs)

	Bases: KernelFunction

Variant of the kernel function for modeling exponentially decaying
learning curves, proposed in:


Swersky, K., Snoek, J., & Adams, R. P. (2014).
Freeze-Thaw Bayesian Optimization.
ArXiv:1406.3896 [Cs, Stat).
Retrieved from http://arxiv.org/abs/1406.3896




The argument in that paper actually justifies using a non-zero mean
function (see ExponentialDecayResourcesMeanFunction) and
centralizing the kernel proposed there. This is done here.

As in the Freeze-Thaw paper, learning curves for different configs are
conditionally independent.

This class is configured with a kernel and a mean function over
inputs x (dimension d) and represents a kernel (and mean function) over
inputs (x, r) (dimension d + 1), where the resource attribute r >= 0 is
last.

Note: This kernel is mostly for debugging! Its conditional independence
assumptions allow for faster inference, as implemented in
GaussProcExpDecayPosteriorState.


	
forward(X1, X2, **kwargs)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
mean_function(X)

	




	
get_params()

	Parameter keys are alpha, mean_lam, gamma, delta (only if not fixed
to delta_fixed_value), as well as those of self.kernel_x (prefix
‘kernelx_’) and of self.mean_x (prefix ‘meanx_’).


	Return type:

	Dict[str, Any]










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.FreezeThawMeanFunction(kernel, **kwargs)

	Bases: MeanFunction


	
forward(X)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.CrossValidationMeanFunction(kernel, **kwargs)

	Bases: MeanFunction


	
forward(X)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.CrossValidationKernelFunction(kernel_main, kernel_residual, mean_main, num_folds, **kwargs)

	Bases: KernelFunction

Kernel function suitable for \(f(x, r)\) being the average of r
validation metrics evaluated on different (train, validation) splits.

More specifically, there are ‘num_folds`` such splits, and \(f(x, r)\)
is the average over the first r of them.

We model the score on fold k as \(e_k(x) = f(x) + g_k(x)\),
where \(f(x)\) and the \(g_k(x)\) are a priori independent Gaussian
processes with kernels kernel_main and kernel_residual (all \(g_k\)
share the same kernel). Moreover, the \(g_k\) are zero-mean, while
\(f(x)\) may have a mean function. Then:


\[ \begin{align}\begin{aligned}f(x, r) = r^{-1} sum_{k \le r} e_k(x),\\k((x, r), (x', r')) = k_{main}(x, x') +
   \frac{k_{residual}(x, x')}{\mathrm{max}(r, r')}\end{aligned}\end{align} \]

Note that kernel_main, kernel_residual are over inputs \(x\)
(dimension d), while the kernel represented here is over inputs
\((x, r)\) of dimension d + 1, where the resource attribute \(r\)
(number of folds) is last.

Inputs are encoded. We assume a linear encoding for r with bounds 1 and
num_folds.
TODO: Right now, all HPs are encoded, and the resource attribute counts as
HP, even if it is not optimized over. This creates a dependence to how
inputs are encoded.


	
forward(X1, X2, **kwargs)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
mean_function(X)

	




	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.RangeKernelFunction(dimension, kernel, start, **kwargs)

	Bases: KernelFunction

Given kernel function K and range R, this class represents


\[(x, y) \mapsto K(x_R, y_R)\]


	
forward(X1, X2)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
param_encoding_pairs()

	Note: We assume that K1 and K2 have disjoint parameters, otherwise
there will be a redundancy here.






	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














Submodules



	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base module
	KernelFunction
	KernelFunction.dimension

	KernelFunction.diagonal()

	KernelFunction.diagonal_depends_on_X()





	SquaredDistance
	SquaredDistance.forward()

	SquaredDistance.get_params()

	SquaredDistance.set_params()





	Matern52
	Matern52.ARD

	Matern52.forward()

	Matern52.diagonal()

	Matern52.diagonal_depends_on_X()

	Matern52.param_encoding_pairs()

	Matern52.get_covariance_scale()

	Matern52.set_covariance_scale()

	Matern52.get_params()

	Matern52.set_params()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.cross_validation module
	decode_resource_values()

	CrossValidationKernelFunction
	CrossValidationKernelFunction.forward()

	CrossValidationKernelFunction.diagonal()

	CrossValidationKernelFunction.diagonal_depends_on_X()

	CrossValidationKernelFunction.param_encoding_pairs()

	CrossValidationKernelFunction.mean_function()

	CrossValidationKernelFunction.get_params()

	CrossValidationKernelFunction.set_params()





	CrossValidationMeanFunction
	CrossValidationMeanFunction.forward()

	CrossValidationMeanFunction.param_encoding_pairs()

	CrossValidationMeanFunction.get_params()

	CrossValidationMeanFunction.set_params()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.exponential_decay module
	ExponentialDecayResourcesKernelFunction
	ExponentialDecayResourcesKernelFunction.forward()

	ExponentialDecayResourcesKernelFunction.diagonal()

	ExponentialDecayResourcesKernelFunction.diagonal_depends_on_X()

	ExponentialDecayResourcesKernelFunction.param_encoding_pairs()

	ExponentialDecayResourcesKernelFunction.mean_function()

	ExponentialDecayResourcesKernelFunction.get_params()

	ExponentialDecayResourcesKernelFunction.set_params()





	ExponentialDecayResourcesMeanFunction
	ExponentialDecayResourcesMeanFunction.forward()

	ExponentialDecayResourcesMeanFunction.param_encoding_pairs()

	ExponentialDecayResourcesMeanFunction.get_params()

	ExponentialDecayResourcesMeanFunction.set_params()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.fabolas module
	FabolasKernelFunction
	FabolasKernelFunction.forward()

	FabolasKernelFunction.diagonal()

	FabolasKernelFunction.diagonal_depends_on_X()

	FabolasKernelFunction.param_encoding_pairs()

	FabolasKernelFunction.get_params()

	FabolasKernelFunction.set_params()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.freeze_thaw module
	FreezeThawKernelFunction
	FreezeThawKernelFunction.forward()

	FreezeThawKernelFunction.diagonal()

	FreezeThawKernelFunction.diagonal_depends_on_X()

	FreezeThawKernelFunction.param_encoding_pairs()

	FreezeThawKernelFunction.mean_function()

	FreezeThawKernelFunction.get_params()

	FreezeThawKernelFunction.set_params()





	FreezeThawMeanFunction
	FreezeThawMeanFunction.forward()

	FreezeThawMeanFunction.param_encoding_pairs()

	FreezeThawMeanFunction.get_params()

	FreezeThawMeanFunction.set_params()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.product_kernel module
	ProductKernelFunction
	ProductKernelFunction.forward()

	ProductKernelFunction.diagonal()

	ProductKernelFunction.diagonal_depends_on_X()

	ProductKernelFunction.param_encoding_pairs()

	ProductKernelFunction.get_params()

	ProductKernelFunction.set_params()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.range_kernel module
	RangeKernelFunction
	RangeKernelFunction.forward()

	RangeKernelFunction.diagonal()

	RangeKernelFunction.diagonal_depends_on_X()

	RangeKernelFunction.param_encoding_pairs()

	RangeKernelFunction.get_params()

	RangeKernelFunction.set_params()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.ZeroKernel(dimension, **kwargs)

	Bases: KernelFunction

Constant zero kernel. This works only in the context used here, we do
return matrices or vectors, but zero scalars.


	
forward(X1, X2, **kwargs)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.ZeroMean(**kwargs)

	Bases: MeanFunction


	
forward(X)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.ExponentialDecayBaseKernelFunction(r_max, r_min=1, normalize_inputs=False, **kwargs)

	Bases: KernelFunction

Implements exponential decay kernel k_r(r, r’) from the Freeze-Thaw
paper, corresponding to ExponentialDecayResourcesKernelFunction
with delta=0 and no x attributes.

Note: Inputs r lie in [r_min, r_max]. Optionally, they are normalized to
[0, 1].


	
forward(X1, X2)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	










	
mean_function(X)

	








	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.logdet_cholfact_cov_resource(likelihood)

	Computes the additional log(det(Lbar)) term. This is
sum_i log(det(Lbar_i)), where Lbar_i is upper left submatrix of
likelihood['lfact_all'], with size likelihood['ydims'][i].


	Parameters:

	likelihood (Dict) – Result of resource_kernel_likelihood_computations



	Return type:

	float



	Returns:

	log(det(Lbar))










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.resource_kernel_likelihood_precomputations(targets)

	Precomputations required by resource_kernel_likelihood_computations.

Importantly, prepare_data orders datapoints by nonincreasing number of
targets ydims[i]. For 0 <= j < ydim_max, ydim_max = ydims[0] =
max(ydims), num_configs[j] is the number of datapoints i for which
ydims[i] > j.
yflat is a flat matrix (rows corresponding to fantasy samples; column
vector if no fantasizing) consisting of ydim_max parts, where part j is of
size num_configs[j] and contains y[j] for targets of those i counted in
num_configs[j].


	Parameters:

	targets (List[ndarray]) – Targets from data representation returned by
prepare_data



	Return type:

	Dict



	Returns:

	See above










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.resource_kernel_likelihood_computations(precomputed, res_kernel, noise_variance, skip_c_d=False)

	Given precomputed from resource_kernel_likelihood_precomputations and
resource kernel function res_kernel, compute quantities required for
inference and marginal likelihood computation, pertaining to the likelihood
of a additive model, as in the Freeze-Thaw paper.

Note that res_kernel takes raw (unnormalized) r as inputs. The code here
works for any resource kernel and mean function, not just for
ExponentialDecayBaseKernelFunction.

Results returned are:
- c: n vector [c_i]
- d: n vector [d_i], positive
- vtv: n vector [|v_i|^2]
- wtv: (n, F) matrix[(W_i)^T v_i], F number of fantasy samples
- wtw: n vector [|w_i|^2] (only if no fantasizing)
- lfact_all: Cholesky factor for kernel matrix
- ydims: Target vector sizes (copy from precomputed)


	Parameters:

	
	precomputed (Dict) – Output of resource_kernel_likelihood_precomputations


	res_kernel (ExponentialDecayBaseKernelFunction) – Kernel k(r, r’) over resources


	noise_variance – Noise variance sigma^2


	skip_c_d (bool) – If True, c and d are not computed






	Return type:

	Dict



	Returns:

	Quantities required for inference and learning criterion










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.resource_kernel_likelihood_slow_computations(targets, res_kernel, noise_variance, skip_c_d=False)

	Naive implementation of resource_kernel_likelihood_computations, which
does not require precomputations, but is somewhat slower. Here, results are
computed one datapoint at a time, instead of en bulk.

This code is used in unit testing only.


	Return type:

	Dict










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.predict_posterior_marginals_extended(poster_state, mean, kernel, test_features, resources, res_kernel)

	These are posterior marginals on f_r = h + g_r variables, where
(x, r) are zipped from test_features, resources.
posterior_means is a (n, F) matrix, where F is the number of fantasy
samples, or F == 1 without fantasizing.


	Parameters:

	
	poster_state (Dict) – Posterior state


	mean – Mean function


	kernel – Kernel function


	test_features – Feature matrix for test points (not extended)


	resources (List[int]) – Resource values corresponding to rows of
test_features


	res_kernel (ExponentialDecayBaseKernelFunction) – Kernel k(r, r’) over resources






	Returns:

	posterior_means, posterior_variances










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw.sample_posterior_joint(poster_state, mean, kernel, feature, targets, res_kernel, noise_variance, lfact_all, means_all, random_state, num_samples=1)

	Given poster_state for some data plus one additional configuration
with data (feature, targets), draw joint samples of unobserved
targets for this configuration. targets may be empty, but must not
be complete (there must be some unobserved targets). The additional
configuration must not be in the dataset used to compute poster_state.

If targets correspond to resource values range(r_min, r_obs), we
sample latent target values y_r corresponding to range(r_obs, r_max+1),
returning a dict with [y_r] under y (matrix with num_samples
columns).


	Parameters:

	
	poster_state (Dict) – Posterior state for data


	mean – Mean function


	kernel – Kernel function


	feature – Features for additional config


	targets (ndarray) – Target values for additional config


	res_kernel (ExponentialDecayBaseKernelFunction) – Kernel k(r, r’) over resources


	noise_variance – Noise variance sigma^2


	lfact_all – Cholesky factor of complete resource kernel matrix


	means_all – See lfact_all


	random_state (RandomState) – numpy.random.RandomState


	num_samples (int) – Number of joint samples to draw (default: 1)






	Return type:

	Dict



	Returns:

	See above












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.gpiss_model module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.gpiss_model.GaussianProcessLearningCurveModel(kernel, res_model, mean=None, initial_noise_variance=None, optimization_config=None, random_seed=None, fit_reset_params=True)

	Bases: GaussianProcessOptimizeModel

Represents joint Gaussian model of learning curves over a number of
configurations. The model has an additive form:


f(x, r) = g(r | x) + h(x),




where h(x) is a Gaussian process model for function values at r_max, and
the g(r | x) are independent Gaussian models. Right now, g(r | x) can be:


	
	Innovation state space model (ISSM) of a particular power-law decay
	form. For this one, g(r_max | x) = 0 for all x. Used if
res_model is of type ISSModelParameters







	
	Gaussian process model with exponential decay covariance function. This
	is essentially the model from the Freeze Thaw paper, see also
ExponentialDecayResourcesKernelFunction. Used if
res_model is of type ExponentialDecayBaseKernelFunction









Importantly, inference scales cubically only in the number of
configurations, not in the number of observations.

Details about ISSMs in general are found in


Hyndman, R. and Koehler, A. and Ord, J. and Snyder, R.
Forecasting with Exponential Smoothing: The State Space Approach
Springer, 2008





	Parameters:

	
	kernel (KernelFunction) – Kernel function k(X, X’)


	res_model (Union[ISSModelParameters, ExponentialDecayBaseKernelFunction]) – Model for g(r | x)


	mean (Optional[MeanFunction]) – Mean function mu(X)


	initial_noise_variance (Optional[float]) – A scalar to initialize the value of the
residual noise variance


	optimization_config (Optional[OptimizationConfig]) – Configuration that specifies the behavior of
the optimization of the marginal likelihood.


	random_seed – Random seed to be used (optional)


	fit_reset_params (bool) – Reset parameters to initial values before running
‘fit’? If False, ‘fit’ starts from the current values









	
property likelihood: MarginalLikelihood

	










            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm module


	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm.prepare_data(state, config_space_ext, active_metric, normalize_targets=False, do_fantasizing=False)

	Prepares data in state for further processing. The entries
configs, targets of the result dict are lists of one entry per trial,
they are sorted in decreasing order of number of target values. features
is the feature matrix corresponding to configs. If normalize_targets
is True, the target values are normalized to mean 0, variance 1 (over all
values), and mean_targets, std_targets is returned.

If do_fantasizing is True, state.pending_evaluations is also taken into
account. Entries there have to be of type FantasizedPendingEvaluation.
Also, in terms of their resource levels, they need to be adjacent to
observed entries, so there are no gaps. In this case, the entries of the
targets list are matrices, each column corr´esponding to a fantasy sample.

Note: If normalize_targets, mean and stddev are computed over observed
values only. Also, fantasy values in state.pending_evaluations are not
normalized, because they are assumed to be sampled from the posterior with
normalized targets as well.


	Parameters:

	
	state (TuningJobState) – TuningJobState with data


	config_space_ext (ExtendedConfiguration) – Extended config space


	active_metric (str) – 


	normalize_targets (bool) – See above


	do_fantasizing (bool) – See above






	Return type:

	Dict



	Returns:

	See above










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm.prepare_data_with_pending(state, config_space_ext, active_metric, normalize_targets=False)

	Similar to prepare_data with do_fantasizing=False, but two dicts are
returned, the first for trials without pending evaluations, the second
for trials with pending evaluations. The latter dict also contains trials
which have pending, but no observed evaluations.
The second dict has the additional entry num_pending, which lists the
number of pending evals for each trial. These evals must be contiguous and
adjacent with observed evals, so that the union of observed and pending
evals are contiguous (when it comes to resource levels).


	Parameters:

	
	state (TuningJobState) – See prepare_data


	config_space_ext (ExtendedConfiguration) – See prepare_data


	active_metric (str) – See prepare_data


	normalize_targets (bool) – See prepare_data






	Return type:

	(Dict, Dict)



	Returns:

	See above










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm.issm_likelihood_precomputations(targets, r_min)

	Precomputations required by issm_likelihood_computations.

Importantly, prepare_data orders datapoints by nonincreasing number of
targets ydims[i]. For 0 <= j < ydim_max, ydim_max = ydims[0] =
max(ydims), num_configs[j] is the number of datapoints i for which
ydims[i] > j.
deltay is a flat matrix (rows corresponding to fantasy samples; column
vector if no fantasizing) consisting of ydim_max parts, where part j is
of size num_configs[j] and contains y[j] - y[j-1] for targets of
those i counted in num_configs[j], the term needed in the recurrence to
compute w[j].
‘logr`` is a flat vector consisting of ydim_max - 1 parts, where part j
(starting from 1) is of size num_configs[j] and contains the logarithmic
term for computing a[j-1] and e[j].


	Parameters:

	
	targets (List[ndarray]) – Targets from data representation returned by
prepare_data


	r_min (int) – Value of r_min, as returned by prepare_data






	Return type:

	Dict



	Returns:

	See above










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm.issm_likelihood_computations(precomputed, issm_params, r_min, r_max, skip_c_d=False)

	Given precomputed from issm_likelihood_precomputations and ISSM
parameters issm_params, compute quantities required for inference and
marginal likelihood computation, pertaining to the ISSM likelihood.

The index for r is range(r_min, r_max + 1). Observations must be contiguous
from r_min. The ISSM parameters are:
- alpha: n-vector, negative
- beta: n-vector
- gamma: scalar, positive

Results returned are:
- c: n vector [c_i], negative
- d: n vector [d_i], positive
- vtv: n vector [|v_i|^2]
- wtv: (n, F) matrix [(W_i)^T v_i], F number of fantasy samples
- wtw: n-vector [|w_i|^2] (only if no fantasizing)


	Parameters:

	
	precomputed (Dict) – Output of issm_likelihood_precomputations


	issm_params (Dict) – Parameters of ISSM likelihood


	r_min (int) – Smallest resource value


	r_max (int) – Largest resource value


	skip_c_d (bool) – If True, c and d are not computed






	Return type:

	Dict



	Returns:

	Quantities required for inference and learning criterion










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm.posterior_computations(features, mean, kernel, issm_likelihood, noise_variance)

	Computes posterior state (required for predictions) and negative log
marginal likelihood (returned in criterion), The latter is computed only
when there is no fantasizing (i.e., if issm_likelihood contains wtw).


	Parameters:

	
	features – Input matrix X


	mean – Mean function


	kernel – Kernel function


	issm_likelihood (Dict) – Outcome of issm_likelihood_computations


	noise_variance – Variance of ISSM innovations






	Return type:

	Dict



	Returns:

	Internal posterior state










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm.predict_posterior_marginals(poster_state, mean, kernel, test_features)

	These are posterior marginals on the h variable, whereas the full model is
for f_r = h + g_r (additive).
posterior_means is a (n, F) matrix, where F is the number of fantasy
samples, or F == 1 without fantasizing.


	Parameters:

	
	poster_state (Dict) – Posterior state


	mean – Mean function


	kernel – Kernel function


	test_features – Feature matrix for test points (not extended)






	Returns:

	posterior_means, posterior_variances










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm.sample_posterior_marginals(poster_state, mean, kernel, test_features, random_state, num_samples=1)

	We sample from posterior marginals on the h variance, see also
predict_posterior_marginals.






	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm.predict_posterior_marginals_extended(poster_state, mean, kernel, test_features, resources, issm_params, r_min, r_max)

	These are posterior marginals on f_r = h + g_r variables, where
(x, r) are zipped from test_features, resources. issm_params
are likelihood parameters for the test configs.
posterior_means is a (n, F) matrix, where F is the number of fantasy
samples, or F == 1 without fantasizing.


	Parameters:

	
	poster_state (Dict) – Posterior state


	mean – Mean function


	kernel – Kernel function


	test_features – Feature matrix for test points (not extended)


	resources (List[int]) – Resource values corresponding to rows of
test_features


	issm_params (Dict) – See above


	r_min (int) – 


	r_max (int) – 






	Returns:

	posterior_means, posterior_variances










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm.sample_posterior_joint(poster_state, mean, kernel, feature, targets, issm_params, r_min, r_max, random_state, num_samples=1)

	Given poster_state for some data plus one additional configuration
with data (feature, targets, issm_params), draw joint samples
of the latent variables not fixed by the data, and of the latent
target values. targets may be empty, but must not reach all the
way to r_max. The additional configuration must not be in the
dataset used to compute poster_state.

If targets correspond to resource values range(r_min, r_obs), we
sample latent target values y_r corresponding to range(r_obs, r_max+1)
and latent function values f_r corresponding to range(r_obs-1, r_max+1),
unless r_obs = r_min (i.e. targets empty), in which case both [y_r]
and [f_r] ranges in range(r_min, r_max+1). We return a dict with
[f_r] under f, [y_r] under y. These are matrices with num_samples
columns.


	Parameters:

	
	poster_state (Dict) – Posterior state for data


	mean – Mean function


	kernel – Kernel function


	feature – Features for additional config


	targets (ndarray) – Target values for additional config


	issm_params (Dict) – Likelihood parameters for additional config


	r_min (int) – Smallest resource value


	r_max (int) – Largest resource value


	random_state (RandomState) – numpy.random.RandomState


	num_samples (int) – Number of joint samples to draw (default: 1)






	Return type:

	Dict



	Returns:

	See above










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm.issm_likelihood_slow_computations(targets, issm_params, r_min, r_max, skip_c_d=False)

	Naive implementation of issm_likelihood_computations, which does not
require precomputations, but is much slower. Here, results are computed
one datapoint at a time, instead of en bulk.

This code is used in unit testing, and called from sample_posterior_joint.


	Return type:

	Dict










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm.update_posterior_state(poster_state, kernel, feature, d_new, s_new, r2_new)

	Incremental update of posterior state, given data for one additional
configuration. The new datapoint gives rise to a new row/column of the
Cholesky factor. r2vec and svec are extended by r2_new, s_new
respectively. r4vec and pvec are extended and all entries change. The new
datapoint is represented by feature, d_new, s_new, r2_new.

Note: The field criterion is not updated, but set to np.nan.


	Parameters:

	
	poster_state (Dict) – Posterior state for data


	kernel – Kernel function


	feature – Features for additional config


	d_new – See above


	s_new – See above


	r2_new – See above






	Return type:

	Dict



	Returns:

	Updated posterior state










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm.update_posterior_pvec(poster_state, kernel, feature, d_new, s_new, r2_new)

	Part of update_posterior_state, just returns the new p vector.


	Parameters:

	
	poster_state (Dict) – See update_posterior_state


	kernel – See update_posterior_state


	feature – See update_posterior_state


	d_new – See update_posterior_state


	s_new – See update_posterior_state


	r2_new – See update_posterior_state






	Return type:

	ndarray



	Returns:

	New p vector, as flat vector












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.likelihood module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.likelihood.GaussAdditiveMarginalLikelihood(kernel, res_model, mean=None, initial_noise_variance=None, encoding_type=None, **kwargs)

	Bases: MarginalLikelihood

Marginal likelihood of joint learning curve model, where each curve is
modelled as sum of a Gaussian process over x (for the value at r_max)
and a Gaussian model over r.

The latter res_model is either an ISSM or another Gaussian process with
exponential decay covariance function.


	Parameters:

	
	kernel (KernelFunction) – Kernel function k(x, x’)


	res_model (Union[ISSModelParameters, ExponentialDecayBaseKernelFunction]) – Gaussian model over r


	mean (Optional[MeanFunction]) – Mean function mu(x)


	initial_noise_variance – A scalar to initialize the value of the
residual noise variance









	
get_posterior_state(data)

	
	Return type:

	PosteriorState










	
forward(data)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
param_encoding_pairs()

	Return a list of tuples with the Gluon parameters of the likelihood
and their respective encodings


	Return type:

	List[tuple]










	
get_noise_variance(as_ndarray=False)

	




	
get_params()

	
	Return type:

	Dict[str, Any]










	
set_params(param_dict)

	




	
data_precomputations(data, overwrite=False)

	Some models require precomputations based on data. Precomputed
variables are appended to data. This is done only if not already
included in data, unless overwrite is True.


	Parameters:

	
	data (Dict[str, Any]) – 


	overwrite (bool) – 













	
on_fit_start(data)

	Called at the beginning of fit.


	Parameters:

	data (Dict[str, Any]) – Argument passed to fit
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.model_params module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.model_params.ISSModelParameters(gamma_is_one=False, **kwargs)

	Bases: MeanFunction

Maintains parameters of an ISSM of a particular power low decay form.

For each configuration, we have alpha < 0 and beta. These may depend
on the input feature x (encoded configuration):


(alpha, beta) = F(x; params),




where params are the internal parameters to be learned.

There is also gamma > 0, which can be fixed to 1.


	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_gamma()

	




	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_gamma(val)

	




	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	










	
get_issm_params(features)

	Given feature matrix X, returns ISSM parameters which configure the
likelihood: alpha, beta vectors (size n), gamma scalar.


	Parameters:

	features – Feature matrix X, (n, d)



	Return type:

	Dict[str, Any]



	Returns:

	Dict with alpha, beta, gamma














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.model_params.IndependentISSModelParameters(gamma_is_one=False, **kwargs)

	Bases: ISSModelParameters

Most basic implementation, where alpha, beta are scalars, independent of
the configuration.


	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_alpha()

	




	
get_beta()

	




	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_alpha(val)

	




	
set_beta(val)

	




	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	










	
get_issm_params(features)

	Given feature matrix X, returns ISSM parameters which configure the
likelihood: alpha, beta vectors (size n), gamma scalar.


	Parameters:

	features – Feature matrix X, (n, d)



	Return type:

	Dict[str, Any]



	Returns:

	Dict with alpha, beta, gamma
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.posterior_state module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.posterior_state.GaussProcAdditivePosteriorState(data, mean, kernel, noise_variance, **kwargs)

	Bases: PosteriorState

Represent posterior state for joint Gaussian model of learning curves over
a number of configurations. The (additive) model is the sum of a Gaussian
process model for function values at r_max and independent Gaussian models
over r only.

Importantly, inference scales cubically only in the number of
configurations, not in the number of observations.


	
property num_data

	




	
property num_features

	




	
property num_fantasies

	




	
neg_log_likelihood()

	
	Return type:

	ndarray



	Returns:

	Negative log marginal likelihood










	
predict(test_features)

	We compute marginals over f(x, r), where test_features are extended
features.
Note: The test configs must not overlap with any in the training set.
Otherwise, at least if r != r_max, the predictive distributions
computed here may be wrong.


	Parameters:

	test_features (ndarray) – Extended features for test configs



	Return type:

	Tuple[ndarray, ndarray]



	Returns:

	posterior_means, posterior_variances










	
sample_marginals(test_features, num_samples=1, random_state=None)

	See comments of predict.


	Parameters:

	
	test_features (ndarray) – Input points for test configs


	num_samples (int) – Number of samples


	random_state (Optional[RandomState]) – PRNG






	Return type:

	ndarray



	Returns:

	Marginal samples, (num_test, num_samples)










	
backward_gradient(input, head_gradients, mean_data, std_data)

	Implements Predictor.backward_gradient, see comments there.
This is for a single posterior state. If the Predictor uses
MCMC, have to call this for every sample.


	Parameters:

	
	input (ndarray) – Single input point x, shape (d,)


	head_gradients (Dict[str, ndarray]) – See Predictor.backward_gradient


	mean_data (float) – Mean used to normalize targets


	std_data (float) – Stddev used to normalize targets






	Return type:

	ndarray



	Returns:

	










	
sample_curves(data, num_samples=1, random_state=None)

	Given data from one or more configurations (as returned by
issm.prepare_data), for each config, sample a curve from the
joint posterior (predictive) distribution over latent targets.
The curve for each config in data may be partly observed, but
must not be fully observed. Samples for the different configs are
independent. None of the configs in data must appear in the dataset
used to compute the posterior state.

The result is a list of dict, one for each config. If for a config,
targets in data are given for resource values range(r_min, r_obs),
the dict entry y is a joint sample [y_r], r in range(r_obs, r_max+1).
For some subclasses (e.g., ISSM), there is also an entry f with a
joint sample [f_r], r in range(r_obs-1, r_max+1), the latent function
values before noise. These entries are matrices with num_samples
columns, which are independent (the joint dependence is along the rows).


	Parameters:

	
	data (Dict[str, Any]) – Data for configs to predict at


	num_samples (int) – Number of samples to draw from each curve


	random_state (Optional[RandomState]) – PRNG state to be used for sampling






	Return type:

	List[dict]



	Returns:

	See above










	
static has_precomputations(data)

	
	Return type:

	bool














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.posterior_state.IncrementalUpdateGPAdditivePosteriorState(data, mean, kernel, noise_variance, **kwargs)

	Bases: GaussProcAdditivePosteriorState

Extension of GaussProcAdditivePosteriorState which allows for
incremental updating (single config added to the dataset).
This is required for simulation-based scoring, and for support of
fantasizing.


	
update(feature, targets)

	
	Return type:

	IncrementalUpdateGPAdditivePosteriorState










	
update_pvec(feature, targets)

	Part of update: Only update prediction vector p. This cannot be used
to update p for several new datapoints.


	Parameters:

	
	feature (ndarray) – 


	targets (ndarray) – 






	Return type:

	ndarray



	Returns:

	New p vector










	
sample_and_update_for_pending(data_pending, sample_all_nonobserved=False, random_state=None)

	This function is needed for sampling fantasy targets, and also to
support simulation-based scoring.

issm.prepare_data_with_pending creates two data dicts data_nopending,
data_pending, the first for configs with observed data, but no
pending evals, the second for configs with pending evals.
You create the state with data_nopending, then call this method with
data_pending.

This method is iterating over configs (or trials) in data_pending.
For each config, it draws a joint sample from some non-observed
targets, then updates the state conditioned on observed and sampled
targets (by calling update). If sample_all_nonobserved is False,
the number of targets sampled is the entry in
data_pending['num_pending']. Otherwise, targets are sampled for all
non-observed positions.

The method returns the list of sampled target vectors, and the state
at the end (like update does as well).


	Parameters:

	
	data_pending (Dict[str, Any]) – See above


	sample_all_nonobserved (bool) – See above


	random_state (Optional[RandomState]) – PRNG






	Return type:

	(List[ndarray], IncrementalUpdateGPAdditivePosteriorState)



	Returns:

	pending_targets, final_state














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.posterior_state.GaussProcISSMPosteriorState(data, mean, kernel, iss_model, noise_variance, **kwargs)

	Bases: IncrementalUpdateGPAdditivePosteriorState

Represent posterior state for joint Gaussian model of learning curves over
a number of configurations. The model is the sum of a Gaussian process
model for function values at r_max and independent Gaussian linear
innovation state space models (ISSMs) of a particular power law decay
form.


	
static has_precomputations(data)

	
	Return type:

	bool










	
predict(test_features)

	We compute marginals over f(x, r), where test_features are extended
features.
Note: The test configs must not overlap with any in the training set.
Otherwise, at least if r != r_max, the predictive distributions
computed here may be wrong.


	Parameters:

	test_features (ndarray) – Extended features for test configs



	Return type:

	Tuple[ndarray, ndarray]



	Returns:

	posterior_means, posterior_variances










	
static data_precomputations(data)

	




	
update(feature, targets)

	
	Return type:

	IncrementalUpdateGPAdditivePosteriorState














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.posterior_state.GaussProcExpDecayPosteriorState(data, mean, kernel, res_kernel, noise_variance, **kwargs)

	Bases: IncrementalUpdateGPAdditivePosteriorState

Represent posterior state for joint Gaussian model of learning curves over
a number of configurations. The model is the sum of a Gaussian process
model for function values at r_max and independent Gaussian processes over
r, using an exponential decay covariance function. The latter is shared
between all configs.

This is essentially the model from the Freeze Thaw paper (see also
ExponentialDecayResourcesKernelFunction).


	
static has_precomputations(data)

	
	Return type:

	bool










	
predict(test_features)

	We compute marginals over f(x, r), where test_features are extended
features.
Note: The test configs must not overlap with any in the training set.
Otherwise, at least if r != r_max, the predictive distributions
computed here may be wrong.


	Parameters:

	test_features (ndarray) – Extended features for test configs



	Return type:

	Tuple[ndarray, ndarray]



	Returns:

	posterior_means, posterior_variances










	
static data_precomputations(data)

	




	
update(feature, targets)

	
	Return type:

	IncrementalUpdateGPAdditivePosteriorState
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve package


Submodules



	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw module
	ZeroKernel
	ZeroKernel.forward()

	ZeroKernel.diagonal()

	ZeroKernel.diagonal_depends_on_X()

	ZeroKernel.param_encoding_pairs()

	ZeroKernel.get_params()

	ZeroKernel.set_params()





	ZeroMean
	ZeroMean.forward()

	ZeroMean.param_encoding_pairs()

	ZeroMean.get_params()

	ZeroMean.set_params()





	ExponentialDecayBaseKernelFunction
	ExponentialDecayBaseKernelFunction.forward()

	ExponentialDecayBaseKernelFunction.diagonal()

	ExponentialDecayBaseKernelFunction.diagonal_depends_on_X()

	ExponentialDecayBaseKernelFunction.param_encoding_pairs()

	ExponentialDecayBaseKernelFunction.get_params()

	ExponentialDecayBaseKernelFunction.set_params()

	ExponentialDecayBaseKernelFunction.mean_function()





	logdet_cholfact_cov_resource()

	resource_kernel_likelihood_precomputations()

	resource_kernel_likelihood_computations()

	resource_kernel_likelihood_slow_computations()

	predict_posterior_marginals_extended()

	sample_posterior_joint()





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.gpiss_model module
	GaussianProcessLearningCurveModel
	GaussianProcessLearningCurveModel.likelihood









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm module
	prepare_data()

	prepare_data_with_pending()

	issm_likelihood_precomputations()
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syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.likelihood module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.likelihood.MarginalLikelihood(prefix=None, params=None)

	Bases: Block

Interface for marginal likelihood of Gaussian-linear model.


	
get_posterior_state(data)

	
	Return type:

	PosteriorState










	
forward(data)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
param_encoding_pairs()

	Return a list of tuples with the Gluon parameters of the likelihood
and their respective encodings


	Return type:

	List[tuple]










	
box_constraints_internal()

	
	Return type:

	Dict[str, Tuple[float, float]]



	Returns:

	Box constraints for all the underlying parameters










	
get_noise_variance(as_ndarray=False)

	




	
get_params()

	
	Return type:

	Dict[str, ndarray]










	
set_params(param_dict)

	




	
reset_params(random_state)

	Reset hyperparameters to their initial values (or resample them).






	
data_precomputations(data, overwrite=False)

	Some models require precomputations based on data. Precomputed
variables are appended to data. This is done only if not already
included in data, unless overwrite is True.


	Parameters:

	
	data (Dict[str, Any]) – 


	overwrite (bool) – 













	
on_fit_start(data)

	Called at the beginning of fit.


	Parameters:

	data (Dict[str, Any]) – Argument passed to fit














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.likelihood.GaussianProcessMarginalLikelihood(kernel, mean=None, target_transform=None, initial_noise_variance=None, encoding_type=None, **kwargs)

	Bases: MarginalLikelihood

Marginal likelihood of Gaussian process with Gaussian likelihood


	Parameters:

	
	kernel (KernelFunction) – Kernel function


	mean (Optional[MeanFunction]) – Mean function which depends on the input X only (by default,
a scalar fitted while optimizing the likelihood)


	target_transform (Optional[ScalarTargetTransform]) – Invertible transform of target values y to
latent values z, which are then modelled as Gaussian. Defaults to
the identity


	initial_noise_variance – A scalar to initialize the value of the
residual noise variance









	
static assert_data_entries(data)

	




	
get_posterior_state(data)

	
	Return type:

	PosteriorState










	
forward(data)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
param_encoding_pairs()

	Return a list of tuples with the Gluon parameters of the likelihood
and their respective encodings


	Return type:

	List[tuple]










	
get_noise_variance(as_ndarray=False)

	




	
get_params()

	
	Return type:

	Dict[str, ndarray]










	
set_params(param_dict)

	




	
on_fit_start(data)

	Called at the beginning of fit.


	Parameters:

	data (Dict[str, Any]) – Argument passed to fit
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.mean module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.mean.MeanFunction(**kwargs)

	Bases: Block

Mean function, parameterizing a surrogate model together with a kernel function.

Note: KernelFunction also inherits from this interface.


	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.mean.ScalarMeanFunction(initial_mean_value=0.0, **kwargs)

	Bases: MeanFunction

Mean function defined as a scalar (fitted while optimizing the marginal
likelihood).


	Parameters:

	initial_mean_value – A scalar to initialize the value of the mean






	
forward(X)

	Actual computation of the scalar mean function
We compute mean_value * vector_of_ones, whose dimensions are given by
the the first column of X


	Parameters:

	X – input data of size (n,d) for which we want to compute the
mean (here, only useful to extract the right dimension)










	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_mean_value()

	




	
set_mean_value(mean_value)

	




	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.mean.ZeroMeanFunction(**kwargs)

	Bases: MeanFunction


	
forward(X)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.optimization_utils module


	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.optimization_utils.apply_lbfgs(exec_func, param_dict, bounds, **kwargs)

	Run SciPy L-BFGS-B on criterion given by autograd code

Run SciPy L-BFGS-B in order to minimize criterion given by autograd code.
Criterion and gradient are computed by:


crit_val, gradient = exec_func(param_vec)




Given an autograd expression, use make_scipy_objective to obtain exec_func.
param_vec must correspond to the parameter dictionary param_dict via
ParamVecDictConverter. The initial param_vec is taken from param_dict,
and final values are written back to param_dict (conversions are done
by ParamVecDictConverter).

L-BFGS-B allows box constraints [a, b] for any coordinate. Here, None
stands for -infinity (a) or +infinity (b). The default is (None, None),
so no constraints. In bounds, box constraints can be specified per
argument (the constraint applies to all coordinates of the argument).
Pass {} for no constraints.


	Parameters:

	
	exec_func – Function to compute criterion and gradient


	param_dict – See above


	bounds – See above






	Returns:

	None, or dict with info about exception caught










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.optimization_utils.apply_lbfgs_with_multiple_starts(exec_func, param_dict, bounds, random_state, n_starts=5, **kwargs)

	When dealing with non-convex problems (e.g., optimization the marginal
likelihood), we typically need to start from various starting points. This
function applies this logic around apply_lbfgs, randomizing the starting
points around the initial values provided in param_dict (see below
“copy_of_initial_param_dict”).

The first optimization happens exactly at param_dict, so that the case
n_starts=1 exactly coincides with the previously used apply_lbfgs.
Importantly, the communication with the L-BFGS solver happens via param_dict,
hence all the operations with respect to param_dict are inplace.

We catch exceptions and return ret_infos about these. If none of the
restarts worked, param_dict is not modified.


	Parameters:

	
	exec_func – see above


	param_dict – see above


	bounds – see above


	random_state – RandomState for sampling


	n_starts – Number of times we start an optimization with L-BFGS
(must be >= 1)






	Returns:

	List ret_infos of length n_starts. Entry is None if optimization
worked, or otherwise has dict with info about exception caught










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.optimization_utils.add_regularizer_to_criterion(criterion, crit_args)

	




	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.optimization_utils.create_lbfgs_arguments(criterion, crit_args, verbose=False)

	Creates SciPy optimizer objective and param_dict for criterion
function.


	Parameters:

	
	criterion (MarginalLikelihood) – Learning criterion (nullary)


	crit_args (list) – Arguments for criterion.forward






	Returns:

	scipy_objective, param_dict












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_state module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_state.PosteriorState

	Bases: object

Interface for posterior state of Gaussian-linear model.


	
property num_data

	




	
property num_features

	




	
property num_fantasies

	




	
neg_log_likelihood()

	
	Return type:

	ndarray



	Returns:

	Negative log marginal likelihood










	
predict(test_features)

	Computes marginal statistics (means, variances) for a number of test
features.


	Parameters:

	test_features (ndarray) – Features for test configs



	Return type:

	Tuple[ndarray, ndarray]



	Returns:

	posterior_means, posterior_variances










	
sample_marginals(test_features, num_samples=1, random_state=None)

	See comments of predict.


	Parameters:

	
	test_features (ndarray) – Input points for test configs


	num_samples (int) – Number of samples


	random_state (Optional[RandomState]) – PRNG






	Return type:

	ndarray



	Returns:

	Marginal samples, (num_test, num_samples)










	
backward_gradient(input, head_gradients, mean_data, std_data)

	Implements Predictor.backward_gradient, see comments there.
This is for a single posterior state. If the Predictor uses
MCMC, have to call this for every sample.


	Parameters:

	
	input (ndarray) – Single input point x, shape (d,)


	head_gradients (Dict[str, ndarray]) – See Predictor.backward_gradient


	mean_data (float) – Mean used to normalize targets


	std_data (float) – Stddev used to normalize targets






	Return type:

	ndarray



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_state.PosteriorStateWithSampleJoint

	Bases: PosteriorState


	
sample_joint(test_features, num_samples=1, random_state=None)

	See comments of predict.


	Parameters:

	
	test_features (ndarray) – Input points for test configs


	num_samples (int) – Number of samples


	random_state (Optional[RandomState]) – PRNG






	Return type:

	ndarray



	Returns:

	Joint samples, (num_test, num_samples)














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_state.GaussProcPosteriorState(features, targets, mean, kernel, noise_variance, debug_log=False, **kwargs)

	Bases: PosteriorStateWithSampleJoint

Represent posterior state for Gaussian process regression model.
Note that members are immutable. If the posterior state is to be
updated, a new object is created and returned.


	
property num_data

	




	
property num_features

	




	
property num_fantasies

	




	
neg_log_likelihood()

	Works only if fantasy samples are not used (single targets vector).


	Return type:

	ndarray










	
predict(test_features)

	Computes marginal statistics (means, variances) for a number of test
features.


	Parameters:

	test_features (ndarray) – Features for test configs



	Return type:

	Tuple[ndarray, ndarray]



	Returns:

	posterior_means, posterior_variances










	
sample_marginals(test_features, num_samples=1, random_state=None)

	See comments of predict.


	Parameters:

	
	test_features (ndarray) – Input points for test configs


	num_samples (int) – Number of samples


	random_state (Optional[RandomState]) – PRNG






	Return type:

	ndarray



	Returns:

	Marginal samples, (num_test, num_samples)










	
backward_gradient(input, head_gradients, mean_data, std_data)

	Implements Predictor.backward_gradient, see comments there.
This is for a single posterior state. If the Predictor uses
MCMC, have to call this for every sample.

The posterior represented here is based on normalized data, while
the acquisition function is based on the de-normalized predictive
distribution, which is why we need ‘mean_data’, ‘std_data’ here.


	Parameters:

	
	input (ndarray) – Single input point x, shape (d,)


	head_gradients (Dict[str, ndarray]) – See Predictor.backward_gradient


	mean_data (float) – Mean used to normalize targets


	std_data (float) – Stddev used to normalize targets






	Return type:

	ndarray



	Returns:

	










	
sample_joint(test_features, num_samples=1, random_state=None)

	See comments of predict.


	Parameters:

	
	test_features (ndarray) – Input points for test configs


	num_samples (int) – Number of samples


	random_state (Optional[RandomState]) – PRNG






	Return type:

	ndarray



	Returns:

	Joint samples, (num_test, num_samples)














	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_state.backward_gradient_given_predict(predict_func, input, head_gradients, mean_data, std_data)

	Implements Predictor.backward_gradient, see comments there.
This is for a single posterior state. If the Predictor uses
MCMC, have to call this for every sample.

The posterior represented here is based on normalized data, while
the acquisition function is based on the de-normalized predictive
distribution, which is why we need ‘mean_data’, ‘std_data’ here.


	Parameters:

	
	predict_func (Callable[[ndarray], Tuple[ndarray, ndarray]]) – Function mapping input x to mean, variance


	input (ndarray) – Single input point x, shape (d,)


	head_gradients (Dict[str, ndarray]) – See Predictor.backward_gradient


	mean_data (float) – Mean used to normalize targets


	std_data (float) – Stddev used to normalize targets






	Return type:

	ndarray



	Returns:

	










	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_state.IncrementalUpdateGPPosteriorState(features, targets, mean, kernel, noise_variance, **kwargs)

	Bases: GaussProcPosteriorState

Extension of GaussProcPosteriorState which allows for incremental
updating, given that a single data case is appended to the training
set.

In order to not mutate members,
“the update method returns a new object.”


	
update(feature, target)

	
	Parameters:

	
	feature (ndarray) – Additional input xstar, shape (1, d)


	target (ndarray) – Additional target ystar, shape (1, m)






	Return type:

	IncrementalUpdateGPPosteriorState



	Returns:

	Posterior state for increased data set










	
sample_and_update(feature, mean_impute_mask=None, random_state=None)

	Draw target(s), shape (1, m), from current posterior state, then update
state based on these. The main computation of lvec is shared among the
two.
If mean_impute_mask is given, it is a boolean vector of size m (number
columns of pred_mat). Columns j of target, where mean_impute_ mask[j]
is true, are set to the predictive mean (instead of being sampled).


	Parameters:

	
	feature (ndarray) – Additional input xstar, shape (1, d)


	mean_impute_mask – See above


	random_state (Optional[RandomState]) – PRN generator






	Return type:

	(ndarray, IncrementalUpdateGPPosteriorState)



	Returns:

	target, poster_state_new










	
expand_fantasies(num_fantasies)

	If this posterior has been created with a single targets vector,
shape (n, 1), use this to duplicate this vector m = num_fantasies
times. Call this method before fantasy targets are appended by
update.


	Parameters:

	num_fantasies (int) – Number m of fantasy samples



	Return type:

	IncrementalUpdateGPPosteriorState



	Returns:

	New state with targets duplicated m times
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_utils module


	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_utils.cholesky_computations(features, targets, mean, kernel, noise_variance, debug_log=False)

	Given input matrix X (features), target matrix Y (targets), mean and kernel
function, compute posterior state {L, P}, where L is the Cholesky factor
of


k(X, X) + sigsq_final * I





	and
	L P = Y - mean(X)





Here, sigsq_final >= noise_variance is minimal such that the Cholesky
factorization does not fail.


	Parameters:

	
	features – Input matrix X (n, d)


	targets – Target matrix Y (n, m)


	mean (MeanFunction) – Mean function


	kernel (Union[KernelFunction, Tuple[KernelFunction, ndarray]]) – Kernel function, or tuple


	noise_variance – Noise variance (may be increased)


	debug_log (bool) – Debug output during add_jitter CustomOp?






	Returns:

	L, P










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_utils.predict_posterior_marginals(features, mean, kernel, chol_fact, pred_mat, test_features)

	Computes posterior means and variances for test_features.
If pred_mat is a matrix, so will be posterior_means, but not
posterior_variances. Reflects the fact that for GP regression and fixed
hyperparameters, the posterior mean depends on the targets y, but the
posterior covariance does not.


	Parameters:

	
	features – Training inputs


	mean (MeanFunction) – Mean function


	kernel (Union[KernelFunction, Tuple[KernelFunction, ndarray]]) – Kernel function, or tuple


	chol_fact – Part L of posterior state


	pred_mat – Part P of posterior state


	test_features – Test inputs






	Returns:

	posterior_means, posterior_variances










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_utils.sample_posterior_marginals(features, mean, kernel, chol_fact, pred_mat, test_features, random_state, num_samples=1)

	Draws num_sample samples from the product of marginals of the posterior
over input points test_features. If pred_mat is a matrix with m columns,
the samples returned have shape (n_test, m, num_samples).


	Parameters:

	
	features – Training inputs


	mean (MeanFunction) – Mean function


	kernel (Union[KernelFunction, Tuple[KernelFunction, ndarray]]) – Kernel function, or tuple


	chol_fact – Part L of posterior state


	pred_mat – Part P of posterior state


	test_features – Test inputs


	num_samples (int) – Number of samples to draw






	Returns:

	Samples, shape (n_test, num_samples) or (n_test, m, num_samples)










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_utils.sample_posterior_joint(features, mean, kernel, chol_fact, pred_mat, test_features, random_state, num_samples=1)

	Draws num_sample samples from joint posterior distribution over inputs
test_features. This is done by computing mean and covariance matrix of
this posterior, and using the Cholesky decomposition of the latter. If
pred_mat is a matrix with m columns, the samples returned have shape
(n_test, m, num_samples).


	Parameters:

	
	features – Training inputs


	mean (MeanFunction) – Mean function


	kernel (Union[KernelFunction, Tuple[KernelFunction, ndarray]]) – Kernel function, or tuple


	chol_fact – Part L of posterior state


	pred_mat – Part P of posterior state


	test_features – Test inputs


	num_samples (int) – Number of samples to draw






	Returns:

	Samples, shape (n_test, num_samples) or (n_test, m, num_samples)










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_utils.cholesky_update(features, mean, kernel, chol_fact, pred_mat, noise_variance, feature, target, lvec=None)

	Incremental update of posterior state (Cholesky factor, prediction
matrix), given one datapoint (feature, target).

Note: noise_variance is the initial value, before any jitter may have
been added to compute chol_fact. Here, we add the minimum amount of
jitter such that the new diagonal entry of the Cholesky factor is
>= MIN_CHOLESKY_DIAGONAL_VALUE. This means that if cholesky_update is
used several times, we in fact add a diagonal (but not spherical)
jitter matrix.


	Parameters:

	
	features – Shape (n, d)


	chol_fact – Shape (n, n)


	pred_mat – Shape (n, m)


	mean (MeanFunction) – 


	kernel (Union[KernelFunction, Tuple[KernelFunction, ndarray]]) – 


	noise_variance – 


	feature – Shape (1, d)


	target – Shape (1, m)


	lvec – If given, this is the new column of the Cholesky factor
except the diagonal entry. If not, this is computed here






	Returns:

	chol_fact_new (n+1, n+1), pred_mat_new (n+1, m)










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_utils.sample_and_cholesky_update(features, mean, kernel, chol_fact, pred_mat, noise_variance, feature, random_state, mean_impute_mask=None)

	




	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_utils.negative_log_marginal_likelihood(chol_fact, pred_mat)

	The marginal likelihood is only computed if pred_mat has a single column
(not for fantasy sample case).








            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.slice module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.slice.SliceSampler(log_density, scale, random_state)

	Bases: object


	
sample(init_sample, num_samples, burn, thin)

	
	Return type:

	List[ndarray]














	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.slice.gen_random_direction(dimension, random_state)

	
	Return type:

	ndarray










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.slice.slice_sampler_step_out(log_pivot, scale, sliced_log_density, random_state)

	
	Return type:

	Tuple[float, float]










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.slice.slice_sampler_step_in(lower_bound, upper_bound, log_pivot, sliced_log_density, random_state)

	Find the right amount of movement along with a random_direction


	Return type:

	float












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.target_transform module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.target_transform.ScalarTargetTransform(**kwargs)

	Bases: MeanFunction

Interface for invertible transforms of scalar target values.

forward() maps original target values \(y\) to latent target values
\(z\), the latter are typically modelled as Gaussian.
negative_log_jacobian() returns the term to be added to \(-\log P(z)\),
where \(z\) is mapped from \(y\), in order to obtain \(-\log P(y)\).


	
forward(targets)

	
	Parameters:

	targets – Target vector \(y\) in original form



	Returns:

	Transformed latent target vector \(z\)










	
negative_log_jacobian(targets)

	
	Parameters:

	targets – Target vector \(y\) in original form



	Returns:

	Term to add to \(-\log P(z)\) to obtain \(-\log P(y)\)










	
inverse(latents)

	
	Parameters:

	latents – Latent target vector \(z\)



	Returns:

	Corresponding target vector \(y\)










	
on_fit_start(targets)

	This is called just before the surrogate model optimization starts.


	Parameters:

	targets – Target vector \(y\) in original form














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.target_transform.IdentityTargetTransform(**kwargs)

	Bases: ScalarTargetTransform


	
forward(targets)

	
	Parameters:

	targets – Target vector \(y\) in original form



	Returns:

	Transformed latent target vector \(z\)










	
negative_log_jacobian(targets)

	
	Parameters:

	targets – Target vector \(y\) in original form



	Returns:

	Term to add to \(-\log P(z)\) to obtain \(-\log P(y)\)










	
inverse(latents)

	
	Parameters:

	latents – Latent target vector \(z\)



	Returns:

	Corresponding target vector \(y\)










	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.target_transform.BoxCoxTargetTransform(initial_boxcox_lambda=None, **kwargs)

	Bases: ScalarTargetTransform

The Box-Cox transform for \(y > 0\) is parameterized in terms of
\(\lambda\):


\[ \begin{align}\begin{aligned}z = T(y, \lambda) = \frac{y^{\lambda} - 1}{\lambda},\quad \lambda\ne 0\\T(y, \lambda=0) = \log y\end{aligned}\end{align} \]

One difficulty is that expressions involve division by \(\lambda\). Our
implementation separates between (1) \(\lambda \ge \varepsilon\), (2)
\(\lambda\le -\varepsilon\), and (3)
\(-\varepsilon < \lambda < \varepsilon\), where \(\varepsilon\) is
BOXCOX_LAMBDA_EPS. In case (3), we use the approximation
\(z \approx u + \lambda u^2/2\), where \(u = \log y\).

Note that we require \(1 + z\lambda > 0\), which restricts \(z\) if
\(\lambda\ne 0\).


Note

Targets must be positive. They are thresholded at
BOXCOX_TARGET_THRES, so negative targets do not raise an error.



The Box-Cox transform has been proposed in the content of Bayesian optimization
by



Cowen-Rivers, A. et.al.

HEBO: Pushing the Limits of Sample-efficient Hyper-parameter Optimisation

Journal of Artificial Intelligence Research 74 (2022), 1269-1349

ArXiV [https://arxiv.org/abs/2012.03826]






However, they decouple the transformation of targets from fitting the remaining
surrogate model parameters, which is possible only under a simplifying
assumption (namely, that targets after transform are modelled i.i.d. by a
single univariate Gaussian). Instead, we treat \(\lambda\) as just one
more parameter to fit along with all the others.


	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_boxcox_lambda()

	




	
set_boxcox_lambda(boxcox_lambda)

	




	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	










	
negative_log_jacobian(targets)

	
	Parameters:

	targets – Target vector \(y\) in original form



	Returns:

	Term to add to \(-\log P(z)\) to obtain \(-\log P(y)\)










	
forward(targets)

	
	Parameters:

	targets – Target vector \(y\) in original form



	Returns:

	Transformed latent target vector \(z\)










	
inverse(latents)

	The inverse is \(\exp( \log(1 + z\lambda) / \lambda )\). For
\(\lambda\approx 0\), we use \(\exp( z (1 - z\lambda/2) )\).

We also need \(1 + z\lambda > 0\), so we use the maximum of
\(z lambda\) and BOXCOX_ZLAMBDA_THRES.






	
on_fit_start(targets)

	We only optimize boxcox_lambda once there are no less than
BOXCOX_LAMBDA_OPT_MIN_NUMDATA data points. Otherwise, it remains
fixed to its initial value.












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.warping module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.warping.Warping(dimension, coordinate_range=None, encoding_type='logarithm', **kwargs)

	Bases: MeanFunction

Warping transform on contiguous range of feature \(x\). Each warped
coordinate has two independent warping parameters.

If \(x = [x_1, \dots, x_d]\) and coordinate_range = (l, r), the
warping transform operates on \([x_l, \dots, x_{r-1}]\). The default
for coordinate_range is the full range, and we must have l < r.
The block is the identity on all remaining coordinates. Input coordinates
are assumed to lie in \([0, 1]\). The warping transform on each
coordinate is due to Kumaraswamy:


\[warp(x_j) = 1 - (1 - r(x_j)^{a_j})^{b_j}.\]

Here, \(r(x_j)\) linearly maps \([0, 1]\) to
\([\epsilon, 1 - \epsilon]\) for a small \(\epsilon > 0\), which
avoids numerical issues when taking derivatives.


	Parameters:

	
	dimension (int) – Dimension \(d\) of input


	coordinate_range (Optional[Tuple[int, int]]) – Range (l, r), see above. Default is
(0, dimension), so the full range


	encoding_type (str) – Encoding type









	
forward(x)

	Actual computation of the warping transformation (see details above)


	Parameters:

	x – Input data, shape (n, d)










	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	














	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.warping.warpings_for_hyperparameters(hp_ranges)

	It is custom to warp hyperparameters which are not categorical. This
function creates warpings based on your configuration space.


	Parameters:

	hp_ranges (HyperparameterRanges) – Encoding of configuration space



	Return type:

	List[Warping]



	Returns:

	To be used as warpings in WarpedKernel










	
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.warping.kernel_with_warping(kernel, hp_ranges)

	Note that the coordinates corresponding to categorical parameters are not
warped.


	Parameters:

	
	kernel (KernelFunction) – Kernel \(k(x, x')\) without warping


	hp_ranges (HyperparameterRanges) – Encoding of configuration space






	Return type:

	KernelFunction



	Returns:

	Kernel with warping










	
class syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.warping.WarpedKernel(kernel, warpings, **kwargs)

	Bases: KernelFunction

Block that composes warping with an arbitrary kernel. We allow for a
list of warping transforms, so that a non-contiguous set of input
coordinates can be warped.

It is custom to warp hyperparameters which are not categorical. You can
use kernel_with_warping() to furnish a kernel with warping for all
non-categorical hyperparameters.


	Parameters:

	
	kernel (KernelFunction) – Kernel \(k(x, x')\)


	warpings (List[Warping]) – List of warping transforms, which are applied sequentially.
Ranges of different entries should be non-overlapping, this is not
checked.









	
forward(X1, X2)

	Overrides to implement forward computation using NDArray. Only
accepts positional arguments.
Parameters
———-
*args : list of NDArray


Input tensors.









	
diagonal(X)

	
	Parameters:

	X – Input data, shape (n, d)



	Returns:

	Diagonal of \(k(X, X)\), shape (n,)










	
diagonal_depends_on_X()

	For stationary kernels, diagonal does not depend on X


	Returns:

	Does diagonal() depend on X?










	
param_encoding_pairs()

	
	Returns list of tuples
	(param_internal, encoding)





over all Gluon parameters maintained here.


	Returns:

	List [(param_internal, encoding)]










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Dictionary with hyperparameter values










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – Dictionary with new hyperparameter values



	Returns:

	
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd package


	
exception syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.SliceException

	Bases: Exception






Subpackages



	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune package
	Submodules
	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.gp_model module
	HyperTuneDistributionArguments

	HyperTuneModelMixin

	HyperTuneIndependentGPModel

	HyperTuneJointGPModel





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.likelihood module
	HyperTuneIndependentGPMarginalLikelihood

	HyperTuneJointGPMarginalLikelihood





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.posterior_state module
	assert_ensemble_distribution()

	HyperTuneIndependentGPPosteriorState

	HyperTuneJointGPPosteriorState





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune.utils module
	ExtendFeaturesByResourceMixin

	PosteriorStateClampedResource

	MeanFunctionClampedResource

	KernelFunctionClampedResource

	GaussProcPosteriorStateAndRungLevels

	hypertune_ranking_losses()

	number_supported_levels_and_data_highest_level()













	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent package
	Submodules
	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.gpind_model module
	IndependentGPPerResourceModel





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.likelihood module
	IndependentGPPerResourceMarginalLikelihood





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent.posterior_state module
	IndependentGPPerResourcePosteriorState













	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel package
	KernelFunction
	KernelFunction.dimension

	KernelFunction.diagonal()

	KernelFunction.diagonal_depends_on_X()





	Matern52
	Matern52.ARD

	Matern52.forward()

	Matern52.diagonal()

	Matern52.diagonal_depends_on_X()

	Matern52.param_encoding_pairs()

	Matern52.get_covariance_scale()

	Matern52.set_covariance_scale()

	Matern52.get_params()

	Matern52.set_params()





	ExponentialDecayResourcesKernelFunction
	ExponentialDecayResourcesKernelFunction.forward()

	ExponentialDecayResourcesKernelFunction.diagonal()

	ExponentialDecayResourcesKernelFunction.diagonal_depends_on_X()

	ExponentialDecayResourcesKernelFunction.param_encoding_pairs()

	ExponentialDecayResourcesKernelFunction.mean_function()

	ExponentialDecayResourcesKernelFunction.get_params()

	ExponentialDecayResourcesKernelFunction.set_params()





	ExponentialDecayResourcesMeanFunction
	ExponentialDecayResourcesMeanFunction.forward()

	ExponentialDecayResourcesMeanFunction.param_encoding_pairs()

	ExponentialDecayResourcesMeanFunction.get_params()

	ExponentialDecayResourcesMeanFunction.set_params()





	FabolasKernelFunction
	FabolasKernelFunction.forward()

	FabolasKernelFunction.diagonal()

	FabolasKernelFunction.diagonal_depends_on_X()

	FabolasKernelFunction.param_encoding_pairs()

	FabolasKernelFunction.get_params()

	FabolasKernelFunction.set_params()





	ProductKernelFunction
	ProductKernelFunction.forward()

	ProductKernelFunction.diagonal()

	ProductKernelFunction.diagonal_depends_on_X()

	ProductKernelFunction.param_encoding_pairs()

	ProductKernelFunction.get_params()

	ProductKernelFunction.set_params()





	FreezeThawKernelFunction
	FreezeThawKernelFunction.forward()

	FreezeThawKernelFunction.diagonal()

	FreezeThawKernelFunction.diagonal_depends_on_X()

	FreezeThawKernelFunction.param_encoding_pairs()

	FreezeThawKernelFunction.mean_function()

	FreezeThawKernelFunction.get_params()

	FreezeThawKernelFunction.set_params()





	FreezeThawMeanFunction
	FreezeThawMeanFunction.forward()

	FreezeThawMeanFunction.param_encoding_pairs()

	FreezeThawMeanFunction.get_params()

	FreezeThawMeanFunction.set_params()





	CrossValidationMeanFunction
	CrossValidationMeanFunction.forward()

	CrossValidationMeanFunction.param_encoding_pairs()

	CrossValidationMeanFunction.get_params()

	CrossValidationMeanFunction.set_params()





	CrossValidationKernelFunction
	CrossValidationKernelFunction.forward()

	CrossValidationKernelFunction.diagonal()

	CrossValidationKernelFunction.diagonal_depends_on_X()

	CrossValidationKernelFunction.param_encoding_pairs()

	CrossValidationKernelFunction.mean_function()

	CrossValidationKernelFunction.get_params()

	CrossValidationKernelFunction.set_params()





	RangeKernelFunction
	RangeKernelFunction.forward()

	RangeKernelFunction.diagonal()

	RangeKernelFunction.diagonal_depends_on_X()

	RangeKernelFunction.param_encoding_pairs()

	RangeKernelFunction.get_params()

	RangeKernelFunction.set_params()





	Submodules
	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.base module
	KernelFunction

	SquaredDistance

	Matern52





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.cross_validation module
	decode_resource_values()

	CrossValidationKernelFunction

	CrossValidationMeanFunction





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.exponential_decay module
	ExponentialDecayResourcesKernelFunction

	ExponentialDecayResourcesMeanFunction





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.fabolas module
	FabolasKernelFunction





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.freeze_thaw module
	FreezeThawKernelFunction

	FreezeThawMeanFunction





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.product_kernel module
	ProductKernelFunction





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel.range_kernel module
	RangeKernelFunction













	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve package
	Submodules
	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.freeze_thaw module
	ZeroKernel

	ZeroMean

	ExponentialDecayBaseKernelFunction

	logdet_cholfact_cov_resource()

	resource_kernel_likelihood_precomputations()

	resource_kernel_likelihood_computations()

	resource_kernel_likelihood_slow_computations()

	predict_posterior_marginals_extended()

	sample_posterior_joint()





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.gpiss_model module
	GaussianProcessLearningCurveModel





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.issm module
	prepare_data()

	prepare_data_with_pending()

	issm_likelihood_precomputations()

	issm_likelihood_computations()

	posterior_computations()

	predict_posterior_marginals()

	sample_posterior_marginals()

	predict_posterior_marginals_extended()

	sample_posterior_joint()

	issm_likelihood_slow_computations()

	update_posterior_state()

	update_posterior_pvec()





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.likelihood module
	GaussAdditiveMarginalLikelihood





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.model_params module
	ISSModelParameters

	IndependentISSModelParameters





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve.posterior_state module
	GaussProcAdditivePosteriorState

	IncrementalUpdateGPAdditivePosteriorState

	GaussProcISSMPosteriorState

	GaussProcExpDecayPosteriorState



















Submodules



	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.constants module
	OptimizationConfig
	OptimizationConfig.lbfgs_tol

	OptimizationConfig.lbfgs_maxiter

	OptimizationConfig.verbose

	OptimizationConfig.n_starts





	MCMCConfig
	MCMCConfig.n_samples

	MCMCConfig.n_burnin

	MCMCConfig.n_thinning









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.custom_op module
	AddJitterOp()

	flatten_and_concat()

	cholesky_factorization()





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.distribution module
	Distribution
	Distribution.negative_log_density()





	Gamma
	Gamma.negative_log_density()





	Uniform
	Uniform.negative_log_density()





	Normal
	Normal.negative_log_density()





	LogNormal
	LogNormal.negative_log_density()





	Horseshoe
	Horseshoe.negative_log_density()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon module
	Block
	Block.prefix

	Block.name

	Block.name_scope()

	Block.params

	Block.collect_params()

	Block.register_child()

	Block.apply()

	Block.initialize()

	Block.hybridize()

	Block.cast()

	Block.forward()

	Block.hybrid_forward()





	Parameter
	Parameter.grad_req

	Parameter.dtype

	Parameter.shape

	Parameter.initialize()

	Parameter.reset_ctx()

	Parameter.set_data()

	Parameter.data()

	Parameter.list_data()

	Parameter.grad()

	Parameter.list_grad()

	Parameter.list_ctx()

	Parameter.zero_grad()

	Parameter.cast()





	ParameterDict
	ParameterDict.items()

	ParameterDict.keys()

	ParameterDict.values()

	ParameterDict.prefix

	ParameterDict.get()

	ParameterDict.update()

	ParameterDict.initialize()

	ParameterDict.reset_ctx()

	ParameterDict.list_ctx()

	ParameterDict.setattr()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers module
	ConstantPositiveVector
	ConstantPositiveVector.forward()

	ConstantPositiveVector.set()

	ConstantPositiveVector.get()

	ConstantPositiveVector.get_box_constraints_internal()

	ConstantPositiveVector.log_parameters()

	ConstantPositiveVector.get_parameters()

	ConstantPositiveVector.switch_updating()

	ConstantPositiveVector.has_regularizer()

	ConstantPositiveVector.eval_regularizer()





	PositiveScalarEncoding
	PositiveScalarEncoding.get()

	PositiveScalarEncoding.decode()





	IdentityScalarEncoding
	IdentityScalarEncoding.get()

	IdentityScalarEncoding.decode()





	LogarithmScalarEncoding
	LogarithmScalarEncoding.get()

	LogarithmScalarEncoding.decode()





	unwrap_parameter()

	encode_unwrap_parameter()

	param_to_pretty_string()

	register_parameter()

	create_encoding()





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gp_model module
	GaussianProcessModel
	GaussianProcessModel.random_state

	GaussianProcessModel.states

	GaussianProcessModel.fit()

	GaussianProcessModel.recompute_states()

	GaussianProcessModel.predict()

	GaussianProcessModel.multiple_targets()

	GaussianProcessModel.sample_marginals()

	GaussianProcessModel.sample_joint()





	GaussianProcessOptimizeModel
	GaussianProcessOptimizeModel.states

	GaussianProcessOptimizeModel.likelihood

	GaussianProcessOptimizeModel.fit()

	GaussianProcessOptimizeModel.recompute_states()

	GaussianProcessOptimizeModel.get_params()

	GaussianProcessOptimizeModel.set_params()

	GaussianProcessOptimizeModel.reset_params()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gp_regression module
	GaussianProcessRegression
	GaussianProcessRegression.likelihood









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gpr_mcmc module
	GPRegressionMCMC
	GPRegressionMCMC.states

	GPRegressionMCMC.number_samples

	GPRegressionMCMC.fit()

	GPRegressionMCMC.recompute_states()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.likelihood module
	MarginalLikelihood
	MarginalLikelihood.get_posterior_state()

	MarginalLikelihood.forward()

	MarginalLikelihood.param_encoding_pairs()

	MarginalLikelihood.box_constraints_internal()

	MarginalLikelihood.get_noise_variance()

	MarginalLikelihood.get_params()

	MarginalLikelihood.set_params()

	MarginalLikelihood.reset_params()

	MarginalLikelihood.data_precomputations()

	MarginalLikelihood.on_fit_start()





	GaussianProcessMarginalLikelihood
	GaussianProcessMarginalLikelihood.assert_data_entries()

	GaussianProcessMarginalLikelihood.get_posterior_state()

	GaussianProcessMarginalLikelihood.forward()

	GaussianProcessMarginalLikelihood.param_encoding_pairs()

	GaussianProcessMarginalLikelihood.get_noise_variance()

	GaussianProcessMarginalLikelihood.get_params()

	GaussianProcessMarginalLikelihood.set_params()

	GaussianProcessMarginalLikelihood.on_fit_start()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.mean module
	MeanFunction
	MeanFunction.param_encoding_pairs()

	MeanFunction.get_params()

	MeanFunction.set_params()





	ScalarMeanFunction
	ScalarMeanFunction.forward()

	ScalarMeanFunction.param_encoding_pairs()

	ScalarMeanFunction.get_mean_value()

	ScalarMeanFunction.set_mean_value()

	ScalarMeanFunction.get_params()

	ScalarMeanFunction.set_params()





	ZeroMeanFunction
	ZeroMeanFunction.forward()

	ZeroMeanFunction.param_encoding_pairs()

	ZeroMeanFunction.get_params()

	ZeroMeanFunction.set_params()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.optimization_utils module
	apply_lbfgs()

	apply_lbfgs_with_multiple_starts()

	add_regularizer_to_criterion()

	create_lbfgs_arguments()





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_state module
	PosteriorState
	PosteriorState.num_data

	PosteriorState.num_features

	PosteriorState.num_fantasies

	PosteriorState.neg_log_likelihood()

	PosteriorState.predict()

	PosteriorState.sample_marginals()

	PosteriorState.backward_gradient()





	PosteriorStateWithSampleJoint
	PosteriorStateWithSampleJoint.sample_joint()





	GaussProcPosteriorState
	GaussProcPosteriorState.num_data

	GaussProcPosteriorState.num_features

	GaussProcPosteriorState.num_fantasies

	GaussProcPosteriorState.neg_log_likelihood()

	GaussProcPosteriorState.predict()

	GaussProcPosteriorState.sample_marginals()

	GaussProcPosteriorState.backward_gradient()

	GaussProcPosteriorState.sample_joint()





	backward_gradient_given_predict()

	IncrementalUpdateGPPosteriorState
	IncrementalUpdateGPPosteriorState.update()

	IncrementalUpdateGPPosteriorState.sample_and_update()

	IncrementalUpdateGPPosteriorState.expand_fantasies()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_utils module
	cholesky_computations()

	predict_posterior_marginals()

	sample_posterior_marginals()

	sample_posterior_joint()

	cholesky_update()

	sample_and_cholesky_update()

	negative_log_marginal_likelihood()





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.slice module
	SliceSampler
	SliceSampler.sample()





	gen_random_direction()

	slice_sampler_step_out()

	slice_sampler_step_in()





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.target_transform module
	ScalarTargetTransform
	ScalarTargetTransform.forward()

	ScalarTargetTransform.negative_log_jacobian()

	ScalarTargetTransform.inverse()

	ScalarTargetTransform.on_fit_start()





	IdentityTargetTransform
	IdentityTargetTransform.forward()

	IdentityTargetTransform.negative_log_jacobian()

	IdentityTargetTransform.inverse()

	IdentityTargetTransform.param_encoding_pairs()

	IdentityTargetTransform.get_params()

	IdentityTargetTransform.set_params()





	BoxCoxTargetTransform
	BoxCoxTargetTransform.param_encoding_pairs()

	BoxCoxTargetTransform.get_boxcox_lambda()

	BoxCoxTargetTransform.set_boxcox_lambda()

	BoxCoxTargetTransform.get_params()

	BoxCoxTargetTransform.set_params()

	BoxCoxTargetTransform.negative_log_jacobian()

	BoxCoxTargetTransform.forward()

	BoxCoxTargetTransform.inverse()

	BoxCoxTargetTransform.on_fit_start()









	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.warping module
	Warping
	Warping.forward()

	Warping.param_encoding_pairs()

	Warping.get_params()

	Warping.set_params()





	warpings_for_hyperparameters()

	kernel_with_warping()

	WarpedKernel
	WarpedKernel.forward()

	WarpedKernel.diagonal()

	WarpedKernel.diagonal_depends_on_X()

	WarpedKernel.param_encoding_pairs()

	WarpedKernel.get_params()

	WarpedKernel.set_params()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.acqfunc_factory module


	
syne_tune.optimizer.schedulers.searchers.bayesopt.models.acqfunc_factory.acquisition_function_factory(name, **kwargs)

	
	Return type:

	Callable[[Any], AcquisitionFunction]












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.cost_model module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.cost_model.CostValue(c0, c1)

	Bases: object

Represents cost value \((c_0(x), c_1(x))\):


	\(c_0(x)\): Startup cost for evaluation at config \(x\)


	\(c_1(x)\): Cost per unit of resource \(r\) at config \(x\)




Our assumption is that, under the model, an evaluation at \(x\) until
resource level \(r = 1, 2, 3, \dots\) costs
\(c(x, r) = c_0(x) + r c_1(x)\)


	
c0: float

	




	
c1: float

	








	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.cost_model.CostModel

	Bases: object

Interface for (temporal) cost model in the context of multi-fidelity HPO.
We assume there are configurations \(x\) and resource levels \(r\)
(for example, number of epochs). Here, \(r\) is a positive int.
Can be seen as simplified version of surrogate model, which is mainly used
in order to draw (jointly dependent) values from the posterior over
cost values \((c_0(x), c_1(x))\).

Note: The model may be random (in which case joint samples are drawn from
the posterior) or deterministic (in which case the model is fitted to data,
and then cost values returned are deterministic.

A cost model has an inner state, which is set by calling update()
passing a dataset. This inner state is then used when sample_joint()
is called.


	
property cost_metric_name: str

	
	Returns:

	Name of metric in TrialEvaluations of cases in
TuningJobState










	
update(state)

	Update inner representation in order to be ready to return cost value
samples.

Note: The metric :attr``cost_metric_name`` must be dict-valued in state,
with keys being resource values \(r\). In order to support a proper
estimation of \(c_0\) and \(c_1\), there should (ideally) be
entries with the same \(x\) and different resource levels \(r\).
The likelihood function takes into account that
\(c(x, r) = c_0(x) + r c_1(x)\).


	Parameters:

	state (TuningJobState) – Current dataset (only trials_evaluations is used)










	
resample()

	For a random cost model, the state is resampled, such that calls of
joint_sample before and after are conditionally independent. Normally,
successive calls of sample_joint are jointly dependent.
For example, for a linear model, the state resampled here would be the
weight vector, which is then used in sample_joint().

For a deterministic cost model, this method does nothing.






	
sample_joint(candidates)

	Draws cost values \((c_0(x), c_1(x))\) for candidates (non-extended).

If the model is random, the sampling is done jointly. Also, if
sample_joint() is called multiple times, the posterior is to be
updated after each call, such that the sample over the union of
candidates over all calls is drawn jointly (but see resample()).
Also, if measurement noise is allowed in update, this noise is not
added here. A sample from \(c(x, r)\) is obtained as
\(c_0(x) + r c_1(x)\). If the model is deterministic, the model
determined in update() is just evaluated.


	Parameters:

	candidates (List[Dict[str, Union[int, float, str]]]) – Non-extended configs



	Return type:

	List[CostValue]



	Returns:

	List of \((c_0(x), c_1(x))\)










	
static event_time(start_time, level, next_milestone, cost)

	If a task reported its last recent value at start_time at level level,
return time of reaching level next_milestone, given cost cost.


	Parameters:

	
	start_time (float) – See above


	level (int) – See above


	next_milestone (int) – See above


	cost (CostValue) – See above






	Return type:

	float



	Returns:

	Time of reaching next_milestone under cost model










	
predict_times(candidates, resources, cost_values, start_time=0)

	Given configs \(x\), resource values \(r\) and cost values returned
by sample_joint(), compute time predictions for when each config
\(x\) reaches its resource level \(r\) if started at start_time.


	Parameters:

	
	candidates (List[Dict[str, Union[int, float, str]]]) – Configs


	resources (List[int]) – Resource levels


	cost_values (List[CostValue]) – Cost values from sample_joint()


	start_time (float) – See above






	Return type:

	List[float]



	Returns:

	Predicted times
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.linear_cost_model module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.linear_cost_model.LinearCostModel

	Bases: CostModel

Deterministic cost model where both c0(x) and c1(x) are linear models of
the form



c0(x) = np.dot(features0(x), weights0),

c1(x) = np.dot(features1(x), weights1)






The feature maps features0, features1 are supplied by subclasses.
The weights are fit by ridge regression, using scikit.learn.RidgeCV, the
regularization constant is set by LOO cross-validation.


	
property cost_metric_name: str

	
	Returns:

	Name of metric in TrialEvaluations of cases in
TuningJobState










	
feature_matrices(candidates)

	Has to be supplied by subclasses


	Parameters:

	candidates (List[Dict[str, Union[int, float, str]]]) – List of n candidate configs (non-extended)



	Return type:

	(ndarray, ndarray)



	Returns:

	Feature matrices features0 (n, dim0), features1 (n, dim1)










	
update(state)

	Update inner representation in order to be ready to return cost value
samples.

Note: The metric :attr``cost_metric_name`` must be dict-valued in state,
with keys being resource values \(r\). In order to support a proper
estimation of \(c_0\) and \(c_1\), there should (ideally) be
entries with the same \(x\) and different resource levels \(r\).
The likelihood function takes into account that
\(c(x, r) = c_0(x) + r c_1(x)\).


	Parameters:

	state (TuningJobState) – Current dataset (only trials_evaluations is used)










	
sample_joint(candidates)

	Draws cost values \((c_0(x), c_1(x))\) for candidates (non-extended).

If the model is random, the sampling is done jointly. Also, if
sample_joint() is called multiple times, the posterior is to be
updated after each call, such that the sample over the union of
candidates over all calls is drawn jointly (but see resample()).
Also, if measurement noise is allowed in update, this noise is not
added here. A sample from \(c(x, r)\) is obtained as
\(c_0(x) + r c_1(x)\). If the model is deterministic, the model
determined in update() is just evaluated.


	Parameters:

	candidates (List[Dict[str, Union[int, float, str]]]) – Non-extended configs



	Return type:

	List[CostValue]



	Returns:

	List of \((c_0(x), c_1(x))\)














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.linear_cost_model.MLPLinearCostModel(num_inputs, num_outputs, num_hidden_layers, hidden_layer_width, batch_size, bs_exponent=None, extra_mlp=False, c0_mlp_feature=False, expected_hidden_layer_width=None)

	Bases: LinearCostModel


Deterministic linear cost model for multi-layer perceptron.

If config is a HP configuration, num_hidden_layers(config) is the
number of hidden layers, hidden_layer_width(config, layer) is the
number of units in hidden layer layer (0-based), batch_size(config)
is the batch size.

If expected_hidden_layer_width is given, it maps layer (0-based) to
expected layer width under random sampling. In this case, all MLP
features are normalized to expected value 1 under random sampling
(but ignoring bs_exponent if != 1).
Note: If needed, we could incorporate bs_exponent in general. If
batch_size was uniform between a and b:


\[ext{E}\left[ bs^{bs_{exp} - 1} \]




ight] =

rac{    ext{b^{bs_{exp}} - a^{bs_{exp}} }{ (bs_{exp} * (b - a) }





	
feature_matrices(candidates)

	Has to be supplied by subclasses


	Parameters:

	candidates (List[Dict[str, Union[int, float, str]]]) – List of n candidate configs (non-extended)



	Return type:

	(ndarray, ndarray)



	Returns:

	Feature matrices features0 (n, dim0), features1 (n, dim1)














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.linear_cost_model.FixedLayersMLPCostModel(num_inputs, num_outputs, num_units_keys=None, bs_exponent=None, extra_mlp=False, c0_mlp_feature=False, expected_hidden_layer_width=None)

	Bases: MLPLinearCostModel

Linear cost model for MLP with num_hidden_layers hidden layers.


	
static get_expected_hidden_layer_width(config_space, num_units_keys)

	Constructs expected_hidden_layer_width function from the training
evaluation function.
Works because impute_points_to_evaluate imputes with the expected
value under random sampling.


	Parameters:

	
	config_space (Dict) – Configuration space


	num_units_keys (List[str]) – Keys into config_space for number of
units of different layers






	Returns:

	expected_hidden_layer_width, exp_vals














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.linear_cost_model.NASBench201LinearCostModel(config_keys, map_config_values, conv_separate_features, count_sum)

	Bases: LinearCostModel

Deterministic linear cost model for NASBench201.

The cell graph is:



node1 = x0(node0)

node2 = x1(node0) + x2(node1)

node3 = x3(node0) + x4(node1) + x5(node2)






config_keys contains attribute names of x0, ..., x5 in a config, in
this ordering. map_config_values maps values in the config (for
fields corresponding to x0, ..., x5) to entries of Op.


	Parameters:

	
	config_keys (Tuple[str, ...]) – See above


	map_config_values (Dict[str, int]) – See above


	conv_separate_features (bool) – If True, we use separate features for
nor_conv_1x1, nor_conv_3x3 (c1 has 4 features). Otherwise, these
two are captured by a single features (c1 has 3 features)


	count_sum (bool) – If True, we use an additional feature for pointwise
sum operators inside a cell (there are between 0 and 3)









	
class Op(value)

	Bases: IntEnum

An enumeration.


	
SKIP_CONNECT = 0

	




	
NONE = 1

	




	
NOR_CONV_1x1 = 2

	




	
NOR_CONV_3x3 = 3

	




	
AVG_POOL_3x3 = 4

	








	
feature_matrices(candidates)

	Has to be supplied by subclasses


	Parameters:

	candidates (List[Dict[str, Union[int, float, str]]]) – List of n candidate configs (non-extended)



	Return type:

	(ndarray, ndarray)



	Returns:

	Feature matrices features0 (n, dim0), features1 (n, dim1)














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.linear_cost_model.BiasOnlyLinearCostModel

	Bases: LinearCostModel

Simple baseline: features0(x) = [1], features1(x) = [1]


	
feature_matrices(candidates)

	Has to be supplied by subclasses


	Parameters:

	candidates (List[Dict[str, Union[int, float, str]]]) – List of n candidate configs (non-extended)



	Return type:

	(ndarray, ndarray)



	Returns:

	Feature matrices features0 (n, dim0), features1 (n, dim1)
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.sklearn_cost_model module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.sklearn_cost_model.ScikitLearnCostModel(model_type=None)

	Bases: NonLinearCostModel

Deterministic cost model, where c0(x) = b0 (constant), and c1(x) is given
by a scikit.learn (or scipy) regression model. Parameters are b0 and
those of the regression model.


	Parameters:

	model_type (Optional[str]) – Regression model for c1(x)






	
transform_dataset(dataset, num_data0, res_min)

	Transforms dataset (see _data_for_c1_regression()) into a dataset
representation (dict), which is used as kwargs in fit_regressor().


	Parameters:

	
	dataset (List[Tuple[Dict[str, Union[int, float, str]], float]]) – 


	num_data0 (int) – 


	res_min (int) – 






	Return type:

	Dict[str, Any]



	Returns:

	Used as kwargs in fit_regressor










	
static fit_regressor(b0, **kwargs)

	Given value for b0, fits regressor to dataset specified via kwargs
(see transform_dataset()). Returns the criterion function value for
b0 as well as the fitted regression model.


	Parameters:

	
	b0 (float) – 


	kwargs – 






	Returns:

	fval, model










	
predict_c1_values(candidates)

	
	Parameters:

	candidates (List[Dict[str, Union[int, float, str]]]) – Test configs



	Returns:

	Corresponding c1 values














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.sklearn_cost_model.UnivariateSplineCostModel(scalar_attribute, input_range, spline_degree=3)

	Bases: NonLinearCostModel

Here, c1(x) is given by a univariate spline
(UnivariateSpline), where a single scalar is
extracted from x.

In the second part of the dataset (pos >= num_data0), duplicate entries with
the same config in dataset are grouped into one, using the mean as target
value, and a weight equal to the number of duplicates. This still leaves
duplicates in the overall dataset, one in data0, the other in data1, but
spline smoothing can deal with this.


	
transform_dataset(dataset, num_data0, res_min)

	Transforms dataset (see _data_for_c1_regression()) into a dataset
representation (dict), which is used as kwargs in fit_regressor().


	Parameters:

	
	dataset (List[Tuple[Dict[str, Union[int, float, str]], float]]) – 


	num_data0 (int) – 


	res_min (int) – 






	Return type:

	Dict[str, Any]



	Returns:

	Used as kwargs in fit_regressor










	
static fit_regressor(b0, **kwargs)

	Given value for b0, fits regressor to dataset specified via kwargs
(see transform_dataset()). Returns the criterion function value for
b0 as well as the fitted regression model.


	Parameters:

	
	b0 (float) – 


	kwargs – 






	Returns:

	fval, model










	
predict_c1_values(candidates)

	
	Parameters:

	candidates (List[Dict[str, Union[int, float, str]]]) – Test configs



	Returns:

	Corresponding c1 values
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost package


Submodules



	syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.cost_model module
	CostValue
	CostValue.c0

	CostValue.c1





	CostModel
	CostModel.cost_metric_name

	CostModel.update()

	CostModel.resample()

	CostModel.sample_joint()

	CostModel.event_time()

	CostModel.predict_times()









	syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.linear_cost_model module
	LinearCostModel
	LinearCostModel.cost_metric_name

	LinearCostModel.feature_matrices()

	LinearCostModel.update()

	LinearCostModel.sample_joint()





	MLPLinearCostModel
	MLPLinearCostModel.feature_matrices()





	FixedLayersMLPCostModel
	FixedLayersMLPCostModel.get_expected_hidden_layer_width()





	NASBench201LinearCostModel
	NASBench201LinearCostModel.Op
	NASBench201LinearCostModel.Op.SKIP_CONNECT

	NASBench201LinearCostModel.Op.NONE

	NASBench201LinearCostModel.Op.NOR_CONV_1x1

	NASBench201LinearCostModel.Op.NOR_CONV_3x3

	NASBench201LinearCostModel.Op.AVG_POOL_3x3





	NASBench201LinearCostModel.feature_matrices()





	BiasOnlyLinearCostModel
	BiasOnlyLinearCostModel.feature_matrices()









	syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.sklearn_cost_model module
	ScikitLearnCostModel
	ScikitLearnCostModel.transform_dataset()

	ScikitLearnCostModel.fit_regressor()

	ScikitLearnCostModel.predict_c1_values()





	UnivariateSplineCostModel
	UnivariateSplineCostModel.transform_dataset()

	UnivariateSplineCostModel.fit_regressor()

	UnivariateSplineCostModel.predict_c1_values()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost_fifo_model module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost_fifo_model.CostFixedResourcePredictor(state, model, fixed_resource, num_samples=1)

	Bases: BasePredictor

Wraps cost model \(c(x, r)\) of CostModel to be used as
surrogate model, where predictions are done at r = fixed_resource.

Note: For random cost models, we approximate expectations in predict
by resampling num_samples times (should be 1 for deterministic cost
models).

Note: Since this is a generic wrapper, we assume for backward_gradient
that the gradient contribution through the cost model vanishes. For special
cost models, the mapping from encoded input to predictive means may be
differentiable, and prediction code in autograd may be available. For
such cost models, this wrapper should not be used, and backward_gradient
should be implemented properly.


	Parameters:

	
	state (TuningJobState) – TuningJobSubState


	model (CostModel) – Model parameters must have been fit


	fixed_resource (int) – \(c(x, r)\) is predicted for this resource level r


	num_samples (int) – Number of samples drawn in predict(). Use this for
random cost models only









	
static keys_predict()

	Keys of signals returned by predict().

Note: In order to work with AcquisitionFunction implementations,
the following signals are required:


	“mean”: Predictive mean


	“std”: Predictive standard deviation





	Return type:

	Set[str]



	Returns:

	Set of keys for dict returned by predict()










	
predict(inputs)

	Returns signals which are statistics of the predictive distribution at
input points inputs. By default:


	“mean”: Predictive means. If the model supports fantasizing with a
number nf of fantasies, this has shape (n, nf), otherwise
(n,)


	“std”: Predictive stddevs, shape (n,)




If the hyperparameters of the surrogate model are being optimized (e.g.,
by empirical Bayes), the returned list has length 1. If its
hyperparameters are averaged over by MCMC, the returned list has one
entry per MCMC sample.


	Parameters:

	inputs (ndarray) – Input points, shape (n, d)



	Return type:

	List[Dict[str, ndarray]]



	Returns:

	List of dict with keys keys_predict(), of length the
number of MCMC samples, or length 1 for empirical Bayes










	
backward_gradient(input, head_gradients)

	The gradient contribution through the cost model is blocked.


	Return type:

	List[ndarray]










	
predict_mean_current_candidates()

	Returns the predictive mean (signal with key ‘mean’) at all current candidates
in the state (observed, pending).

If the hyperparameters of the surrogate model are being optimized (e.g.,
by empirical Bayes), the returned list has length 1. If its
hyperparameters are averaged over by MCMC, the returned list has one
entry per MCMC sample.


	Return type:

	List[ndarray]



	Returns:

	List of predictive means










	
current_best()

	Returns the so-called incumbent, to be used in acquisition functions
such as expected improvement. This is the minimum of predictive means
(signal with key “mean”) at all current candidate locations (both
state.trials_evaluations and state.pending_evaluations).
Normally, a scalar is returned, but if the model supports fantasizing
and the state contains pending evaluations, there is one incumbent
per fantasy sample, so a vector is returned.

If the hyperparameters of the surrogate model are being optimized (e.g.,
by empirical Bayes), the returned list has length 1. If its
hyperparameters are averaged over by MCMC, the returned list has one
entry per MCMC sample.


	Return type:

	List[ndarray]



	Returns:

	Incumbent, see above














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost_fifo_model.CostEstimator(model, fixed_resource, num_samples=1)

	Bases: Estimator

The name of the cost metric is model.cost_metric_name.


	Parameters:

	
	model (CostModel) – CostModel to be wrapped


	fixed_resource (int) – \(c(x, r)\) is predicted for this resource level r


	num_samples (int) – Number of samples drawn in predict(). Use this for
random cost models only









	
get_params()

	
	Returns:

	Current tunable model parameters










	
set_params(param_dict)

	
	Parameters:

	param_dict – New model parameters










	
property fixed_resource: int

	




	
set_fixed_resource(resource)

	




	
fit_from_state(state, update_params)

	Models of type CostModel do not have hyperparameters to be
fit, so update_params is ignored here.


	Return type:

	Predictor
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.estimator module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.estimator.Estimator

	Bases: object

Interface for surrogate models used in ModelStateTransformer.

In general, a surrogate model is probabilistic (or Bayesian), in that
predictions are driven by a posterior distribution, represented in a
posterior state of type
Predictor.
The model may also come with tunable (hyper)parameters, such as for example
covariance function parameters for a Gaussian process model. These parameters
can be accessed with get_params(), set_params().


	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Current tunable model parameters










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – New model parameters










	
fit_from_state(state, update_params)

	Creates a
Predictor
object based on data in state. For a Bayesian model, this involves
computing the posterior state, which is wrapped in the Predictor
object.

If the model also has (hyper)parameters, these are learned iff
update_params == True. Otherwise, these parameters are not changed,
but only the posterior state is computed. The idea is that in general,
model fitting is much more expensive than just creating the final posterior
state (or predictor). It then makes sense to partly work with stale model
parameters.

If your surrogate model is not Bayesian, or does not have hyperparameters,
you can ignore the update_params argument,


	Parameters:

	
	state (TuningJobState) – Current data model parameters are to be fit on, and the
posterior state is to be computed from


	update_params (bool) – See above






	Return type:

	Predictor



	Returns:

	Predictor, wrapping the posterior state










	
property debug_log: DebugLogPrinter | None

	




	
configure_scheduler(scheduler)

	Called by configure_scheduler() of searchers which make use of an
class:Estimator. Allows the estimator to depend on
parameters of the scheduler.


	Parameters:

	scheduler – Scheduler object














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.estimator.TransformedData(features, targets, mean, std)

	Bases: object


	
features: ndarray

	




	
targets: ndarray

	




	
mean: float

	




	
std: float

	








	
syne_tune.optimizer.schedulers.searchers.bayesopt.models.estimator.transform_state_to_data(state, active_metric=None, normalize_targets=True, num_fantasy_samples=1)

	Transforms
TuningJobState
object state to features and targets. The former are encoded vectors from
state.hp_ranges. The latter are normalized to zero mean, unit variance if
normalize_targets == True, in which case the original mean and stddev is
also returned.

If state.pending_evaluations is not empty, it must contain entries
of type
FantasizedPendingEvaluation,
which contain the fantasy samples. This is the case only for internal states.


	Parameters:

	
	state (TuningJobState) – TuningJobState to transform


	active_metric (Optional[str]) – Name of target metric (optional)


	normalize_targets (bool) – Normalize targets? Defaults to True


	num_fantasy_samples (int) – Number of fantasy samples. Defaults to 1






	Return type:

	TransformedData



	Returns:

	Transformed data












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_mcmc_model module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_mcmc_model.GaussProcMCMCEstimator(gpmodel, active_metric='target', normalize_targets=True, debug_log=None, filter_observed_data=None, hp_ranges_for_prediction=None)

	Bases: GaussProcEstimator

We support pending evaluations via fantasizing. Note that state does
not contain the fantasy values, but just the pending configs. Fantasy
values are sampled here.

We draw one fantasy sample per MCMC sample here. This could be extended
by sampling > 1 fantasy samples for each MCMC sample.


	Parameters:

	
	gpmodel (GPRegressionMCMC) – GPRegressionMCMC model


	active_metric (str) – Name of the metric to optimize.


	normalize_targets (bool) – Normalize target values in
state.trials_evaluations?









	
get_params()

	
	Returns:

	Current tunable model parameters










	
set_params(param_dict)

	
	Parameters:

	param_dict – New model parameters
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_model module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_model.GaussProcPredictor(state, gpmodel, fantasy_samples, active_metric=None, normalize_mean=0.0, normalize_std=1.0, filter_observed_data=None, hp_ranges_for_prediction=None)

	Bases: BasePredictor

Gaussian process surrogate model, where model parameters are either fit by
marginal likelihood maximization
(e.g., GaussianProcessRegression),
or integrated out by MCMC sampling
(e.g., GPRegressionMCMC).

Both state and gpmodel are immutable. If parameters of the latter
are to be fit, this has to be done before.

fantasy_samples contains the sampled (normalized) target values for
pending configs. Only active_metric target values are considered.
The target values for a pending config are a flat vector. If MCMC is
used, its length is a multiple of the number of MCMC samples,
containing the fantasy values for MCMC sample 0, sample 1, …


	Parameters:

	
	state (TuningJobState) – TuningJobSubState


	gpmodel (Union[GaussianProcessRegression, GPRegressionMCMC, IndependentGPPerResourceModel, HyperTuneIndependentGPModel, HyperTuneJointGPModel]) – Model parameters must have been fit and/or posterior states
been computed


	fantasy_samples (List[FantasizedPendingEvaluation]) – See above


	active_metric (Optional[str]) – Name of the metric to optimize.


	normalize_mean (float) – Mean used to normalize targets


	normalize_std (float) – Stddev used to normalize targets









	
hp_ranges_for_prediction()

	
	Return type:

	HyperparameterRanges



	Returns:

	Feature generator to be used for inputs in predict()










	
predict(inputs)

	Returns signals which are statistics of the predictive distribution at
input points inputs. By default:


	“mean”: Predictive means. If the model supports fantasizing with a
number nf of fantasies, this has shape (n, nf), otherwise
(n,)


	“std”: Predictive stddevs, shape (n,)




If the hyperparameters of the surrogate model are being optimized (e.g.,
by empirical Bayes), the returned list has length 1. If its
hyperparameters are averaged over by MCMC, the returned list has one
entry per MCMC sample.


	Parameters:

	inputs (ndarray) – Input points, shape (n, d)



	Return type:

	List[Dict[str, ndarray]]



	Returns:

	List of dict with keys keys_predict(), of length the
number of MCMC samples, or length 1 for empirical Bayes










	
backward_gradient(input, head_gradients)

	Computes the gradient \(\nabla_x f(x)\) for an acquisition
function \(f(x)\), where \(x\) is a single input point. This
is using reverse mode differentiation, the head gradients are passed
by the acquisition function. The head gradients are
\(\partial_k f\), where \(k\) runs over the statistics
returned by predict() for the single input point \(x\).
The shape of head gradients is the same as the shape of the
statistics.

Lists have > 1 entry if MCMC is used, otherwise they are all size 1.


	Parameters:

	
	input (ndarray) – Single input point \(x\), shape (d,)


	head_gradients (List[Dict[str, ndarray]]) – See above






	Return type:

	List[ndarray]



	Returns:

	Gradient \(\nabla_x f(x)\) (several if MCMC is used)










	
does_mcmc()

	




	
property posterior_states: List[PosteriorState] | None

	








	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_model.GaussProcEstimator(gpmodel, active_metric, normalize_targets=True, debug_log=None, filter_observed_data=None, no_fantasizing=False, hp_ranges_for_prediction=None)

	Bases: Estimator

We support pending evaluations via fantasizing. Note that state does
not contain the fantasy values, but just the pending configs. Fantasy
values are sampled here.


	Parameters:

	
	gpmodel (Union[GaussianProcessRegression, GPRegressionMCMC, IndependentGPPerResourceModel, HyperTuneIndependentGPModel, HyperTuneJointGPModel]) – Internal model


	active_metric (str) – Name of the metric to optimize.


	normalize_targets (bool) – Normalize observed target values?


	debug_log (Optional[DebugLogPrinter]) – DebugLogPrinter (optional)


	filter_observed_data (Optional[Callable[[Dict[str, Union[int, float, str]]], bool]]) – Filter for observed data before
computing incumbent


	no_fantasizing (bool) – If True, pending evaluations in the state are
simply ignored, fantasizing is not done (not recommended)


	hp_ranges_for_prediction (Optional[HyperparameterRanges]) – If given, GaussProcPredictor
should use this instead of state.hp_ranges









	
property debug_log: DebugLogPrinter | None

	




	
property gpmodel: GaussianProcessRegression | GPRegressionMCMC | IndependentGPPerResourceModel | HyperTuneIndependentGPModel | HyperTuneJointGPModel

	




	
fit_from_state(state, update_params)

	Parameters of self._gpmodel are optimized iff update_params. This
requires state to contain labeled examples.

If self.state.pending_evaluations is not empty, we proceed as follows:
:rtype: Predictor


	Compute posterior for state without pending evals


	Draw fantasy values for pending evals


	Recompute posterior (without fitting)









	
configure_scheduler(scheduler)

	Called by configure_scheduler() of searchers which make use of an
class:Estimator. Allows the estimator to depend on
parameters of the scheduler.


	Parameters:

	scheduler – Scheduler object














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_model.GaussProcEmpiricalBayesEstimator(gpmodel, num_fantasy_samples, active_metric='target', normalize_targets=True, debug_log=None, filter_observed_data=None, no_fantasizing=False, hp_ranges_for_prediction=None)

	Bases: GaussProcEstimator

We support pending evaluations via fantasizing. Note that state does
not contain the fantasy values, but just the pending configs. Fantasy
values are sampled here.


	Parameters:

	
	gpmodel (Union[GaussianProcessRegression, GPRegressionMCMC, IndependentGPPerResourceModel, HyperTuneIndependentGPModel, HyperTuneJointGPModel]) – GaussianProcessRegression model


	num_fantasy_samples (int) – See above


	active_metric (str) – Name of the metric to optimize.


	normalize_targets (bool) – Normalize target values in
state.candidate_evaluations?









	
get_params()

	
	Returns:

	Current tunable model parameters










	
set_params(param_dict)

	
	Parameters:

	param_dict – New model parameters
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.gpiss_model module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.gpiss_model.GaussProcAdditivePredictor(state, gpmodel, fantasy_samples, active_metric, filter_observed_data=None, normalize_mean=0.0, normalize_std=1.0)

	Bases: BasePredictor

Gaussian Process additive surrogate model, where model parameters are
fit by marginal likelihood maximization.

Note: predict_mean_current_candidates() calls predict() for all
observed and pending extended configs. This may not be exactly
correct, because predict() is not meant to be used for configs
which have observations (it IS correct at \(r = r_{max}\)).

fantasy_samples contains the sampled (normalized) target values for
pending configs. Only active_metric target values are considered.
The target values for a pending config are a flat vector.


	Parameters:

	
	state (TuningJobState) – TuningJobSubState


	gpmodel (GaussianProcessLearningCurveModel) – Parameters must have been fit


	fantasy_samples (List[FantasizedPendingEvaluation]) – See above


	active_metric (str) – See parent class


	filter_observed_data (Optional[Callable[[Dict[str, Union[int, float, str]]], bool]]) – See parent class


	normalize_mean (float) – Mean used to normalize targets


	normalize_std (float) – Stddev used to normalize targets









	
predict(inputs)

	Input features inputs are w.r.t. extended configs (x, r).


	Parameters:

	inputs (ndarray) – Input features



	Return type:

	List[Dict[str, ndarray]]



	Returns:

	Predictive means, stddevs










	
backward_gradient(input, head_gradients)

	Computes the gradient \(\nabla_x f(x)\) for an acquisition
function \(f(x)\), where \(x\) is a single input point. This
is using reverse mode differentiation, the head gradients are passed
by the acquisition function. The head gradients are
\(\partial_k f\), where \(k\) runs over the statistics
returned by predict() for the single input point \(x\).
The shape of head gradients is the same as the shape of the
statistics.

Lists have > 1 entry if MCMC is used, otherwise they are all size 1.


	Parameters:

	
	input (ndarray) – Single input point \(x\), shape (d,)


	head_gradients (List[Dict[str, ndarray]]) – See above






	Return type:

	List[ndarray]



	Returns:

	Gradient \(\nabla_x f(x)\) (several if MCMC is used)










	
does_mcmc()

	




	
property posterior_states: List[GaussProcAdditivePosteriorState] | None

	








	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.gpiss_model.GaussProcAdditiveEstimator(gpmodel, num_fantasy_samples, active_metric, config_space_ext, normalize_targets=False, debug_log=None, filter_observed_data=None)

	Bases: Estimator

If num_fantasy_samples > 0, we draw this many fantasy targets
independently, while each sample is dependent over all pending
evaluations. If num_fantasy_samples == 0, pending evaluations
in state are ignored.


	Parameters:

	
	gpmodel (GaussianProcessLearningCurveModel) – GaussianProcessLearningCurveModel


	num_fantasy_samples (int) – See above


	active_metric (str) – Name of the metric to optimize.


	config_space_ext (ExtendedConfiguration) – ExtendedConfiguration


	normalize_targets (bool) – Normalize observed target values?


	debug_log (Optional[DebugLogPrinter]) – DebugLogPrinter (optional)


	filter_observed_data (Optional[Callable[[Dict[str, Union[int, float, str]]], bool]]) – Filter for observed data before
computing incumbent









	
property debug_log: DebugLogPrinter | None

	




	
get_params()

	
	Returns:

	Current tunable model parameters










	
set_params(param_dict)

	
	Parameters:

	param_dict – New model parameters










	
fit_from_state(state, update_params)

	Creates a
Predictor
object based on data in state. For a Bayesian model, this involves
computing the posterior state, which is wrapped in the Predictor
object.

If the model also has (hyper)parameters, these are learned iff
update_params == True. Otherwise, these parameters are not changed,
but only the posterior state is computed. The idea is that in general,
model fitting is much more expensive than just creating the final posterior
state (or predictor). It then makes sense to partly work with stale model
parameters.

If your surrogate model is not Bayesian, or does not have hyperparameters,
you can ignore the update_params argument,


	Parameters:

	
	state (TuningJobState) – Current data model parameters are to be fit on, and the
posterior state is to be computed from


	update_params (bool) – See above






	Return type:

	Predictor



	Returns:

	Predictor, wrapping the posterior state










	
predictor_for_fantasy_samples(state, fantasy_samples)

	Same as model with fit_params=False, but fantasy_samples are
passed in, rather than sampled here.


	Parameters:

	
	state (TuningJobState) – See model


	fantasy_samples (List[FantasizedPendingEvaluation]) – See above






	Return type:

	Predictor



	Returns:

	See model










	
configure_scheduler(scheduler)

	Called by configure_scheduler() of searchers which make use of an
class:Estimator. Allows the estimator to depend on
parameters of the scheduler.


	Parameters:

	scheduler – Scheduler object
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.kernel_factory module


	
syne_tune.optimizer.schedulers.searchers.bayesopt.models.kernel_factory.base_kernel_factory(name, dimension, **kwargs)

	
	Return type:

	KernelFunction










	
syne_tune.optimizer.schedulers.searchers.bayesopt.models.kernel_factory.resource_kernel_factory(name, kernel_x, mean_x, **kwargs)

	Given kernel function kernel_x and mean function mean_x over config x,
create kernel and mean functions over (x, r), where r is the resource
attribute (nonnegative scalar, usually in [0, 1]).

Note: For name in ["matern52", "matern52-res-warp"], if kernel_x is
of type
WarpedKernel,
the resulting kernel inherits this warping.


	Parameters:

	
	name (str) – Selects resource kernel type


	kernel_x (KernelFunction) – Kernel function over configs x


	mean_x (MeanFunction) – Mean function over configs x


	kwargs – Extra arguments (optional)






	Return type:

	(KernelFunction, MeanFunction)



	Returns:

	(res_kernel, res_mean), both over (x, r)












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc.HeadWithGradient(hval, gradient)

	Bases: object

gradient maps each output model to a dict of head gradients, whose keys
are those used by predict (e.g., mean, std)


	
hval: ndarray

	




	
gradient: Dict[str, Dict[str, ndarray]]

	








	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc.CurrentBestProvider

	Bases: object

Helper class for MeanStdAcquisitionFunction.
The current_best values required in compute_acq() and
compute_acq_with_gradient() may depend on the MCMC sample index for each
model (if none of the models use MCMC, this index is always
(0, 0, ..., 0)).






	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc.NoneCurrentBestProvider

	Bases: CurrentBestProvider






	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc.ActiveMetricCurrentBestProvider(active_metric_current_best)

	Bases: CurrentBestProvider

Default implementation in which current_best depends on the
active metric only.






	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc.MeanStdAcquisitionFunction(predictor, active_metric=None)

	Bases: AcquisitionFunction

Base class for standard acquisition functions which depend on predictive
mean and stddev. Subclasses have to implement the head and its derivatives
w.r.t. mean and std:


\[f(x, \mathrm{model}) = h(\mathrm{mean}, \mathrm{std}, \mathrm{model.current_best}())\]

If model is a
Predictor,
then active_metric is ignored. If model is a dict mapping output names to models,
then active_metric must be given.

Note that acquisition functions will always be minimized!


	
compute_acq(inputs, predictor=None)

	Note: If inputs has shape (d,), it is taken to be (1, d)


	Parameters:

	
	inputs (ndarray) – Encoded input points, shape (n, d)


	predictor (Union[Predictor, Dict[str, Predictor], None]) – If given, overrides self.predictor






	Return type:

	ndarray



	Returns:

	Acquisition function values, shape (n,)










	
compute_acq_with_gradient(input, predictor=None)

	For a single input point \(x\), compute acquisition function value
\(f(x)\) and gradient \(\nabla_x f(x)\).


	Parameters:

	
	input (ndarray) – Single input point \(x\), shape (d,)


	predictor (Union[Predictor, Dict[str, Predictor], None]) – If given, overrides self.predictor






	Return type:

	(float, ndarray)



	Returns:

	\((f(x), \nabla_x f(x))\)
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl.EIAcquisitionFunction(predictor, active_metric=None, jitter=0.01, debug_collect_stats=False)

	Bases: MeanStdAcquisitionFunction

Minus expected improvement acquisition function
(minus because the convention is to always minimize acquisition functions)


	
debug_stats_message()

	
	Return type:

	str














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl.LCBAcquisitionFunction(predictor, kappa, active_metric=None)

	Bases: MeanStdAcquisitionFunction

Lower confidence bound (LCB) acquisition function:


\[h(\mu, \sigma) = \mu - \kappa * \sigma\]






	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl.EIpuAcquisitionFunction(predictor, active_metric=None, exponent_cost=1.0, jitter=0.01)

	Bases: MeanStdAcquisitionFunction

Minus cost-aware expected improvement acquisition function.

This is defined as


\[\mathrm{EIpu}(x) = \frac{\mathrm{EI(x)}}{\mathrm{power}(\mathrm{cost}(x), \mathrm{exponent_cost})},\]

where \(\mathrm{EI}(x)\) is expected improvement, \(\mathrm{cost}(x)\)
is the predictive mean of a cost model, and exponent_cost is an exponent in
\((0, 1]\).

exponent_cost scales the influence of the cost term on the acquisition
function. See also:



Lee etal.

Cost-aware Bayesian Optimization

https://arxiv.org/abs/2003.10870






Note: two metrics are expected in the model output: the main objective and the cost.
The main objective needs to be indicated as active_metric when initializing
EIpuAcquisitionFunction.
The cost is automatically assumed to be the other metric.


	Parameters:

	
	predictor (Union[Predictor, Dict[str, Predictor]]) – Predictors for main objective and cost


	active_metric (Optional[str]) – Name of main objective


	exponent_cost (float) – Exponent for cost in denominator. Defaults to 1


	jitter (float) – Jitter factor, must be positive. Defaults to 0.01













	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl.ConstraintCurrentBestProvider(current_best_list, num_samples_active)

	Bases: CurrentBestProvider

Here, current_best depends on two predictors, for active and constraint metric.






	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl.CEIAcquisitionFunction(predictor, active_metric=None, jitter=0.01)

	Bases: MeanStdAcquisitionFunction

Minus constrained expected improvement acquisition function.
(minus because the convention is to always minimize the acquisition function)

This is defined as CEI(x) = EI(x) * P(c(x) <= 0), where EI is the
standard expected improvement with respect to the current feasible best,
and P(c(x) <= 0) is the probability that the hyperparameter configuration
x satisfies the constraint modeled by c(x).

If there are no feasible hyperparameters yet, the current feasible best is
undefined. Thus, CEI is reduced to the P(c(x) <= 0) term until a feasible
configuration is found.

Two metrics are expected in the model output: the main objective and the
constraint metric. The main objective needs to be indicated as active_metric
when initializing CEIAcquisitionFunction.
The constraint is automatically assumed to be the other metric.

References on CEI:



Gardner et al.

Bayesian Optimization with Inequality Constraints

ICML 2014






and



Gelbart et al.

Bayesian Optimization with Unknown Constraints

UAI 2014.







	Parameters:

	
	predictor (Union[Predictor, Dict[str, Predictor]]) – Predictors for main objective and cost


	active_metric (Optional[str]) – Name of main objective


	jitter (float) – Jitter factor, must be positive. Defaults to 0.01













	
syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl.get_quantiles(acquisition_par, fmin, m, s)

	Quantiles of the Gaussian distribution, useful to determine the acquisition
function values.


	Parameters:

	
	acquisition_par – parameter of the acquisition function


	fmin – current minimum.


	m – vector of means.


	s – vector of standard deviations.















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_base module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_base.BasePredictor(state, active_metric=None, filter_observed_data=None)

	Bases: Predictor

Base class for (most)
Predictor
implementations, provides common code.


	
property filter_observed_data: Callable[[Dict[str, int | float | str]], bool] | None

	




	
set_filter_observed_data(filter_observed_data)

	




	
predict_mean_current_candidates()

	Returns the predictive mean (signal with key ‘mean’) at all current candidates
in the state (observed, pending).

If the hyperparameters of the surrogate model are being optimized (e.g.,
by empirical Bayes), the returned list has length 1. If its
hyperparameters are averaged over by MCMC, the returned list has one
entry per MCMC sample.


	Return type:

	List[ndarray]



	Returns:

	List of predictive means










	
current_best()

	Returns the so-called incumbent, to be used in acquisition functions
such as expected improvement. This is the minimum of predictive means
(signal with key “mean”) at all current candidate locations (both
state.trials_evaluations and state.pending_evaluations).
Normally, a scalar is returned, but if the model supports fantasizing
and the state contains pending evaluations, there is one incumbent
per fantasy sample, so a vector is returned.

If the hyperparameters of the surrogate model are being optimized (e.g.,
by empirical Bayes), the returned list has length 1. If its
hyperparameters are averaged over by MCMC, the returned list has one
entry per MCMC sample.


	Return type:

	List[ndarray]



	Returns:

	Incumbent, see above
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_skipopt module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_skipopt.SkipOptimizationPredicate

	Bases: object

Interface for skip_optimization predicate in
ModelStateTransformer.


	
reset()

	If there is an internal state, reset it to its initial value










	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_skipopt.NeverSkipPredicate

	Bases: SkipOptimizationPredicate

Hyperparameter optimization is never skipped.






	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_skipopt.AlwaysSkipPredicate

	Bases: SkipOptimizationPredicate

Hyperparameter optimization is always skipped.






	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_skipopt.SkipPeriodicallyPredicate(init_length, period, metric_name='target')

	Bases: SkipOptimizationPredicate

Let N be the number of labeled points for metric metric_name.
Optimizations are not skipped if N < init_length. Afterwards,
we increase a counter whenever N is larger than in the previous
call. With respect to this counter, optimizations are done every
period times, in between they are skipped.


	Parameters:

	
	init_length (int) – See above


	period (int) – See above


	metric_name (str) – Name of internal metric. Defaults to
INTERNAL_METRIC_NAME.









	
reset()

	If there is an internal state, reset it to its initial value










	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_skipopt.SkipNoMaxResourcePredicate(init_length, max_resource, metric_name='target')

	Bases: SkipOptimizationPredicate

This predicate works for multi-fidelity HPO, see for example
GPMultiFidelitySearcher.

We track the number of labeled datapoints at resource level max_resource.
HP optimization is skipped if the total number N of labeled cases is
N >= init_length, and if the number of max_resource cases has not
increased since the last recent optimization.

This means that as long as the dataset only grows w.r.t. cases at lower
resources than max_resource, this does not trigger HP optimization.


	Parameters:

	
	init_length (int) – See above


	max_resource (int) – See above


	metric_name (str) – Name of internal metric. Defaults to
INTERNAL_METRIC_NAME.









	
reset()

	If there is an internal state, reset it to its initial value












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_transformer module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_transformer.StateForModelConverter

	Bases: object

Interface for state converters (optionally) used in
ModelStateTransformer.
These are applied to a state before being passed to the model for fitting and
predictions. The main use case is to filter down data if fitting the model scales
super-linearly.


	
set_random_state(random_state)

	Some state converters use random sampling. For these, the random state has to
be set before first usage.


	Parameters:

	random_state (RandomState) – Random state to be used internally














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_transformer.ModelStateTransformer(estimator, init_state, skip_optimization=None, state_converter=None)

	Bases: object

This class maintains the
TuningJobState
object alongside an HPO experiment, and manages the reaction to changes of
this state. In particular, it provides a fitted surrogate model on demand,
which encapsulates the GP posterior.

The state transformer is generic, it uses Estimator for anything specific
to the model type.

skip_optimization is a predicate depending on the state, determining
what is done at the next recent call of model. If False, the model
parameters are refit, otherwise the current ones are not changed (which
is usually faster, but risks stale-ness).

We also track the observed data state.trials_evaluations. If this
did not change since the last recent model() call, we do not refit the
model parameters. This is based on the assumption that model parameter
fitting only depends on state.trials_evaluations (observed data),
not on other fields (e.g., pending evaluations).

If given, state_converter maps the state to another one which is then
passed to the model for fitting and predictions. One important use case is
filtering down data when model fitting is superlinear. Another is to convert
multi-fidelity setups to be used with single-fidelity models inside.

Note that estimator and skip_optimization can also be a dictionary mapping
output names to models. In that case, the state is shared but the models for each
output metric are updated independently.


	Parameters:

	
	estimator (Union[Estimator, Dict[str, Estimator]]) – Surrogate model(s)


	init_state (TuningJobState) – Initial tuning job state


	skip_optimization (Union[SkipOptimizationPredicate, Dict[str, SkipOptimizationPredicate], None]) – Skip optimization predicate (see above). Defaults to
None (fitting is never skipped)


	state_converter (Optional[StateForModelConverter]) – See above, optional









	
property state: TuningJobState

	




	
property use_single_model: bool

	




	
property estimator: Estimator | Dict[str, Estimator]

	




	
property skip_optimization: SkipOptimizationPredicate | Dict[str, SkipOptimizationPredicate]

	




	
fit(**kwargs)

	If skip_optimization is given, it overrides the self._skip_optimization
predicate.


	Return type:

	Union[Predictor, Dict[str, Predictor]]



	Returns:

	Fitted surrogate model for current state in the standard single
model case; in the multi-model case, it returns a dictionary mapping
output names to surrogate model instances for current state (shared
across models).










	
get_params()

	




	
set_params(param_dict)

	




	
append_trial(trial_id, config=None, resource=None)

	Appends new pending evaluation to the state.


	Parameters:

	
	trial_id (str) – ID of trial


	config (Optional[Dict[str, Union[int, float, str]]]) – Must be given if this trial does not yet feature in the
state


	resource (Optional[int]) – Must be given in the multi-fidelity case, to specify
at which resource level the evaluation is pending













	
drop_pending_evaluation(trial_id, resource=None)

	Drop pending evaluation from state. If it is not listed as pending,
nothing is done


	Parameters:

	
	trial_id (str) – ID of trial


	resource (Optional[int]) – Must be given in the multi-fidelity case, to specify
at which resource level the evaluation is pending






	Return type:

	bool










	
remove_observed_case(trial_id, metric_name='target', key=None)

	Removes specific observation from the state.


	Parameters:

	
	trial_id (str) – ID of trial


	metric_name (str) – Name of internal metric


	key (Optional[str]) – Must be given in the multi-fidelity case













	
label_trial(data, config=None)

	Adds observed data for a trial. If it has observations in the state
already, data.metrics are appended. Otherwise, a new entry is
appended.
If new observations replace pending evaluations, these are removed.

config must be passed if the trial has not yet been registered in
the state (this happens normally with the append_trial call). If
already registered, config is ignored.






	
filter_pending_evaluations(filter_pred)

	Filters state.pending_evaluations with filter_pred.


	Parameters:

	filter_pred (Callable[[PendingEvaluation], bool]) – Filtering predicate










	
mark_trial_failed(trial_id)

	










            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.sklearn_model module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.sklearn_model.SKLearnPredictorWrapper(sklearn_predictor, state, active_metric=None)

	Bases: BasePredictor

Wrapper class for sklearn predictors returned by fit_from_state of
SKLearnEstimatorWrapper.


	
predict(inputs)

	Returns signals which are statistics of the predictive distribution at
input points inputs. By default:


	“mean”: Predictive means. If the model supports fantasizing with a
number nf of fantasies, this has shape (n, nf), otherwise
(n,)


	“std”: Predictive stddevs, shape (n,)




If the hyperparameters of the surrogate model are being optimized (e.g.,
by empirical Bayes), the returned list has length 1. If its
hyperparameters are averaged over by MCMC, the returned list has one
entry per MCMC sample.


	Parameters:

	inputs (ndarray) – Input points, shape (n, d)



	Return type:

	List[Dict[str, ndarray]]



	Returns:

	List of dict with keys keys_predict(), of length the
number of MCMC samples, or length 1 for empirical Bayes










	
backward_gradient(input, head_gradients)

	Computes the gradient \(\nabla f(x)\) for an acquisition
function \(f(x)\), where \(x\) is a single input point. This
is using reverse mode differentiation, the head gradients are passed
by the acquisition function. The head gradients are
\(\partial_k f\), where \(k\) runs over the statistics
returned by predict() for the single input point \(x\).
The shape of head gradients is the same as the shape of the
statistics.


	Parameters:

	
	input (ndarray) – Single input point \(x\), shape (d,)


	head_gradients (List[Dict[str, ndarray]]) – See above






	Return type:

	List[ndarray]



	Returns:

	Gradient \(\nabla f(x)\) (one-length list)














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.sklearn_model.SKLearnEstimatorWrapper(sklearn_estimator, active_metric=None, *args, **kwargs)

	Bases: Estimator

Wrapper class for sklearn estimators.


	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Current tunable model parameters










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – New model parameters










	
fit_from_state(state, update_params)

	Creates a
Predictor
object based on data in state.

If the model also has hyperparameters, these are learned iff
update_params == True. Otherwise, these parameters are not changed,
but only the posterior state is computed.
If your surrogate model is not Bayesian, or does not have hyperparameters,
you can ignore the update_params argument.

If self.state.pending_evaluations is not empty, we compute posterior for state without pending evals.
This method can be overwritten for any other behaviour such as one found in
fit_from_state().


	Parameters:

	
	state (TuningJobState) – Current data model parameters are to be fit on, and the
posterior state is to be computed from


	update_params (bool) – See above






	Return type:

	Predictor



	Returns:

	Predictor, wrapping the posterior state
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.subsample_state_multi_fidelity module


	
syne_tune.optimizer.schedulers.searchers.bayesopt.models.subsample_state_multi_fidelity.cap_size_tuning_job_state(state, max_size, random_state=None)

	Returns state which is identical to state, except that the
trials_evaluations are replaced by a subset so the total number of
metric values is <= max_size. Filtering is done by preserving data
from trials which have observations at the higher resource levels. For
some trials, we may remove values at low resources, but keep values at
higher ones, in order to meet the max_size constraint.


	Parameters:

	
	state (TuningJobState) – Original state to filter down


	max_size (int) – Maximum number of observed metric values in new state


	random_state (Optional[RandomState]) – Used for random sampling. Defaults to numpy.random.






	Return type:

	TuningJobState



	Returns:

	New state meeting the max_size constraint. This is a copy of
state even if this meets the constraint already.










	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.subsample_state_multi_fidelity.SubsampleMultiFidelityStateConverter(max_size, random_state=None)

	Bases: StateForModelConverter

Converts state by (possibly) down sampling the observation so that their
total number is <= max_size. This is done in a way that trials with
observations in higher rung levels are retained (with all their data),
so observations are preferentially removed at low levels, and from trials
which do not have observations higher up.

This state converter makes sense if observed data is only used at geometrically
spaced rung levels, so the number of observations per trial remains small. If
a trial runs up on the order of max_resource_level observations, it does
not work, because it ends up retaining densely sampled observations from very
few trials. Use SubsampleMFDenseDataStateConverter in such a case.


	
set_random_state(random_state)

	Some state converters use random sampling. For these, the random state has to
be set before first usage.


	Parameters:

	random_state (RandomState) – Random state to be used internally














	
syne_tune.optimizer.schedulers.searchers.bayesopt.models.subsample_state_multi_fidelity.sparsify_tuning_job_state(state, max_size, grace_period, reduction_factor)

	Does the first step of state conversion in
SubsampleMFDenseDataStateConverter, in that dense observations are
sparsified w.r.t. a geometrically spaced rung level system.


	Parameters:

	
	state (TuningJobState) – Original state to filter down


	max_size (int) – Maximum number of observed metric values in new state


	grace_period (int) – Minimum resource level \(r_{min}\)


	reduction_factor (float) – Reduction factor \(\eta\)






	Return type:

	TuningJobState



	Returns:

	New state which either meets the max_size constraint, or is
maximally sparsified










	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.subsample_state_multi_fidelity.SubsampleMFDenseDataStateConverter(max_size, grace_period=None, reduction_factor=None, random_state=None)

	Bases: SubsampleMultiFidelityStateConverter

Variant of SubsampleMultiFidelityStateConverter, which has the same
goal, but does subsampling in a different way. The current default for most
GP-based multi-fidelity algorithms (e.g., MOBSTER, Hyper-Tune) is to use
observations only at geometrically spaced rung levels (such as 1, 3, 9, …),
and SubsampleMultiFidelityStateConverter makes sense.

But for some (e.g., DyHPO), observations are recorded at all (or linearly
spaced) resource levels, so there is much more data for trials which progressed
further. Here, we do the state conversion in two steps, always stopping the
process once the target size max_size is reached. We assume a geometric
rung level spacing, given by grace_period and reduction_factor, only
for the purpose of state conversion. In the first step, we sparsify the
observations. If each rung level \(r_k`\) defines a bucket
\(B_k = r_{k-1} + 1, \dots, r_k\), each trial should have at most one
observation in each bucket. Sparsification is done top down. If the result of
this first step is still larger than max_size, we continue with subsampling
as in SubsampleMultiFidelityStateConverter.








            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models.subsample_state_single_fidelity module


	
syne_tune.optimizer.schedulers.searchers.bayesopt.models.subsample_state_single_fidelity.cap_size_tuning_job_state(state, max_size, mode, top_fraction, random_state=None)

	Returns state which is identical to state, except that the
trials_evaluations are replaced by a subset so the total number of
metric values is <= max_size.


	Parameters:

	
	state (TuningJobState) – Original state to filter down


	max_size (int) – Maximum number of observed metric values in new state


	mode (str) – “min” or “max”


	top_fraction (float) – See above


	random_state (Optional[RandomState]) – Used for random sampling. Defaults to numpy.random.






	Return type:

	TuningJobState



	Returns:

	New state meeting the max_size constraint. This is a copy of
state even if this meets the constraint already.










	
class syne_tune.optimizer.schedulers.searchers.bayesopt.models.subsample_state_single_fidelity.SubsampleSingleFidelityStateConverter(max_size, mode, top_fraction, random_state=None)

	Bases: StateForModelConverter

Converts state by (possibly) down sampling the observation so that their
total number is <= max_size. If len(state) > max_size, the subset
is sampled as follows. max_size * top_fraction is filled with the best
observations. The remainder is sampled without replacement from the
remaining observations.


	Parameters:

	
	max_size (int) – Maximum number of observed metric values in new state


	mode (str) – “min” or “max”


	top_fraction (float) – See above


	random_state (Optional[RandomState]) – Used for random sampling. Can also be set with
set_random_state()









	
set_random_state(random_state)

	Some state converters use random sampling. For these, the random state has to
be set before first usage.


	Parameters:

	random_state (RandomState) – Random state to be used internally
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.models package


Subpackages



	syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost package
	Submodules
	syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.cost_model module
	CostValue

	CostModel





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.linear_cost_model module
	LinearCostModel

	MLPLinearCostModel

	FixedLayersMLPCostModel

	NASBench201LinearCostModel

	BiasOnlyLinearCostModel





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost.sklearn_cost_model module
	ScikitLearnCostModel

	UnivariateSplineCostModel



















Submodules



	syne_tune.optimizer.schedulers.searchers.bayesopt.models.acqfunc_factory module
	acquisition_function_factory()





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost_fifo_model module
	CostFixedResourcePredictor
	CostFixedResourcePredictor.keys_predict()

	CostFixedResourcePredictor.predict()

	CostFixedResourcePredictor.backward_gradient()

	CostFixedResourcePredictor.predict_mean_current_candidates()

	CostFixedResourcePredictor.current_best()





	CostEstimator
	CostEstimator.get_params()

	CostEstimator.set_params()

	CostEstimator.fixed_resource

	CostEstimator.set_fixed_resource()

	CostEstimator.fit_from_state()









	syne_tune.optimizer.schedulers.searchers.bayesopt.models.estimator module
	Estimator
	Estimator.get_params()

	Estimator.set_params()

	Estimator.fit_from_state()

	Estimator.debug_log

	Estimator.configure_scheduler()





	TransformedData
	TransformedData.features

	TransformedData.targets

	TransformedData.mean

	TransformedData.std





	transform_state_to_data()





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_mcmc_model module
	GaussProcMCMCEstimator
	GaussProcMCMCEstimator.get_params()

	GaussProcMCMCEstimator.set_params()









	syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_model module
	GaussProcPredictor
	GaussProcPredictor.hp_ranges_for_prediction()

	GaussProcPredictor.predict()

	GaussProcPredictor.backward_gradient()

	GaussProcPredictor.does_mcmc()

	GaussProcPredictor.posterior_states





	GaussProcEstimator
	GaussProcEstimator.debug_log

	GaussProcEstimator.gpmodel

	GaussProcEstimator.fit_from_state()

	GaussProcEstimator.configure_scheduler()





	GaussProcEmpiricalBayesEstimator
	GaussProcEmpiricalBayesEstimator.get_params()

	GaussProcEmpiricalBayesEstimator.set_params()









	syne_tune.optimizer.schedulers.searchers.bayesopt.models.gpiss_model module
	GaussProcAdditivePredictor
	GaussProcAdditivePredictor.predict()

	GaussProcAdditivePredictor.backward_gradient()

	GaussProcAdditivePredictor.does_mcmc()

	GaussProcAdditivePredictor.posterior_states





	GaussProcAdditiveEstimator
	GaussProcAdditiveEstimator.debug_log

	GaussProcAdditiveEstimator.get_params()

	GaussProcAdditiveEstimator.set_params()

	GaussProcAdditiveEstimator.fit_from_state()

	GaussProcAdditiveEstimator.predictor_for_fantasy_samples()

	GaussProcAdditiveEstimator.configure_scheduler()









	syne_tune.optimizer.schedulers.searchers.bayesopt.models.kernel_factory module
	base_kernel_factory()

	resource_kernel_factory()





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc module
	HeadWithGradient
	HeadWithGradient.hval

	HeadWithGradient.gradient





	CurrentBestProvider

	NoneCurrentBestProvider

	ActiveMetricCurrentBestProvider

	MeanStdAcquisitionFunction
	MeanStdAcquisitionFunction.compute_acq()

	MeanStdAcquisitionFunction.compute_acq_with_gradient()









	syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl module
	EIAcquisitionFunction
	EIAcquisitionFunction.debug_stats_message()





	LCBAcquisitionFunction

	EIpuAcquisitionFunction

	ConstraintCurrentBestProvider

	CEIAcquisitionFunction

	get_quantiles()





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_base module
	BasePredictor
	BasePredictor.filter_observed_data

	BasePredictor.set_filter_observed_data()

	BasePredictor.predict_mean_current_candidates()

	BasePredictor.current_best()









	syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_skipopt module
	SkipOptimizationPredicate
	SkipOptimizationPredicate.reset()





	NeverSkipPredicate

	AlwaysSkipPredicate

	SkipPeriodicallyPredicate
	SkipPeriodicallyPredicate.reset()





	SkipNoMaxResourcePredicate
	SkipNoMaxResourcePredicate.reset()









	syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_transformer module
	StateForModelConverter
	StateForModelConverter.set_random_state()





	ModelStateTransformer
	ModelStateTransformer.state

	ModelStateTransformer.use_single_model

	ModelStateTransformer.estimator

	ModelStateTransformer.skip_optimization

	ModelStateTransformer.fit()

	ModelStateTransformer.get_params()

	ModelStateTransformer.set_params()

	ModelStateTransformer.append_trial()

	ModelStateTransformer.drop_pending_evaluation()

	ModelStateTransformer.remove_observed_case()

	ModelStateTransformer.label_trial()

	ModelStateTransformer.filter_pending_evaluations()

	ModelStateTransformer.mark_trial_failed()









	syne_tune.optimizer.schedulers.searchers.bayesopt.models.sklearn_model module
	SKLearnPredictorWrapper
	SKLearnPredictorWrapper.predict()

	SKLearnPredictorWrapper.backward_gradient()





	SKLearnEstimatorWrapper
	SKLearnEstimatorWrapper.get_params()

	SKLearnEstimatorWrapper.set_params()

	SKLearnEstimatorWrapper.fit_from_state()









	syne_tune.optimizer.schedulers.searchers.bayesopt.models.subsample_state_multi_fidelity module
	cap_size_tuning_job_state()

	SubsampleMultiFidelityStateConverter
	SubsampleMultiFidelityStateConverter.set_random_state()





	sparsify_tuning_job_state()

	SubsampleMFDenseDataStateConverter





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.subsample_state_single_fidelity module
	cap_size_tuning_job_state()

	SubsampleSingleFidelityStateConverter
	SubsampleSingleFidelityStateConverter.set_random_state()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn.estimator module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn.estimator.SKLearnEstimator

	Bases: object

Base class scikit-learn based estimators, giving rise to surrogate models
for Bayesian optimization.


	
fit(X, y, update_params)

	Implements fit_from_state(), given transformed data. Here,
y is normalized (zero mean, unit variance) iff
normalize_targets == True.


	Parameters:

	
	X (ndarray) – Feature matrix, shape (n_samples, n_features)


	y (ndarray) – Target values, shape (n_samples,)


	update_params (bool) – Should model (hyper)parameters be updated?
Ignored if estimator has no hyperparameters






	Return type:

	SKLearnPredictor



	Returns:

	Predictor, wrapping the posterior state










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Current model hyperparameters










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – New model hyperparameters










	
property normalize_targets: bool

	
	Returns:

	Should targets in state be normalized before calling
fit()?
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn.predictor module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn.predictor.SKLearnPredictor

	Bases: object

Base class for predictors generated by scikit-learn based estimators of
SKLearnEstimator.

This is only for predictors who return means and stddevs in predict().


	
predict(X)

	Returns signals which are statistics of the predictive distribution at
input points inputs.


	Parameters:

	inputs – Input points, shape (n, d)



	Return type:

	Tuple[ndarray, ndarray]



	Returns:

	(means, stds), where predictive means means and
predictive stddevs stds have shape (n,)










	
backward_gradient(input, head_gradients)

	Needs to be implemented only if gradient-based local optimization of
an acquisition function is supported.

Computes the gradient \(\nabla f(x)\) for an acquisition
function \(f(x)\), where \(x\) is a single input point. This
is using reverse mode differentiation, the head gradients are passed
by the acquisition function. The head gradients are
\(\partial_k f\), where \(k\) runs over the statistics
returned by predict() for the single input point \(x\).
The shape of head gradients is the same as the shape of the
statistics.


	Parameters:

	
	input (ndarray) – Single input point \(x\), shape (d,)


	head_gradients (Dict[str, ndarray]) – See above






	Return type:

	ndarray



	Returns:

	Gradient \(\nabla f(x)\)
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn package


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn.SKLearnPredictor

	Bases: object

Base class for predictors generated by scikit-learn based estimators of
SKLearnEstimator.

This is only for predictors who return means and stddevs in predict().


	
predict(X)

	Returns signals which are statistics of the predictive distribution at
input points inputs.


	Parameters:

	inputs – Input points, shape (n, d)



	Return type:

	Tuple[ndarray, ndarray]



	Returns:

	(means, stds), where predictive means means and
predictive stddevs stds have shape (n,)










	
backward_gradient(input, head_gradients)

	Needs to be implemented only if gradient-based local optimization of
an acquisition function is supported.

Computes the gradient \(\nabla f(x)\) for an acquisition
function \(f(x)\), where \(x\) is a single input point. This
is using reverse mode differentiation, the head gradients are passed
by the acquisition function. The head gradients are
\(\partial_k f\), where \(k\) runs over the statistics
returned by predict() for the single input point \(x\).
The shape of head gradients is the same as the shape of the
statistics.


	Parameters:

	
	input (ndarray) – Single input point \(x\), shape (d,)


	head_gradients (Dict[str, ndarray]) – See above






	Return type:

	ndarray



	Returns:

	Gradient \(\nabla f(x)\)














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn.SKLearnEstimator

	Bases: object

Base class scikit-learn based estimators, giving rise to surrogate models
for Bayesian optimization.


	
fit(X, y, update_params)

	Implements fit_from_state(), given transformed data. Here,
y is normalized (zero mean, unit variance) iff
normalize_targets == True.


	Parameters:

	
	X (ndarray) – Feature matrix, shape (n_samples, n_features)


	y (ndarray) – Target values, shape (n_samples,)


	update_params (bool) – Should model (hyper)parameters be updated?
Ignored if estimator has no hyperparameters






	Return type:

	SKLearnPredictor



	Returns:

	Predictor, wrapping the posterior state










	
get_params()

	
	Return type:

	Dict[str, Any]



	Returns:

	Current model hyperparameters










	
set_params(param_dict)

	
	Parameters:

	param_dict (Dict[str, Any]) – New model hyperparameters










	
property normalize_targets: bool

	
	Returns:

	Should targets in state be normalized before calling
fit()?














Submodules



	syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn.estimator module
	SKLearnEstimator
	SKLearnEstimator.fit()

	SKLearnEstimator.get_params()

	SKLearnEstimator.set_params()

	SKLearnEstimator.normalize_targets









	syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn.predictor module
	SKLearnPredictor
	SKLearnPredictor.predict()

	SKLearnPredictor.backward_gradient()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes module


	
syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes.assign_active_metric(predictor, active_metric)

	Checks that active_metric is provided when predictor consists of multiple output predictors.
Otherwise, just sets active_metric to the only predictor output name available.






	
class syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes.NextCandidatesAlgorithm

	Bases: object


	
next_candidates()

	
	Return type:

	List[Dict[str, Union[int, float, str]]]














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes.Predictor(state, active_metric=None)

	Bases: object

Base class for probabilistic predictors used in Bayesian optimization. They
support marginal predictions feeding into an acquisition function, as well
as computing gradients of an acquisition function w.r.t. inputs.

In general, a predictor is created by an estimator. It wraps a posterior
state, which allows for probabilistic predictions on arbitrary inputs.


	Parameters:

	
	state (TuningJobState) – Tuning job state


	active_metric (Optional[str]) – Name of internal objective









	
keys_predict()

	Keys of signals returned by predict().

Note: In order to work with AcquisitionFunction implementations,
the following signals are required:


	“mean”: Predictive mean


	“std”: Predictive standard deviation





	Return type:

	Set[str]



	Returns:

	Set of keys for dict returned by predict()










	
predict(inputs)

	Returns signals which are statistics of the predictive distribution at
input points inputs. By default:


	“mean”: Predictive means. If the model supports fantasizing with a
number nf of fantasies, this has shape (n, nf), otherwise
(n,)


	“std”: Predictive stddevs, shape (n,)




If the hyperparameters of the surrogate model are being optimized (e.g.,
by empirical Bayes), the returned list has length 1. If its
hyperparameters are averaged over by MCMC, the returned list has one
entry per MCMC sample.


	Parameters:

	inputs (ndarray) – Input points, shape (n, d)



	Return type:

	List[Dict[str, ndarray]]



	Returns:

	List of dict with keys keys_predict(), of length the
number of MCMC samples, or length 1 for empirical Bayes










	
hp_ranges_for_prediction()

	
	Return type:

	HyperparameterRanges



	Returns:

	Feature generator to be used for inputs in predict()










	
predict_candidates(candidates)

	Convenience variant of predict()


	Parameters:

	candidates (Iterable[Dict[str, Union[int, float, str]]]) – List of configurations



	Return type:

	List[Dict[str, ndarray]]



	Returns:

	Same as predict()










	
current_best()

	Returns the so-called incumbent, to be used in acquisition functions
such as expected improvement. This is the minimum of predictive means
(signal with key “mean”) at all current candidate locations (both
state.trials_evaluations and state.pending_evaluations).
Normally, a scalar is returned, but if the model supports fantasizing
and the state contains pending evaluations, there is one incumbent
per fantasy sample, so a vector is returned.

If the hyperparameters of the surrogate model are being optimized (e.g.,
by empirical Bayes), the returned list has length 1. If its
hyperparameters are averaged over by MCMC, the returned list has one
entry per MCMC sample.


	Return type:

	List[ndarray]



	Returns:

	Incumbent, see above










	
backward_gradient(input, head_gradients)

	Computes the gradient \(\nabla_x f(x)\) for an acquisition
function \(f(x)\), where \(x\) is a single input point. This
is using reverse mode differentiation, the head gradients are passed
by the acquisition function. The head gradients are
\(\partial_k f\), where \(k\) runs over the statistics
returned by predict() for the single input point \(x\).
The shape of head gradients is the same as the shape of the
statistics.

Lists have > 1 entry if MCMC is used, otherwise they are all size 1.


	Parameters:

	
	input (ndarray) – Single input point \(x\), shape (d,)


	head_gradients (List[Dict[str, ndarray]]) – See above






	Return type:

	List[ndarray]



	Returns:

	Gradient \(\nabla_x f(x)\) (several if MCMC is used)














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes.ScoringFunction(predictor=None, active_metric=None)

	Bases: object

Class to score candidates. As opposed to acquisition functions, scores do
not support gradient computation. Note that scores are always minimized.


	
score(candidates, predictor=None)

	
	Parameters:

	
	candidates (Iterable[Dict[str, Union[int, float, str]]]) – Configurations for which scores are to be computed


	predictor (Union[Predictor, Dict[str, Predictor], None]) – Overrides default  predictor






	Return type:

	List[float]



	Returns:

	List of score values, length of candidates














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes.AcquisitionFunction(predictor=None, active_metric=None)

	Bases: ScoringFunction

Base class for acquisition functions \(f(x)\).


	Parameters:

	
	predictor (Union[Predictor, Dict[str, Predictor], None]) – Predictor(s) from surrogate model


	active_metric (Optional[str]) – Name of internal metric









	
compute_acq(inputs, predictor=None)

	Note: If inputs has shape (d,), it is taken to be (1, d)


	Parameters:

	
	inputs (ndarray) – Encoded input points, shape (n, d)


	predictor (Union[Predictor, Dict[str, Predictor], None]) – If given, overrides self.predictor






	Return type:

	ndarray



	Returns:

	Acquisition function values, shape (n,)










	
compute_acq_with_gradient(input, predictor=None)

	For a single input point \(x\), compute acquisition function value
\(f(x)\) and gradient \(\nabla_x f(x)\).


	Parameters:

	
	input (ndarray) – Single input point \(x\), shape (d,)


	predictor (Union[Predictor, Dict[str, Predictor], None]) – If given, overrides self.predictor






	Return type:

	Tuple[float, ndarray]



	Returns:

	\((f(x), \nabla_x f(x))\)










	
score(candidates, predictor=None)

	
	Parameters:

	
	candidates (Iterable[Dict[str, Union[int, float, str]]]) – Configurations for which scores are to be computed


	predictor (Union[Predictor, Dict[str, Predictor], None]) – Overrides default  predictor






	Return type:

	List[float]



	Returns:

	List of score values, length of candidates














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes.LocalOptimizer(hp_ranges, predictor, acquisition_class, active_metric=None)

	Bases: object

Class that tries to find a local candidate with a better score, typically
using a local optimization method such as L-BFGS. It would normally
encapsulate an acquisition function and predictor.

acquisition_class contains the type of the acquisition function
(subclass of AcquisitionFunction). It can also be a tuple of the
form (type, kwargs), where kwargs are extra arguments to the class
constructor.


	Parameters:

	
	hp_ranges (HyperparameterRanges) – Feature generator for configurations


	predictor (Union[Predictor, Dict[str, Predictor]]) – Predictor(s) for acquisition function


	acquisition_class (Callable[[Any], AcquisitionFunction]) – See above


	active_metric (Optional[str]) – Name of internal metric









	
optimize(candidate, predictor=None)

	Run local optimization, starting from candidate


	Parameters:

	
	candidate (Dict[str, Union[int, float, str]]) – Starting point


	predictor (Union[Predictor, Dict[str, Predictor], None]) – Overrides self.predictor






	Return type:

	Dict[str, Union[int, float, str]]



	Returns:

	Configuration found by local optimization














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes.CandidateGenerator

	Bases: object

Class to generate candidates from which to start the local minimization,
typically random candidate or some form of more uniformly spaced variation,
such as latin hypercube or Sobol sequence.


	
generate_candidates()

	
	Return type:

	Iterator[Dict[str, Union[int, float, str]]]










	
generate_candidates_en_bulk(num_cands, exclusion_list=None)

	
	Parameters:

	
	num_cands (int) – Number of candidates to generate


	exclusion_list (Optional[ExclusionList]) – If given, these candidates must not be returned






	Return type:

	List[Dict[str, Union[int, float, str]]]



	Returns:

	List of num_cands candidates. If exclusion_list is given,
the number of candidates returned can be < num_cands
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm.BayesianOptimizationAlgorithm(initial_candidates_generator, initial_candidates_scorer, num_initial_candidates, local_optimizer, pending_candidate_state_transformer, exclusion_candidates, num_requested_candidates, greedy_batch_selection, duplicate_detector, num_initial_candidates_for_batch=None, sample_unique_candidates=False, debug_log=None)

	Bases: NextCandidatesAlgorithm

Core logic of the Bayesian optimization algorithm


	Parameters:

	
	initial_candidates_generator (CandidateGenerator) – generator of candidates


	initial_scoring_function – scoring function used to rank the initial
candidates.
Note: If a batch is selected in one go (num_requested_candidates > 1,
greedy_batch_selection == False), this function should encourage
diversity among its top scorers. In general, greedy batch selection
is recommended.


	num_initial_candidates (int) – how many initial candidates to generate, if
possible


	local_optimizer (LocalOptimizer) – local optimizer which starts from score minimizer.
If a batch is selected in one go (not greedily), then local
optimizations are started from the top num_requested_candidates ranked
candidates (after scoring)


	pending_candidate_state_transformer (Optional[ModelStateTransformer]) – Once a candidate is selected, it
becomes pending, and the state is transformed by appending information.
This is done by the transformer.
This is object is needed only if next_candidates() goes through
more than one outer iterations (i.e., if greedy_batch_selection == True
and num_requested_candidates > 1. Otherwise, None can be passed here.
Note: Model updates (by the state transformer) for batch candidates beyond
the first do not involve fitting hyperparameters, so they are usually
cheap.


	exclusion_candidates (ExclusionList) – Set of candidates that should not be returned,
because they are already labeled, currently pending, or have failed


	num_requested_candidates (int) – number of candidates to return


	greedy_batch_selection (bool) – If True and num_requested_candidates > 1, we
generate, order, and locally optimize for each single candidate to be
selected. Otherwise, this is done just once, and
num_requested_candidates are extracted in one go.
Note: If this is True, pending_candidate_state_transformer is needed.


	duplicate_detector (DuplicateDetector) – used to make sure no candidates equal to already
evaluated ones is returned


	num_initial_candidates_for_batch (Optional[int]) – This is used only if
num_requested_candidates > 1 and greedy_batch_selection == True. In
this case, num_initial_candidates_for_batch overrides
num_initial_candidates when selecting all but the first candidate for
the batch. Typically, num_initial_candidates is larger than
num_initial_candidates_for_batch in this case, which speeds up
selecting large batches, but still select the first candidate
thoroughly


	sample_unique_candidates (bool) – If True, we check that initial candidates
sampled at random are unique and disjoint from the exclusion list.
This can be expensive. Defaults to False


	debug_log (Optional[DebugLogPrinter]) – If a
DebugLogPrinter
object is passed here, it is used to write log messages









	
initial_candidates_generator: CandidateGenerator

	




	
initial_candidates_scorer: ScoringFunction

	




	
num_initial_candidates: int

	




	
local_optimizer: LocalOptimizer

	




	
pending_candidate_state_transformer: Optional[ModelStateTransformer]

	




	
exclusion_candidates: ExclusionList

	




	
num_requested_candidates: int

	




	
greedy_batch_selection: bool

	




	
duplicate_detector: DuplicateDetector

	




	
num_initial_candidates_for_batch: Optional[int] = None

	




	
sample_unique_candidates: bool = False

	




	
debug_log: Optional[DebugLogPrinter] = None

	




	
next_candidates()

	
	Return type:

	List[Dict[str, Union[int, float, str]]]
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components.IndependentThompsonSampling(predictor=None, active_metric=None, random_state=None)

	Bases: ScoringFunction

Note: This is not Thompson sampling, but rather a variant called
“independent Thompson sampling”, where means and variances are drawn
from the marginal rather than the joint distribution. This is cheap,
but incorrect. In fact, the larger the number of candidates, the more
likely the winning configuration is arising from pure chance.


	Parameters:

	
	predictor (Union[Predictor, Dict[str, Predictor], None]) – Surrogate predictor for statistics of predictive distribution


	random_state (Optional[RandomState]) – PRN generator









	
score(candidates, predictor=None)

	
	Parameters:

	
	candidates (Iterable[Dict[str, Union[int, float, str]]]) – Configurations for which scores are to be computed


	predictor (Optional[Predictor]) – Overrides default  predictor






	Return type:

	List[float]



	Returns:

	List of score values, length of candidates














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components.LBFGSOptimizeAcquisition(hp_ranges, predictor, acquisition_class, active_metric=None)

	Bases: LocalOptimizer


	
optimize(candidate, predictor=None)

	Run local optimization, starting from candidate


	Parameters:

	
	candidate (Dict[str, Union[int, float, str]]) – Starting point


	predictor (Union[Predictor, Dict[str, Predictor], None]) – Overrides self.predictor






	Return type:

	Dict[str, Union[int, float, str]]



	Returns:

	Configuration found by local optimization














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components.NoOptimization(*args, **kwargs)

	Bases: LocalOptimizer


	
optimize(candidate, predictor=None)

	Run local optimization, starting from candidate


	Parameters:

	
	candidate (Dict[str, Union[int, float, str]]) – Starting point


	predictor (Optional[Predictor]) – Overrides self.predictor






	Return type:

	Dict[str, Union[int, float, str]]



	Returns:

	Configuration found by local optimization














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components.RandomStatefulCandidateGenerator(hp_ranges, random_state)

	Bases: CandidateGenerator

This generator maintains a random state, so if generate_candidates()
is called several times, different sequences are returned.


	Parameters:

	
	hp_ranges (HyperparameterRanges) – Feature generator for configurations


	random_state (RandomState) – PRN generator









	
generate_candidates()

	
	Return type:

	Iterator[Dict[str, Union[int, float, str]]]










	
generate_candidates_en_bulk(num_cands, exclusion_list=None)

	
	Parameters:

	
	num_cands (int) – Number of candidates to generate


	exclusion_list – If given, these candidates must not be returned






	Return type:

	List[Dict[str, Union[int, float, str]]]



	Returns:

	List of num_cands candidates. If exclusion_list is given,
the number of candidates returned can be < num_cands














	
syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components.generate_unique_candidates(candidates_generator, num_candidates, exclusion_candidates)

	
	Return type:

	List[Dict[str, Union[int, float, str]]]










	
class syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components.RandomFromSetCandidateGenerator(base_set, random_state, ext_config=None)

	Bases: CandidateGenerator

In this generator, candidates are sampled from a given set.


	Parameters:

	
	base_set (List[Dict[str, Union[int, float, str]]]) – Set of all configurations to sample from


	random_state (RandomState) – PRN generator


	ext_config (Optional[Dict[str, Union[int, float, str]]]) – If given, each configuration is updated with this
dictionary before being returned









	
generate_candidates()

	
	Return type:

	Iterator[Dict[str, Union[int, float, str]]]










	
generate_candidates_en_bulk(num_cands, exclusion_list=None)

	
	Parameters:

	
	num_cands (int) – Number of candidates to generate


	exclusion_list – If given, these candidates must not be returned






	Return type:

	List[Dict[str, Union[int, float, str]]]



	Returns:

	List of num_cands candidates. If exclusion_list is given,
the number of candidates returned can be < num_cands














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components.DuplicateDetector

	Bases: object


	
contains(existing_candidates, new_candidate)

	
	Return type:

	bool














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components.DuplicateDetectorNoDetection

	Bases: DuplicateDetector


	
contains(existing_candidates, new_candidate)

	
	Return type:

	bool














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components.DuplicateDetectorIdentical

	Bases: DuplicateDetector


	
contains(existing_candidates, new_candidate)

	
	Return type:

	bool
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.defaults module




            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms package


Submodules



	syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes module
	assign_active_metric()

	NextCandidatesAlgorithm
	NextCandidatesAlgorithm.next_candidates()





	Predictor
	Predictor.keys_predict()

	Predictor.predict()

	Predictor.hp_ranges_for_prediction()

	Predictor.predict_candidates()

	Predictor.current_best()

	Predictor.backward_gradient()





	ScoringFunction
	ScoringFunction.score()





	AcquisitionFunction
	AcquisitionFunction.compute_acq()

	AcquisitionFunction.compute_acq_with_gradient()

	AcquisitionFunction.score()





	LocalOptimizer
	LocalOptimizer.optimize()





	CandidateGenerator
	CandidateGenerator.generate_candidates()

	CandidateGenerator.generate_candidates_en_bulk()









	syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm module
	BayesianOptimizationAlgorithm
	BayesianOptimizationAlgorithm.initial_candidates_generator

	BayesianOptimizationAlgorithm.initial_candidates_scorer

	BayesianOptimizationAlgorithm.num_initial_candidates

	BayesianOptimizationAlgorithm.local_optimizer

	BayesianOptimizationAlgorithm.pending_candidate_state_transformer

	BayesianOptimizationAlgorithm.exclusion_candidates

	BayesianOptimizationAlgorithm.num_requested_candidates

	BayesianOptimizationAlgorithm.greedy_batch_selection

	BayesianOptimizationAlgorithm.duplicate_detector

	BayesianOptimizationAlgorithm.num_initial_candidates_for_batch

	BayesianOptimizationAlgorithm.sample_unique_candidates

	BayesianOptimizationAlgorithm.debug_log

	BayesianOptimizationAlgorithm.next_candidates()









	syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components module
	IndependentThompsonSampling
	IndependentThompsonSampling.score()





	LBFGSOptimizeAcquisition
	LBFGSOptimizeAcquisition.optimize()





	NoOptimization
	NoOptimization.optimize()





	RandomStatefulCandidateGenerator
	RandomStatefulCandidateGenerator.generate_candidates()

	RandomStatefulCandidateGenerator.generate_candidates_en_bulk()





	generate_unique_candidates()

	RandomFromSetCandidateGenerator
	RandomFromSetCandidateGenerator.generate_candidates()

	RandomFromSetCandidateGenerator.generate_candidates_en_bulk()





	DuplicateDetector
	DuplicateDetector.contains()





	DuplicateDetectorNoDetection
	DuplicateDetectorNoDetection.contains()





	DuplicateDetectorIdentical
	DuplicateDetectorIdentical.contains()









	syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.defaults module









            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.ThreeHumpCamel

	Bases: object


	
property search_space

	




	
evaluate(x1, x2)

	








	
syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.branin_function(x1, x2, r=6)

	




	
class syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.Branin

	Bases: object


	
property search_space

	




	
evaluate(x1, x2)

	








	
class syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.BraninWithR(r)

	Bases: Branin


	
evaluate(x1, x2)

	








	
class syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.Ackley

	Bases: object


	
property search_space

	




	
evaluate(x1, x2)

	








	
class syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.SimpleQuadratic

	Bases: object


	
property search_space

	




	
evaluate(x1, x2)

	








	
syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.evaluate_blackbox(bb_func, inputs)

	
	Return type:

	ndarray










	
syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.sample_data(bb_cls, num_train, num_grid, expand_datadct=True)

	
	Return type:

	Dict[str, Any]










	
syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.expand_data(data)

	Appends derived entries to data dict, which have non-elementary types.


	Return type:

	Dict[str, Any]










	
syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.data_to_state(data)

	
	Return type:

	TuningJobState










	
syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.decode_inputs(inputs, ss_limits)

	
	Return type:

	(List[Dict[str, Union[int, float, str]]], Dict)










	
syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.assert_equal_candidates(candidates1, candidates2, hp_ranges, decimal=5)

	




	
syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy.assert_equal_randomstate(randomstate1, randomstate2)

	






            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.utils.debug_log module


	
class syne_tune.optimizer.schedulers.searchers.bayesopt.utils.debug_log.DebugLogPrinter

	Bases: object

Supports a concise debug log.
In particular, information about get_config is displayed in a single
block. For that, different parts are first collected until the end of
get_config.


	
start_get_config(gc_type, trial_id)

	




	
set_final_config(config)

	




	
set_state(state)

	




	
set_targets(targets)

	




	
set_model_params(params)

	




	
set_fantasies(fantasies)

	




	
set_init_config(config, top_scores=None)

	




	
set_num_evaluations(num_evals)

	




	
append_extra(extra)

	




	
write_block()

	










            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects module

Object definitions that are used for testing.


	
syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects.build_kernel(state, do_warping=False)

	
	Return type:

	KernelFunction










	
syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects.default_gpmodel(state, random_seed, optimization_config)

	
	Return type:

	GaussianProcessRegression










	
syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects.default_gpmodel_mcmc(state, random_seed, mcmc_config)

	
	Return type:

	GPRegressionMCMC










	
class syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects.RepeatedCandidateGenerator(n_unique_candidates)

	Bases: CandidateGenerator

Generates candidates from a fixed set. Used to test the deduplication logic.


	
generate_candidates()

	
	Return type:

	Iterator[Dict[str, Union[int, float, str]]]














	
class syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects.Quadratic3d(local_minima, active_metric, metric_names)

	Bases: object


	
property search_space

	




	
property f_min

	








	
syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects.tuples_to_configs(config_tpls, hp_ranges)

	Many unit tests write configs as tuples.


	Return type:

	List[Dict[str, Union[int, float, str]]]










	
syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects.create_exclusion_set(candidates_tpl, hp_ranges, is_dict=False)

	Creates exclusion list from set of tuples.


	Return type:

	ExclusionList










	
syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects.create_tuning_job_state(hp_ranges, cand_tuples, metrics, pending_tuples=None, failed_tuples=None)

	Builds TuningJobState from basics, where configs are given as tuples or
as dicts.

NOTE: We assume that all configs in the different lists are different!


	Return type:

	TuningJobState












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt.utils package


Submodules



	syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy module
	ThreeHumpCamel
	ThreeHumpCamel.search_space

	ThreeHumpCamel.evaluate()





	branin_function()

	Branin
	Branin.search_space

	Branin.evaluate()





	BraninWithR
	BraninWithR.evaluate()





	Ackley
	Ackley.search_space

	Ackley.evaluate()





	SimpleQuadratic
	SimpleQuadratic.search_space

	SimpleQuadratic.evaluate()





	evaluate_blackbox()

	sample_data()

	expand_data()

	data_to_state()

	decode_inputs()

	assert_equal_candidates()

	assert_equal_randomstate()





	syne_tune.optimizer.schedulers.searchers.bayesopt.utils.debug_log module
	DebugLogPrinter
	DebugLogPrinter.start_get_config()

	DebugLogPrinter.set_final_config()

	DebugLogPrinter.set_state()

	DebugLogPrinter.set_targets()

	DebugLogPrinter.set_model_params()

	DebugLogPrinter.set_fantasies()

	DebugLogPrinter.set_init_config()

	DebugLogPrinter.set_num_evaluations()

	DebugLogPrinter.append_extra()

	DebugLogPrinter.write_block()









	syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects module
	build_kernel()

	default_gpmodel()

	default_gpmodel_mcmc()

	RepeatedCandidateGenerator
	RepeatedCandidateGenerator.generate_candidates()





	Quadratic3d
	Quadratic3d.search_space

	Quadratic3d.f_min





	tuples_to_configs()

	create_exclusion_set()

	create_tuning_job_state()













            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bayesopt package


Subpackages



	syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes package
	Submodules
	syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.common module
	dictionarize_objective()

	TrialEvaluations

	PendingEvaluation

	FantasizedPendingEvaluation





	syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.config_ext module
	ExtendedConfiguration





	syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.tuning_job_state module
	TuningJobState













	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd package
	SliceException

	Subpackages
	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.hypertune package
	Submodules





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.independent package
	Submodules





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.kernel package
	KernelFunction

	Matern52

	ExponentialDecayResourcesKernelFunction

	ExponentialDecayResourcesMeanFunction

	FabolasKernelFunction

	ProductKernelFunction

	FreezeThawKernelFunction

	FreezeThawMeanFunction

	CrossValidationMeanFunction

	CrossValidationKernelFunction

	RangeKernelFunction

	Submodules





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.learncurve package
	Submodules









	Submodules
	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.constants module
	OptimizationConfig

	MCMCConfig





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.custom_op module
	AddJitterOp()

	flatten_and_concat()

	cholesky_factorization()





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.distribution module
	Distribution

	Gamma

	Uniform

	Normal

	LogNormal

	Horseshoe





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon module
	Block

	Parameter

	ParameterDict





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gluon_blocks_helpers module
	ConstantPositiveVector

	PositiveScalarEncoding

	IdentityScalarEncoding

	LogarithmScalarEncoding

	unwrap_parameter()

	encode_unwrap_parameter()

	param_to_pretty_string()

	register_parameter()

	create_encoding()





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gp_model module
	GaussianProcessModel

	GaussianProcessOptimizeModel





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gp_regression module
	GaussianProcessRegression





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.gpr_mcmc module
	GPRegressionMCMC





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.likelihood module
	MarginalLikelihood

	GaussianProcessMarginalLikelihood





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.mean module
	MeanFunction

	ScalarMeanFunction

	ZeroMeanFunction





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.optimization_utils module
	apply_lbfgs()

	apply_lbfgs_with_multiple_starts()

	add_regularizer_to_criterion()

	create_lbfgs_arguments()





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_state module
	PosteriorState

	PosteriorStateWithSampleJoint

	GaussProcPosteriorState

	backward_gradient_given_predict()

	IncrementalUpdateGPPosteriorState





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.posterior_utils module
	cholesky_computations()

	predict_posterior_marginals()

	sample_posterior_marginals()

	sample_posterior_joint()

	cholesky_update()

	sample_and_cholesky_update()

	negative_log_marginal_likelihood()





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.slice module
	SliceSampler

	gen_random_direction()

	slice_sampler_step_out()

	slice_sampler_step_in()





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.target_transform module
	ScalarTargetTransform

	IdentityTargetTransform

	BoxCoxTargetTransform





	syne_tune.optimizer.schedulers.searchers.bayesopt.gpautograd.warping module
	Warping

	warpings_for_hyperparameters()

	kernel_with_warping()

	WarpedKernel













	syne_tune.optimizer.schedulers.searchers.bayesopt.models package
	Subpackages
	syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost package
	Submodules









	Submodules
	syne_tune.optimizer.schedulers.searchers.bayesopt.models.acqfunc_factory module
	acquisition_function_factory()





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.cost_fifo_model module
	CostFixedResourcePredictor

	CostEstimator





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.estimator module
	Estimator

	TransformedData

	transform_state_to_data()





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_mcmc_model module
	GaussProcMCMCEstimator





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.gp_model module
	GaussProcPredictor

	GaussProcEstimator

	GaussProcEmpiricalBayesEstimator





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.gpiss_model module
	GaussProcAdditivePredictor

	GaussProcAdditiveEstimator





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.kernel_factory module
	base_kernel_factory()

	resource_kernel_factory()





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc module
	HeadWithGradient

	CurrentBestProvider

	NoneCurrentBestProvider

	ActiveMetricCurrentBestProvider

	MeanStdAcquisitionFunction





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.meanstd_acqfunc_impl module
	EIAcquisitionFunction

	LCBAcquisitionFunction

	EIpuAcquisitionFunction

	ConstraintCurrentBestProvider

	CEIAcquisitionFunction

	get_quantiles()





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_base module
	BasePredictor





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_skipopt module
	SkipOptimizationPredicate

	NeverSkipPredicate

	AlwaysSkipPredicate

	SkipPeriodicallyPredicate

	SkipNoMaxResourcePredicate





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.model_transformer module
	StateForModelConverter

	ModelStateTransformer





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.sklearn_model module
	SKLearnPredictorWrapper

	SKLearnEstimatorWrapper





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.subsample_state_multi_fidelity module
	cap_size_tuning_job_state()

	SubsampleMultiFidelityStateConverter

	sparsify_tuning_job_state()

	SubsampleMFDenseDataStateConverter





	syne_tune.optimizer.schedulers.searchers.bayesopt.models.subsample_state_single_fidelity module
	cap_size_tuning_job_state()

	SubsampleSingleFidelityStateConverter













	syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn package
	SKLearnPredictor
	SKLearnPredictor.predict()

	SKLearnPredictor.backward_gradient()





	SKLearnEstimator
	SKLearnEstimator.fit()

	SKLearnEstimator.get_params()

	SKLearnEstimator.set_params()

	SKLearnEstimator.normalize_targets





	Submodules
	syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn.estimator module
	SKLearnEstimator





	syne_tune.optimizer.schedulers.searchers.bayesopt.sklearn.predictor module
	SKLearnPredictor













	syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms package
	Submodules
	syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.base_classes module
	assign_active_metric()

	NextCandidatesAlgorithm

	Predictor

	ScoringFunction

	AcquisitionFunction

	LocalOptimizer

	CandidateGenerator





	syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm module
	BayesianOptimizationAlgorithm





	syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.bo_algorithm_components module
	IndependentThompsonSampling

	LBFGSOptimizeAcquisition

	NoOptimization

	RandomStatefulCandidateGenerator

	generate_unique_candidates()

	RandomFromSetCandidateGenerator

	DuplicateDetector

	DuplicateDetectorNoDetection

	DuplicateDetectorIdentical





	syne_tune.optimizer.schedulers.searchers.bayesopt.tuning_algorithms.defaults module









	syne_tune.optimizer.schedulers.searchers.bayesopt.utils package
	Submodules
	syne_tune.optimizer.schedulers.searchers.bayesopt.utils.comparison_gpy module
	ThreeHumpCamel

	branin_function()

	Branin

	BraninWithR

	Ackley

	SimpleQuadratic

	evaluate_blackbox()

	sample_data()

	expand_data()

	data_to_state()

	decode_inputs()

	assert_equal_candidates()

	assert_equal_randomstate()





	syne_tune.optimizer.schedulers.searchers.bayesopt.utils.debug_log module
	DebugLogPrinter





	syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects module
	build_kernel()

	default_gpmodel()

	default_gpmodel_mcmc()

	RepeatedCandidateGenerator

	Quadratic3d

	tuples_to_configs()

	create_exclusion_set()

	create_tuning_job_state()





















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bore.bore module


	
class syne_tune.optimizer.schedulers.searchers.bore.bore.Bore(config_space, metric, points_to_evaluate=None, allow_duplicates=None, restrict_configurations=None, mode=None, gamma=None, calibrate=None, classifier=None, acq_optimizer=None, feval_acq=None, random_prob=None, init_random=None, classifier_kwargs=None, **kwargs)

	Bases: StochasticAndFilterDuplicatesSearcher

Implements “Bayesian optimization by Density Ratio Estimation” as described
in the following paper:



BORE: Bayesian Optimization by Density-Ratio Estimation,

Tiao, Louis C and Klein, Aaron and Seeger, Matthias W and Bonilla, Edwin V. and Archambeau, Cedric and Ramos, Fabio

Proceedings of the 38th International Conference on Machine Learning

https://arxiv.org/abs/2102.09009






Additional arguments on top of parent class
StochasticAndFilterDuplicatesSearcher:


	Parameters:

	
	mode (Optional[str]) – Can be “min” (default) or “max”.


	gamma (Optional[float]) – Defines the percentile, i.e how many percent of configurations
are used to model \(l(x)\). Defaults to 0.25


	calibrate (Optional[bool]) – If set to true, we calibrate the predictions of the
classifier via CV. Defaults to False


	classifier (Optional[str]) – The binary classifier to model the acquisition
function. Choices: {"mlp", "gp", "xgboost", "rf", "logreg"}.
Defaults to “xgboost”


	acq_optimizer (Optional[str]) – The optimization method to maximize the acquisition
function. Choices: {"de", "rs", "rs_with_replacement"}. Defaults
to “rs”


	feval_acq (Optional[int]) – Maximum allowed function evaluations of the acquisition
function. Defaults to 500


	random_prob (Optional[float]) – probability for returning a random configurations
(epsilon greedy). Defaults to 0


	init_random (Optional[int]) – get_config() returns randomly drawn configurations
until at least init_random observations have been recorded in
update(). After that, the BORE algorithm is used. Defaults to 6


	classifier_kwargs (Optional[dict]) – Parameters for classifier. Optional









	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.










	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state (Dict[str, Any]) – See above



	Returns:

	New searcher object
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bore.de module


	
class syne_tune.optimizer.schedulers.searchers.bore.de.DifferentialevolutionOptimizer(f, lower, upper, fevals, strategy='best1', bin=1)

	Bases: object


	
evolve(j)

	




	
run()

	










            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bore.gp_classififer module




            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bore.mlp_classififer module


	
class syne_tune.optimizer.schedulers.searchers.bore.mlp_classififer.MLP(n_inputs, n_hidden=32, epochs=100, learning_rate=0.001, activation='relu')

	Bases: object


	
fit(X, y)

	




	
predict_proba(X)

	




	
predict(X)

	










            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bore.multi_fidelity_bore module


	
class syne_tune.optimizer.schedulers.searchers.bore.multi_fidelity_bore.MultiFidelityBore(config_space, metric, points_to_evaluate=None, allow_duplicates=None, mode=None, gamma=None, calibrate=None, classifier=None, acq_optimizer=None, feval_acq=None, random_prob=None, init_random=None, classifier_kwargs=None, resource_attr='epoch', **kwargs)

	Bases: Bore

Adapts BORE (Tiao et al.) for the multi-fidelity Hyperband setting following
BOHB (Falkner et al.). Once we collected enough data points on the smallest
resource level, we fit a probabilistic classifier and sample from it until we have
a sufficient amount of data points for the next higher resource level. We then
refit the classifier on the data of this resource level. These steps are
iterated until we reach the highest resource level. References:



BORE: Bayesian Optimization by Density-Ratio Estimation,

Tiao, Louis C and Klein, Aaron and Seeger, Matthias W and Bonilla, Edwin V. and Archambeau, Cedric and Ramos, Fabio

Proceedings of the 38th International Conference on Machine Learning






and



BOHB: Robust and Efficient Hyperparameter Optimization at Scale

S. Falkner and A. Klein and F. Hutter

Proceedings of the 35th International Conference on Machine Learning






Additional arguments on top of parent class
Bore:


	Parameters:

	resource_attr (str) – Name of resource attribute. Defaults to “epoch”






	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bore package


	
class syne_tune.optimizer.schedulers.searchers.bore.Bore(config_space, metric, points_to_evaluate=None, allow_duplicates=None, restrict_configurations=None, mode=None, gamma=None, calibrate=None, classifier=None, acq_optimizer=None, feval_acq=None, random_prob=None, init_random=None, classifier_kwargs=None, **kwargs)

	Bases: StochasticAndFilterDuplicatesSearcher

Implements “Bayesian optimization by Density Ratio Estimation” as described
in the following paper:



BORE: Bayesian Optimization by Density-Ratio Estimation,

Tiao, Louis C and Klein, Aaron and Seeger, Matthias W and Bonilla, Edwin V. and Archambeau, Cedric and Ramos, Fabio

Proceedings of the 38th International Conference on Machine Learning

https://arxiv.org/abs/2102.09009






Additional arguments on top of parent class
StochasticAndFilterDuplicatesSearcher:


	Parameters:

	
	mode (Optional[str]) – Can be “min” (default) or “max”.


	gamma (Optional[float]) – Defines the percentile, i.e how many percent of configurations
are used to model \(l(x)\). Defaults to 0.25


	calibrate (Optional[bool]) – If set to true, we calibrate the predictions of the
classifier via CV. Defaults to False


	classifier (Optional[str]) – The binary classifier to model the acquisition
function. Choices: {"mlp", "gp", "xgboost", "rf", "logreg"}.
Defaults to “xgboost”


	acq_optimizer (Optional[str]) – The optimization method to maximize the acquisition
function. Choices: {"de", "rs", "rs_with_replacement"}. Defaults
to “rs”


	feval_acq (Optional[int]) – Maximum allowed function evaluations of the acquisition
function. Defaults to 500


	random_prob (Optional[float]) – probability for returning a random configurations
(epsilon greedy). Defaults to 0


	init_random (Optional[int]) – get_config() returns randomly drawn configurations
until at least init_random observations have been recorded in
update(). After that, the BORE algorithm is used. Defaults to 6


	classifier_kwargs (Optional[dict]) – Parameters for classifier. Optional









	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.










	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state (Dict[str, Any]) – See above



	Returns:

	New searcher object














	
class syne_tune.optimizer.schedulers.searchers.bore.MultiFidelityBore(config_space, metric, points_to_evaluate=None, allow_duplicates=None, mode=None, gamma=None, calibrate=None, classifier=None, acq_optimizer=None, feval_acq=None, random_prob=None, init_random=None, classifier_kwargs=None, resource_attr='epoch', **kwargs)

	Bases: Bore

Adapts BORE (Tiao et al.) for the multi-fidelity Hyperband setting following
BOHB (Falkner et al.). Once we collected enough data points on the smallest
resource level, we fit a probabilistic classifier and sample from it until we have
a sufficient amount of data points for the next higher resource level. We then
refit the classifier on the data of this resource level. These steps are
iterated until we reach the highest resource level. References:



BORE: Bayesian Optimization by Density-Ratio Estimation,

Tiao, Louis C and Klein, Aaron and Seeger, Matthias W and Bonilla, Edwin V. and Archambeau, Cedric and Ramos, Fabio

Proceedings of the 38th International Conference on Machine Learning






and



BOHB: Robust and Efficient Hyperparameter Optimization at Scale

S. Falkner and A. Klein and F. Hutter

Proceedings of the 35th International Conference on Machine Learning






Additional arguments on top of parent class
Bore:


	Parameters:

	resource_attr (str) – Name of resource attribute. Defaults to “epoch”






	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.














Submodules



	syne_tune.optimizer.schedulers.searchers.bore.bore module
	Bore
	Bore.configure_scheduler()

	Bore.clone_from_state()









	syne_tune.optimizer.schedulers.searchers.bore.de module
	DifferentialevolutionOptimizer
	DifferentialevolutionOptimizer.evolve()

	DifferentialevolutionOptimizer.run()









	syne_tune.optimizer.schedulers.searchers.bore.gp_classififer module

	syne_tune.optimizer.schedulers.searchers.bore.mlp_classififer module
	MLP
	MLP.fit()

	MLP.predict_proba()

	MLP.predict()









	syne_tune.optimizer.schedulers.searchers.bore.multi_fidelity_bore module
	MultiFidelityBore
	MultiFidelityBore.configure_scheduler()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.botorch.botorch_searcher module


	
class syne_tune.optimizer.schedulers.searchers.botorch.botorch_searcher.BoTorchSearcher(config_space, metric, points_to_evaluate=None, allow_duplicates=False, restrict_configurations=None, mode='min', num_init_random=3, no_fantasizing=False, max_num_observations=200, input_warping=True, **kwargs)

	Bases: StochasticAndFilterDuplicatesSearcher

A searcher that suggest configurations using BOTORCH to build GP surrogate
and optimize acquisition function.

qExpectedImprovement is used for the acquisition function, given that it
supports pending evaluations.

Additional arguments on top of parent class
StochasticAndFilterDuplicatesSearcher:


	Parameters:

	
	mode (str) – “min” (default) or “max”


	num_init_random (int) – get_config() returns randomly drawn
configurations until at least init_random observations have been
recorded in update(). After that, the BOTorch algorithm is used.
Defaults to 3


	no_fantasizing (bool) – If True, fantasizing is not done and pending
evaluations are ignored. This may lead to loss of diversity in
decisions. Defaults to False


	max_num_observations (Optional[int]) – Maximum number of observation to use when
fitting the GP. If the number of observations gets larger than this
number, then data is subsampled. If None, then all data is used to
fit the GP. Defaults to 200


	input_warping (bool) – Whether to apply input warping when fitting the GP.
Defaults to True









	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state (Dict[str, Any]) – See above



	Returns:

	New searcher object










	
num_suggestions()

	




	
register_pending(trial_id, config=None, milestone=None)

	Signals to searcher that evaluation for trial has started, but not yet
finished, which allows model-based searchers to register this evaluation
as pending.


	Parameters:

	
	trial_id (str) – ID of trial to be registered as pending evaluation


	config (Optional[dict]) – If trial_id has not been registered with the
searcher, its configuration must be passed here. Ignored
otherwise.


	milestone (Optional[int]) – For multi-fidelity schedulers, this is the next
rung level the evaluation will attend, so that model registers
(config, milestone) as pending.













	
evaluation_failed(trial_id)

	Called by scheduler if an evaluation job for a trial failed.

The searcher should react appropriately (e.g., remove pending evaluations
for this trial, not suggest the configuration again).


	Parameters:

	trial_id (str) – ID of trial whose evaluated failed










	
cleanup_pending(trial_id)

	Removes all pending evaluations for trial trial_id.

This should be called after an evaluation terminates. For various
reasons (e.g., termination due to convergence), pending candidates
for this evaluation may still be present.


	Parameters:

	trial_id (str) – ID of trial whose pending evaluations should be cleared










	
dataset_size()

	
	Returns:

	Size of dataset a model is fitted to, or 0 if no model is
fitted to data










	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.










	
objectives()

	




	
metric_names()

	
	Return type:

	List[str]










	
metric_mode()

	
	Return type:

	str














	
class syne_tune.optimizer.schedulers.searchers.botorch.botorch_searcher.BotorchSearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: BoTorchSearcher

Downwards compatibility. Please use BoTorchSearcher instead








            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.botorch.botorch_transfer_searcher module


	
syne_tune.optimizer.schedulers.searchers.botorch.botorch_transfer_searcher.parse_value(val)

	




	
syne_tune.optimizer.schedulers.searchers.botorch.botorch_transfer_searcher.configs_from_df(df)

	
	Return type:

	List[dict]










	
class syne_tune.optimizer.schedulers.searchers.botorch.botorch_transfer_searcher.BoTorchTransfer(config_space, metric, transfer_learning_evaluations, new_task_id, random_seed=None, encode_tasks_ordinal=False, **kwargs)

	Bases: BoTorch






	
class syne_tune.optimizer.schedulers.searchers.botorch.botorch_transfer_searcher.BoTorchTransferSearcher(config_space, metric, transfer_learning_evaluations, new_task_id, points_to_evaluate=None, allow_duplicates=False, num_init_random=0, encode_tasks_ordinal=False, **kwargs)

	Bases: BoTorchSearcher


	
dataset_size()

	
	Returns:

	Size of dataset a model is fitted to, or 0 if no model is
fitted to data










	
objectives()

	










            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.botorch package


	
class syne_tune.optimizer.schedulers.searchers.botorch.BoTorchSearcher(config_space, metric, points_to_evaluate=None, allow_duplicates=False, restrict_configurations=None, mode='min', num_init_random=3, no_fantasizing=False, max_num_observations=200, input_warping=True, **kwargs)

	Bases: StochasticAndFilterDuplicatesSearcher

A searcher that suggest configurations using BOTORCH to build GP surrogate
and optimize acquisition function.

qExpectedImprovement is used for the acquisition function, given that it
supports pending evaluations.

Additional arguments on top of parent class
StochasticAndFilterDuplicatesSearcher:


	Parameters:

	
	mode (str) – “min” (default) or “max”


	num_init_random (int) – get_config() returns randomly drawn
configurations until at least init_random observations have been
recorded in update(). After that, the BOTorch algorithm is used.
Defaults to 3


	no_fantasizing (bool) – If True, fantasizing is not done and pending
evaluations are ignored. This may lead to loss of diversity in
decisions. Defaults to False


	max_num_observations (Optional[int]) – Maximum number of observation to use when
fitting the GP. If the number of observations gets larger than this
number, then data is subsampled. If None, then all data is used to
fit the GP. Defaults to 200


	input_warping (bool) – Whether to apply input warping when fitting the GP.
Defaults to True









	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state (Dict[str, Any]) – See above



	Returns:

	New searcher object










	
num_suggestions()

	




	
register_pending(trial_id, config=None, milestone=None)

	Signals to searcher that evaluation for trial has started, but not yet
finished, which allows model-based searchers to register this evaluation
as pending.


	Parameters:

	
	trial_id (str) – ID of trial to be registered as pending evaluation


	config (Optional[dict]) – If trial_id has not been registered with the
searcher, its configuration must be passed here. Ignored
otherwise.


	milestone (Optional[int]) – For multi-fidelity schedulers, this is the next
rung level the evaluation will attend, so that model registers
(config, milestone) as pending.













	
evaluation_failed(trial_id)

	Called by scheduler if an evaluation job for a trial failed.

The searcher should react appropriately (e.g., remove pending evaluations
for this trial, not suggest the configuration again).


	Parameters:

	trial_id (str) – ID of trial whose evaluated failed










	
cleanup_pending(trial_id)

	Removes all pending evaluations for trial trial_id.

This should be called after an evaluation terminates. For various
reasons (e.g., termination due to convergence), pending candidates
for this evaluation may still be present.


	Parameters:

	trial_id (str) – ID of trial whose pending evaluations should be cleared










	
dataset_size()

	
	Returns:

	Size of dataset a model is fitted to, or 0 if no model is
fitted to data










	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.










	
objectives()

	




	
metric_names()

	
	Return type:

	List[str]










	
metric_mode()

	
	Return type:

	str














	
class syne_tune.optimizer.schedulers.searchers.botorch.BotorchSearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: BoTorchSearcher

Downwards compatibility. Please use BoTorchSearcher instead






Submodules



	syne_tune.optimizer.schedulers.searchers.botorch.botorch_searcher module
	BoTorchSearcher
	BoTorchSearcher.clone_from_state()

	BoTorchSearcher.num_suggestions()

	BoTorchSearcher.register_pending()

	BoTorchSearcher.evaluation_failed()

	BoTorchSearcher.cleanup_pending()

	BoTorchSearcher.dataset_size()

	BoTorchSearcher.configure_scheduler()

	BoTorchSearcher.objectives()

	BoTorchSearcher.metric_names()

	BoTorchSearcher.metric_mode()





	BotorchSearcher





	syne_tune.optimizer.schedulers.searchers.botorch.botorch_transfer_searcher module
	parse_value()

	configs_from_df()

	BoTorchTransfer

	BoTorchTransferSearcher
	BoTorchTransferSearcher.dataset_size()

	BoTorchTransferSearcher.objectives()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.bracket_distribution module


	
class syne_tune.optimizer.schedulers.searchers.bracket_distribution.BracketDistribution

	Bases: object

Configures asynchronous multi-fidelity schedulers such as
HyperbandScheduler with
distribution over brackets. This distribution can be fixed up front, or
change adaptively during the course of an experiment. It has an effect
only if the scheduler is run with more than one bracket.


	
configure(scheduler)

	This method is called in by the scheduler just after
self.searcher.configure_scheduler. The searcher must be accessible
via self.searcher.
The __call__() method cannot be used before this method has been
called.










	
class syne_tune.optimizer.schedulers.searchers.bracket_distribution.DefaultHyperbandBracketDistribution

	Bases: BracketDistribution

Implements default bracket distribution, where probability for each bracket
is proportional to the number of slots in each bracket in synchronous
Hyperband.


	
configure(scheduler)

	This method is called in by the scheduler just after
self.searcher.configure_scheduler. The searcher must be accessible
via self.searcher.
The __call__() method cannot be used before this method has been
called.












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.constrained.constrained_gp_fifo_searcher module


	
class syne_tune.optimizer.schedulers.searchers.constrained.constrained_gp_fifo_searcher.ConstrainedGPFIFOSearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: MultiModelGPFIFOSearcher

Gaussian process-based constrained hyperparameter optimization (to be used
with FIFOScheduler).

Additional arguments on top of parent class
MultiModelGPFIFOSearcher:


	Parameters:

	constraint_attr – Name of constraint metric in report passed to
_update().






	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state – See above



	Returns:

	New searcher object
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.constrained package


	
class syne_tune.optimizer.schedulers.searchers.constrained.ConstrainedGPFIFOSearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: MultiModelGPFIFOSearcher

Gaussian process-based constrained hyperparameter optimization (to be used
with FIFOScheduler).

Additional arguments on top of parent class
MultiModelGPFIFOSearcher:


	Parameters:

	constraint_attr – Name of constraint metric in report passed to
_update().






	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state – See above



	Returns:

	New searcher object














Submodules



	syne_tune.optimizer.schedulers.searchers.constrained.constrained_gp_fifo_searcher module
	ConstrainedGPFIFOSearcher
	ConstrainedGPFIFOSearcher.clone_from_state()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.cost_aware.cost_aware_gp_fifo_searcher module


	
class syne_tune.optimizer.schedulers.searchers.cost_aware.cost_aware_gp_fifo_searcher.MultiModelGPFIFOSearcher(config_space, metric, points_to_evaluate=None, clone_from_state=False, **kwargs)

	Bases: GPFIFOSearcher

Superclass for multi-model extensions of
GPFIFOSearcher. We first
call
_create_internal()
passing factory and skip_optimization predicate for the INTERNAL_METRIC_NAME
model, then replace the state transformer by a multi-model one.






	
class syne_tune.optimizer.schedulers.searchers.cost_aware.cost_aware_gp_fifo_searcher.CostAwareGPFIFOSearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: MultiModelGPFIFOSearcher

Gaussian process-based cost-aware hyperparameter optimization (to be used
with FIFOScheduler). The searcher
requires a cost metric, which is given by cost_attr.

Implements two different variants. If resource_attr is given, cost values
are read from each report and cost is modeled as \(c(x, r)\), the cost
model being given by kwargs["cost_model"].

If resource_attr is not given, cost values are read only at the end (just
like the primary metric) and cost is modeled as \(c(x)\), using a
default GP surrogate model.

Note: The presence or absence of resource_attr decides on which variant
is used here. If resource_attr is given, cost_model must be given
as well.

Additional arguments on top of parent class
GPFIFOSearcher:


	Parameters:

	
	cost_attr (str) – Mandatory. Name of cost attribute in data obtained
from reporter (e.g., elapsed training time). Depending on whether
resource_attr is given, cost values are read from each report or
only at the end.


	resource_attr (str, optional) – Name of resource attribute in reports, optional.
If this is given, cost values are read from each report and cost is
modeled as \(c(x, r)\), the cost model being given by cost_model.
If not given, cost values are read only at the end (just like the
primary metric) and cost is modeled as \(c(x)\), using a default
GP surrogate model.


	cost_model (CostModel, optional) – Needed if resource_attr is given, model for
\(c(x, r)\). Ignored if resource_attr is not given, since
\(c(x)\) is represented by a default GP surrogate model.









	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state – See above



	Returns:

	New searcher object
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.cost_aware.cost_aware_gp_multifidelity_searcher module


	
class syne_tune.optimizer.schedulers.searchers.cost_aware.cost_aware_gp_multifidelity_searcher.MultiModelGPMultiFidelitySearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: GPMultiFidelitySearcher

Superclass for multi-model extensions of
GPMultiFidelitySearcher.
We first call
_create_internal()
passing factory and skip_optimization predicate for the INTERNAL_METRIC_NAME
model, then replace the state transformer by a multi-model one.






	
class syne_tune.optimizer.schedulers.searchers.cost_aware.cost_aware_gp_multifidelity_searcher.CostAwareGPMultiFidelitySearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: MultiModelGPMultiFidelitySearcher

Gaussian process-based cost-aware multi-fidelity hyperparameter
optimization (to be used with
HyperbandScheduler). The searcher
requires a cost metric, which is given by cost_attr.

The acquisition function used here is the same as in
GPMultiFidelitySearcher,
but expected improvement (EI) is replaced by EIpu (see
EIpuAcquisitionFunction).

Cost values are read from each report and cost is modeled as \(c(x, r)\),
the cost model being given by kwargs["cost_model"].

Additional arguments on top of parent class
GPMultiFidelitySearcher:


	Parameters:

	
	cost_attr (str) – Mandatory. Name of cost attribute in data obtained
from reporter (e.g., elapsed training time). Depending on whether
resource_attr is given, cost values are read from each report or
only at the end.


	resource_attr (str) – Name of resource attribute in reports.
Cost values are read from each report and cost is modeled as
\(c(x, r)\), the cost model being given by cost_model.


	cost_model (CostModel, optional) – Model for \(c(x, r)\)









	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state – See above



	Returns:

	New searcher object
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.cost_aware package


	
class syne_tune.optimizer.schedulers.searchers.cost_aware.CostAwareGPFIFOSearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: MultiModelGPFIFOSearcher

Gaussian process-based cost-aware hyperparameter optimization (to be used
with FIFOScheduler). The searcher
requires a cost metric, which is given by cost_attr.

Implements two different variants. If resource_attr is given, cost values
are read from each report and cost is modeled as \(c(x, r)\), the cost
model being given by kwargs["cost_model"].

If resource_attr is not given, cost values are read only at the end (just
like the primary metric) and cost is modeled as \(c(x)\), using a
default GP surrogate model.

Note: The presence or absence of resource_attr decides on which variant
is used here. If resource_attr is given, cost_model must be given
as well.

Additional arguments on top of parent class
GPFIFOSearcher:


	Parameters:

	
	cost_attr (str) – Mandatory. Name of cost attribute in data obtained
from reporter (e.g., elapsed training time). Depending on whether
resource_attr is given, cost values are read from each report or
only at the end.


	resource_attr (str, optional) – Name of resource attribute in reports, optional.
If this is given, cost values are read from each report and cost is
modeled as \(c(x, r)\), the cost model being given by cost_model.
If not given, cost values are read only at the end (just like the
primary metric) and cost is modeled as \(c(x)\), using a default
GP surrogate model.


	cost_model (CostModel, optional) – Needed if resource_attr is given, model for
\(c(x, r)\). Ignored if resource_attr is not given, since
\(c(x)\) is represented by a default GP surrogate model.









	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state – See above



	Returns:

	New searcher object














	
class syne_tune.optimizer.schedulers.searchers.cost_aware.CostAwareGPMultiFidelitySearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: MultiModelGPMultiFidelitySearcher

Gaussian process-based cost-aware multi-fidelity hyperparameter
optimization (to be used with
HyperbandScheduler). The searcher
requires a cost metric, which is given by cost_attr.

The acquisition function used here is the same as in
GPMultiFidelitySearcher,
but expected improvement (EI) is replaced by EIpu (see
EIpuAcquisitionFunction).

Cost values are read from each report and cost is modeled as \(c(x, r)\),
the cost model being given by kwargs["cost_model"].

Additional arguments on top of parent class
GPMultiFidelitySearcher:


	Parameters:

	
	cost_attr (str) – Mandatory. Name of cost attribute in data obtained
from reporter (e.g., elapsed training time). Depending on whether
resource_attr is given, cost values are read from each report or
only at the end.


	resource_attr (str) – Name of resource attribute in reports.
Cost values are read from each report and cost is modeled as
\(c(x, r)\), the cost model being given by cost_model.


	cost_model (CostModel, optional) – Model for \(c(x, r)\)









	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state – See above



	Returns:

	New searcher object














Submodules



	syne_tune.optimizer.schedulers.searchers.cost_aware.cost_aware_gp_fifo_searcher module
	MultiModelGPFIFOSearcher

	CostAwareGPFIFOSearcher
	CostAwareGPFIFOSearcher.clone_from_state()









	syne_tune.optimizer.schedulers.searchers.cost_aware.cost_aware_gp_multifidelity_searcher module
	MultiModelGPMultiFidelitySearcher

	CostAwareGPMultiFidelitySearcher
	CostAwareGPMultiFidelitySearcher.clone_from_state()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.dyhpo.dyhpo_searcher module


	
class syne_tune.optimizer.schedulers.searchers.dyhpo.dyhpo_searcher.MyGPMultiFidelitySearcher(config_space, **kwargs)

	Bases: GPMultiFidelitySearcher

This wrapper is for convenience, to avoid having to depend on internal
concepts of
GPMultiFidelitySearcher.


	
score_paused_trials_and_new_configs(paused_trials, min_resource, new_trial_id, skip_optimization)

	See DynamicHPOSearcher.score_paused_trials_and_new_configs().
If skip_optimization == True, this is passed to the posterior state
computation, and refitting of the surrogate model is skipped. Otherwise,
nothing is passed, so the built-in skip_optimization logic is used.


	Return type:

	Dict[str, Any]














	
class syne_tune.optimizer.schedulers.searchers.dyhpo.dyhpo_searcher.DynamicHPOSearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: BaseSearcher

Supports model-based decisions in the DyHPO algorithm proposed by Wistuba
etal (see
DyHPORungSystem).

It is not recommended to create DynamicHPOSearcher searcher
objects directly, but rather to create
HyperbandScheduler objects with
searcher="dyhpo" and type="dyhpo", and passing arguments here in
search_options. This will use the appropriate functions from
:mod:syne_tune.optimizer.schedulers.searchers.gp_searcher_factory to
create components in a consistent way.

This searcher is special, in that it contains a searcher of type
GPMultiFidelitySearcher.
Also, its model-based scoring is not triggered by get_config(), but
rather when the scheduler tries to find a trial which can be promoted. At
this point, score_paused_trials_and_new_configs() is called, which
scores all paused trials along with new configurations. Depending on who
is the best scorer, a paused trial is resumed, or a trial with a new
configuration is started. Since all the work is already done in
score_paused_trials_and_new_configs(), the implementation of
get_config() becomes trivial. See also
DyHPORungSystem.
Extra points:


	The number of new configurations scored in
score_paused_trials_and_new_configs() is the maximum of
num_init_candidates and the number of paused trials scored as well


	The parameters of the surrogate model are not refit in every call of
score_paused_trials_and_new_configs(), but only when in the last
recent call, a new configuration was chosen as top scorer. The aim is
to do refitting in a similar frequency to MOBSTER, where decisions on
whether to resume a trial are not done in a model-based way.




This searcher must be used with
HyperbandScheduler and


type="dyhpo". It has the same constructor parameters as




GPMultiFidelitySearcher.
Of these, the following are not used, but need to be given valid values:
resource_acq, initial_scoring, skip_local_optimization.


	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.










	
get_config(**kwargs)

	Suggest a new configuration.

Note: Query _next_initial_config() for initial configs to return
first.


	Parameters:

	kwargs – Extra information may be passed from scheduler to
searcher



	Return type:

	Optional[dict]



	Returns:

	New configuration. The searcher may return None if a new
configuration cannot be suggested. In this case, the tuning will
stop. This happens if searchers never suggest the same config more
than once, and all configs in the (finite) search space are
exhausted.










	
on_trial_result(trial_id, config, result, update)

	Inform searcher about result

The scheduler passes every result. If update == True, the searcher
should update its surrogate model (if any), otherwise result is an
intermediate result not modelled.

The default implementation calls _update() if update == True.
It can be overwritten by searchers which also react to intermediate
results.


	Parameters:

	
	trial_id (str) – See on_trial_result()


	config (Dict[str, Any]) – See on_trial_result()


	result (Dict[str, Any]) – See on_trial_result()


	update (bool) – Should surrogate model be updated?













	
register_pending(trial_id, config=None, milestone=None)

	Signals to searcher that evaluation for trial has started, but not yet
finished, which allows model-based searchers to register this evaluation
as pending.


	Parameters:

	
	trial_id (str) – ID of trial to be registered as pending evaluation


	config (Optional[dict]) – If trial_id has not been registered with the
searcher, its configuration must be passed here. Ignored
otherwise.


	milestone (Optional[int]) – For multi-fidelity schedulers, this is the next
rung level the evaluation will attend, so that model registers
(config, milestone) as pending.













	
remove_case(trial_id, **kwargs)

	Remove data case previously appended by _update()

For searchers which maintain the dataset of all cases (reports) passed
to update, this method allows to remove one case from the dataset.


	Parameters:

	
	trial_id (str) – ID of trial whose data is to be removed


	kwargs – Extra arguments, optional













	
evaluation_failed(trial_id)

	Called by scheduler if an evaluation job for a trial failed.

The searcher should react appropriately (e.g., remove pending evaluations
for this trial, not suggest the configuration again).


	Parameters:

	trial_id (str) – ID of trial whose evaluated failed










	
cleanup_pending(trial_id)

	Removes all pending evaluations for trial trial_id.

This should be called after an evaluation terminates. For various
reasons (e.g., termination due to convergence), pending candidates
for this evaluation may still be present.


	Parameters:

	trial_id (str) – ID of trial whose pending evaluations should be cleared










	
dataset_size()

	
	Returns:

	Size of dataset a model is fitted to, or 0 if no model is
fitted to data










	
model_parameters()

	
	Returns:

	Dictionary with current model (hyper)parameter values if
this is supported; otherwise empty










	
score_paused_trials_and_new_configs(paused_trials, min_resource, new_trial_id)

	This method computes acquisition scores for a number of extended
configs \((x, r)\). The acquisition score \(EI(x | r)\) is
expected improvement (EI) at resource level \(r\). Here, the
incumbent used in EI is the best value attained at level \(r\),
or the best value overall if there is no data yet at that level.
There are two types of configs being scored:


	Paused trials: Passed by paused_trials as tuples
(trial_id, resource), where resource is the level to be
attained by the trial if it was resumed


	New configurations drawn at random. For these, the score is EI
at \(r\) equal to min_resource




We return a dictionary. If a paused trial wins, its trial_id is
returned with key “trial_id”. If a new configuration wins, this
configuration is returned with key “config”.

Note: As long as the internal searcher still returns configs from
points_to_evaluate or drawn at random, this method always returns
this config with key “config”. Scoring and considering paused trials
is only done afterwards.


	Parameters:

	
	paused_trials (List[Tuple[str, int, int]]) – See above. Can be empty


	min_resource (int) – Smallest resource level


	new_trial_id (str) – ID of new trial to be started in case a new
configuration wins






	Return type:

	Dict[str, Any]



	Returns:

	Dictionary, see above










	
get_state()

	Together with clone_from_state(), this is needed in order to
store and re-create the mutable state of the searcher.
The state returned here must be pickle-able.


	Return type:

	Dict[str, Any]



	Returns:

	Pickle-able mutable state of searcher










	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state (Dict[str, Any]) – See above



	Returns:

	New searcher object










	
property debug_log: DebugLogPrinter | None

	Some subclasses support writing a debug log, using
DebugLogPrinter.
See RandomSearcher
for an example.


	Returns:

	debug_log object`` or None (not supported)
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.dyhpo.hyperband_dyhpo module


	
class syne_tune.optimizer.schedulers.searchers.dyhpo.hyperband_dyhpo.ScheduleDecision

	Bases: object


	
PROMOTE_SH = 0

	




	
PROMOTE_DYHPO = 1

	




	
START_DYHPO = 2

	








	
class syne_tune.optimizer.schedulers.searchers.dyhpo.hyperband_dyhpo.DyHPORungSystem(rung_levels, promote_quantiles, metric, mode, resource_attr, max_t, searcher, probability_sh, random_state)

	Bases: PromotionRungSystem

Implements the logic which decides which paused trial to promote to the
next resource level, or alternatively which configuration to start as a
new trial, proposed in:



Wistuba, M. and Kadra, A. and Grabocka, J.

Dynamic and Efficient Gray-Box Hyperparameter Optimization for Deep Learning

https://arxiv.org/abs/2202.09774






We do promotion-based scheduling, as in
PromotionRungSystem.
In fact, we run the successive halving rule in on_task_schedule() with
probability probability_sh, and the DyHPO logic otherwise, or if the SH
rule does not promote a trial. This mechanism (not contained in the paper)
ensures that trials are promoted eventually, even if DyHPO only starts new
trials.

Since HyperbandScheduler was designed
for promotion decisions to be separate from decisions about new configs, the
overall workflow is a bit tricky:


	In FIFOScheduler._suggest(), we first call
promote_trial_id, extra_kwargs = self._promote_trial(). If
promote_trial_id != None, this trial is promoted. Otherwise, we call
config = self.searcher.get_config(**extra_kwargs, trial_id=trial_id)
and start a new trial with this config. In most cases, _promote_trial()
makes a promotion decision without using the searcher.


	Here, we use the fact that information can be passed from
_promote_trial() to self.searcher.get_config via extra_kwargs.
Namely, :meth:``HyperbandScheduler._promote_trial` calls
on_task_schedule() here, which calls
score_paused_trials_and_new_configs(),
where everything happens.


	First, all paused trials are scored w.r.t. the value of running them for one
more unit of resource. Also, a number of random configs are scored w.r.t.
the value of running them to the minimum resource.


	If the winning config is from a paused trial, this is resumed. If the
winning config is a new one, on_task_schedule() returns this
config using a special key KEY_NEW_CONFIGURATION. This dict
becomes part of extra_kwargs and is passed to self.searcher.get_config


	get_config()
is trivial. It obtains an argument of name KEY_NEW_CONFIGURATION
returns its value, which is the winning config to be started as new trial




We can ignore rung_levels and promote_quantiles, they are not used.
For each trial, we only need to maintain the resource level at which it is
paused.


	
on_task_schedule(new_trial_id)

	The main decision making happens here. We collect (trial_id, resource)
for all paused trials and call searcher. The searcher scores all
these trials along with a certain number of randomly drawn new
configurations.

If one of the paused trials has the best score, we return its trial_id
along with extra information, so it gets promoted.
If one of the new configurations has the best score, we return this
configuration. In this case, a new trial is started with this configuration.

Note: For this scheduler type, kwargs must contain the trial ID of
the new trial to be started, in case none can be promoted.


	Return type:

	Dict[str, Any]










	
property schedule_records: List[Tuple[str, int, int]]

	




	
static summary_schedule_keys()

	
	Return type:

	List[str]










	
summary_schedule_records()

	
	Return type:

	Dict[str, Any]










	
support_early_checkpoint_removal()

	Early checkpoint removal currently not supported for DyHPO


	Return type:

	bool
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.dyhpo package


	
class syne_tune.optimizer.schedulers.searchers.dyhpo.DynamicHPOSearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: BaseSearcher

Supports model-based decisions in the DyHPO algorithm proposed by Wistuba
etal (see
DyHPORungSystem).

It is not recommended to create DynamicHPOSearcher searcher
objects directly, but rather to create
HyperbandScheduler objects with
searcher="dyhpo" and type="dyhpo", and passing arguments here in
search_options. This will use the appropriate functions from
:mod:syne_tune.optimizer.schedulers.searchers.gp_searcher_factory to
create components in a consistent way.

This searcher is special, in that it contains a searcher of type
GPMultiFidelitySearcher.
Also, its model-based scoring is not triggered by get_config(), but
rather when the scheduler tries to find a trial which can be promoted. At
this point, score_paused_trials_and_new_configs() is called, which
scores all paused trials along with new configurations. Depending on who
is the best scorer, a paused trial is resumed, or a trial with a new
configuration is started. Since all the work is already done in
score_paused_trials_and_new_configs(), the implementation of
get_config() becomes trivial. See also
DyHPORungSystem.
Extra points:


	The number of new configurations scored in
score_paused_trials_and_new_configs() is the maximum of
num_init_candidates and the number of paused trials scored as well


	The parameters of the surrogate model are not refit in every call of
score_paused_trials_and_new_configs(), but only when in the last
recent call, a new configuration was chosen as top scorer. The aim is
to do refitting in a similar frequency to MOBSTER, where decisions on
whether to resume a trial are not done in a model-based way.




This searcher must be used with
HyperbandScheduler and


type="dyhpo". It has the same constructor parameters as




GPMultiFidelitySearcher.
Of these, the following are not used, but need to be given valid values:
resource_acq, initial_scoring, skip_local_optimization.


	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.










	
get_config(**kwargs)

	Suggest a new configuration.

Note: Query _next_initial_config() for initial configs to return
first.


	Parameters:

	kwargs – Extra information may be passed from scheduler to
searcher



	Return type:

	Optional[dict]



	Returns:

	New configuration. The searcher may return None if a new
configuration cannot be suggested. In this case, the tuning will
stop. This happens if searchers never suggest the same config more
than once, and all configs in the (finite) search space are
exhausted.










	
on_trial_result(trial_id, config, result, update)

	Inform searcher about result

The scheduler passes every result. If update == True, the searcher
should update its surrogate model (if any), otherwise result is an
intermediate result not modelled.

The default implementation calls _update() if update == True.
It can be overwritten by searchers which also react to intermediate
results.


	Parameters:

	
	trial_id (str) – See on_trial_result()


	config (Dict[str, Any]) – See on_trial_result()


	result (Dict[str, Any]) – See on_trial_result()


	update (bool) – Should surrogate model be updated?













	
register_pending(trial_id, config=None, milestone=None)

	Signals to searcher that evaluation for trial has started, but not yet
finished, which allows model-based searchers to register this evaluation
as pending.


	Parameters:

	
	trial_id (str) – ID of trial to be registered as pending evaluation


	config (Optional[dict]) – If trial_id has not been registered with the
searcher, its configuration must be passed here. Ignored
otherwise.


	milestone (Optional[int]) – For multi-fidelity schedulers, this is the next
rung level the evaluation will attend, so that model registers
(config, milestone) as pending.













	
remove_case(trial_id, **kwargs)

	Remove data case previously appended by _update()

For searchers which maintain the dataset of all cases (reports) passed
to update, this method allows to remove one case from the dataset.


	Parameters:

	
	trial_id (str) – ID of trial whose data is to be removed


	kwargs – Extra arguments, optional













	
evaluation_failed(trial_id)

	Called by scheduler if an evaluation job for a trial failed.

The searcher should react appropriately (e.g., remove pending evaluations
for this trial, not suggest the configuration again).


	Parameters:

	trial_id (str) – ID of trial whose evaluated failed










	
cleanup_pending(trial_id)

	Removes all pending evaluations for trial trial_id.

This should be called after an evaluation terminates. For various
reasons (e.g., termination due to convergence), pending candidates
for this evaluation may still be present.


	Parameters:

	trial_id (str) – ID of trial whose pending evaluations should be cleared










	
dataset_size()

	
	Returns:

	Size of dataset a model is fitted to, or 0 if no model is
fitted to data










	
model_parameters()

	
	Returns:

	Dictionary with current model (hyper)parameter values if
this is supported; otherwise empty










	
score_paused_trials_and_new_configs(paused_trials, min_resource, new_trial_id)

	This method computes acquisition scores for a number of extended
configs \((x, r)\). The acquisition score \(EI(x | r)\) is
expected improvement (EI) at resource level \(r\). Here, the
incumbent used in EI is the best value attained at level \(r\),
or the best value overall if there is no data yet at that level.
There are two types of configs being scored:


	Paused trials: Passed by paused_trials as tuples
(trial_id, resource), where resource is the level to be
attained by the trial if it was resumed


	New configurations drawn at random. For these, the score is EI
at \(r\) equal to min_resource




We return a dictionary. If a paused trial wins, its trial_id is
returned with key “trial_id”. If a new configuration wins, this
configuration is returned with key “config”.

Note: As long as the internal searcher still returns configs from
points_to_evaluate or drawn at random, this method always returns
this config with key “config”. Scoring and considering paused trials
is only done afterwards.


	Parameters:

	
	paused_trials (List[Tuple[str, int, int]]) – See above. Can be empty


	min_resource (int) – Smallest resource level


	new_trial_id (str) – ID of new trial to be started in case a new
configuration wins






	Return type:

	Dict[str, Any]



	Returns:

	Dictionary, see above










	
get_state()

	Together with clone_from_state(), this is needed in order to
store and re-create the mutable state of the searcher.
The state returned here must be pickle-able.


	Return type:

	Dict[str, Any]



	Returns:

	Pickle-able mutable state of searcher










	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state (Dict[str, Any]) – See above



	Returns:

	New searcher object










	
property debug_log: DebugLogPrinter | None

	Some subclasses support writing a debug log, using
DebugLogPrinter.
See RandomSearcher
for an example.


	Returns:

	debug_log object`` or None (not supported)














Submodules



	syne_tune.optimizer.schedulers.searchers.dyhpo.dyhpo_searcher module
	MyGPMultiFidelitySearcher
	MyGPMultiFidelitySearcher.score_paused_trials_and_new_configs()





	DynamicHPOSearcher
	DynamicHPOSearcher.configure_scheduler()

	DynamicHPOSearcher.get_config()

	DynamicHPOSearcher.on_trial_result()

	DynamicHPOSearcher.register_pending()

	DynamicHPOSearcher.remove_case()

	DynamicHPOSearcher.evaluation_failed()

	DynamicHPOSearcher.cleanup_pending()

	DynamicHPOSearcher.dataset_size()

	DynamicHPOSearcher.model_parameters()

	DynamicHPOSearcher.score_paused_trials_and_new_configs()

	DynamicHPOSearcher.get_state()

	DynamicHPOSearcher.clone_from_state()

	DynamicHPOSearcher.debug_log









	syne_tune.optimizer.schedulers.searchers.dyhpo.hyperband_dyhpo module
	ScheduleDecision
	ScheduleDecision.PROMOTE_SH

	ScheduleDecision.PROMOTE_DYHPO

	ScheduleDecision.START_DYHPO





	DyHPORungSystem
	DyHPORungSystem.on_task_schedule()

	DyHPORungSystem.schedule_records

	DyHPORungSystem.summary_schedule_keys()

	DyHPORungSystem.summary_schedule_records()

	DyHPORungSystem.support_early_checkpoint_removal()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.gp_fifo_searcher module


	
class syne_tune.optimizer.schedulers.searchers.gp_fifo_searcher.GPFIFOSearcher(config_space, metric, points_to_evaluate=None, clone_from_state=False, **kwargs)

	Bases: BayesianOptimizationSearcher

Gaussian process Bayesian optimization for FIFO scheduler

This searcher must be used with
FIFOScheduler. It provides
Bayesian optimization, based on a Gaussian process surrogate model.

It is not recommended creating GPFIFOSearcher searcher objects
directly, but rather to create
FIFOScheduler objects with
searcher="bayesopt", and passing arguments here in search_options.
This will use the appropriate functions from
:mod:syne_tune.optimizer.schedulers.searchers.gp_searcher_factory to
create components in a consistent way.

Most of the implementation is generic in
BayesianOptimizationSearcher.

Note: If metric values are to be maximized (mode-"max" in scheduler),
the searcher uses map_reward to map metric values to internal
criterion values, and minimizes the latter. The default choice is
to multiply values by -1.

Pending configurations (for which evaluation tasks are currently running)
are dealt with by fantasizing (i.e., target values are drawn from the
current posterior, and acquisition functions are averaged over this
sample, see num_fantasy_samples).

The GP surrogate model uses a Matern 5/2 covariance function with automatic
relevance determination (ARD) of input attributes, and a constant mean
function. The acquisition function is expected improvement (EI). All
hyperparameters of the surrogate model are estimated by empirical Bayes
(maximizing the marginal likelihood). In general, this hyperparameter
fitting is the most expensive part of a get_config() call.

Note that the full logic of construction based on arguments is given in
:mod:syne_tune.optimizer.schedulers.searchers.gp_searcher_factory. In
particular, see
gp_fifo_searcher_defaults()
for default values.

Additional arguments on top of parent class
StochasticSearcher:


	Parameters:

	
	clone_from_state (bool) – Internal argument, do not use


	resource_attr (str, optional) – Name of resource attribute in reports. This is
optional here, but required for multi-fidelity searchers.
If resource_attr and cost_attr are given, cost values are read from
each report and stored in the state. This allows cost models to be fit
on more data.


	cost_attr (str, optional) – Name of cost attribute in data obtained from reporter
(e.g., elapsed training time). Needed only by cost-aware searchers.
Depending on whether resource_attr is given, cost values are read
from each report or only at the end.


	num_init_random (int, optional) – Number of initial get_config() calls for which
randomly sampled configs are returned. Afterwards, the model-based
searcher is used. Defaults to
DEFAULT_NUM_INITIAL_RANDOM_EVALUATIONS


	num_init_candidates (int, optional) – Number of initial candidates sampled at
random in order to seed the model-based search in get_config.
Defaults to DEFAULT_NUM_INITIAL_CANDIDATES


	num_fantasy_samples (int, optional) – Number of samples drawn for fantasizing
(latent target values for pending evaluations), defaults to 20


	no_fantasizing (bool, optional) – If True, fantasizing is not done and pending
evaluations are ignored. This may lead to loss of diversity in
decisions. Defaults to False


	input_warping (bool, optional) – If True, we use a warping transform, so the kernel
function becomes \(k(w(x), w(x'))\), where \(w(x)\) is a warping
transform parameterized by two non-negative numbers per component, which
are learned as hyperparameters. See also
Warping.
Coordinates which belong to categorical hyperparameters, are not warped.
Defaults to False.


	boxcox_transform (bool, optional) – If True, target values are transformed before
being fitted with a Gaussian marginal likelihood. This is using the Box-Cox
transform with a parameter \(\lambda\), which is learned alongside
other parameters of the surrogate model. The transform is \(\log y\)
for \(\lambda = 0\), and \(y - 1\) for \(\lambda = 1\). This
option requires the targets to be positive. Defaults to False.


	gp_base_kernel (str, optional) – Selects the covariance (or kernel) function to be
used. Supported choices are
SUPPORTED_BASE_MODELS.
Defaults to “matern52-ard” (Matern 5/2 with automatic relevance
determination).


	acq_function (str, optional) – Selects the acquisition function to be used. Supported
choices are
SUPPORTED_ACQUISITION_FUNCTIONS.
Defaults to “ei” (expected improvement acquisition function).


	acq_function_kwargs (dict, optional) – Some acquisition functions have additional
parameters, they can be passed here. If none are given, default values
are used.


	initial_scoring (str, optional) – Scoring function to rank initial candidates
(local optimization of EI is started from top scorer):


	”thompson_indep”: Independent Thompson sampling; randomized score,
which can increase exploration


	”acq_func”: score is the same (EI) acquisition function which is
used for local optimization afterwards




Defaults to
DEFAULT_INITIAL_SCORING




	skip_local_optimization (bool, optional) – If True, the local gradient-based
optimization of the acquisition function is skipped, and the
top-ranked initial candidate (after initial scoring) is returned
instead. In this case, initial_scoring="acq_func" makes most
sense, otherwise the acquisition function will not be used.
Defaults to False


	opt_nstarts (int, optional) – Parameter for surrogate model fitting. Number of
random restarts. Defaults to 2


	opt_maxiter (int, optional) – Parameter for surrogate model fitting. Maximum
number of iterations per restart. Defaults to 50


	opt_warmstart (bool, optional) – Parameter for surrogate model fitting. If True,
each fitting is started from the previous optimum. Not recommended
in general. Defaults to False


	opt_verbose (bool, optional) – Parameter for surrogate model fitting. If True,
lots of output. Defaults to False


	max_size_data_for_model (int, optional) – If this is set, we limit the number of
observations the surrogate model is fitted on this value. If there are
more observations, they are down sampled, see
SubsampleSingleFidelityStateConverter
for details. This down sampling is repeated every time the model is
fit. The opt_skip_* predicates are evaluated before the state is
downsampled. Pass None not to apply such a threshold. The default is
DEFAULT_MAX_SIZE_DATA_FOR_MODEL.


	max_size_top_fraction (float, optional) – Only used if max_size_data_for_model is
set. This fraction of the down sampled set is filled with the top entries
in the full set, the remaining ones are sampled at random from the full
set, see
SubsampleSingleFidelityStateConverter
for details. Defaults to 0.25.


	opt_skip_init_length (int, optional) – Parameter for surrogate model fitting,
skip predicate. Fitting is never skipped as long as number of
observations below this threshold. Defaults to 150


	opt_skip_period (int, optional) – Parameter for surrogate model fitting, skip
predicate. If >1, and number of observations above
opt_skip_init_length, fitting is done only K-th call, and skipped
otherwise. Defaults to 1 (no skipping)


	allow_duplicates (bool, optional) – If True, get_config() may return the same
configuration more than once. Defaults to False


	restrict_configurations (List[dict], optional) – If given, the searcher only suggests
configurations from this list. This needs
skip_local_optimization == True. If allow_duplicates == False,
entries are popped off this list once suggested.


	map_reward (str or MapReward, optional) – In the scheduler, the metric may be minimized or
maximized, but internally, Bayesian optimization is minimizing
the criterion. map_reward converts from metric to internal
criterion:


	”minus_x”: criterion = -metric


	”<a>_minus_x”: criterion = <a> - metric. For example “1_minus_x”
maps accuracy to zero-one error




From a technical standpoint, it does not matter what is chosen here,
because criterion is only used internally. Also note that criterion
data is always normalized to mean 0, variance 1 before fitted with a
Gaussian process. Defaults to “1_minus_x”




	transfer_learning_task_attr (str, optional) – Used to support transfer HPO, where
the state contains observed data from several tasks, one of which
is the active one. To this end, config_space must contain a
categorical parameter of name transfer_learning_task_attr, whose
range are all task IDs. Also, transfer_learning_active_task must
denote the active task, and transfer_learning_active_config_space
is used as active_config_space argument in
HyperparameterRanges.
This allows us to use a narrower search space for the active task than
for the union of all tasks (config_space must be that), which is
needed if some configurations of non-active tasks lie outside of the
ranges in active_config_space. One of the implications is that
filter_observed_data() is selecting configs of the active task,
so that incumbents or exclusion lists are restricted to data from the
active task.


	transfer_learning_active_task (str, optional) – See transfer_learning_task_attr.


	transfer_learning_active_config_space (Dict[str, Any], optional) – See transfer_learning_task_attr. If not given, config_space is the
search space for the active task as well. This active config space need
not contain the transfer_learning_task_attr parameter. In fact, this
parameter is set to a categorical with transfer_learning_active_task
as single value, so that new configs are chosen for the active task
only.


	transfer_learning_model (str, optional) – See transfer_learning_task_attr.
Specifies the surrogate model to be used for transfer learning:


	”matern52_product”: Kernel is product of Matern 5/2 (not ARD) on
transfer_learning_task_attr and Matern 5/2 (ARD) on the rest.
Assumes that data from same task are more closely related than
data from different tasks


	”matern52_same”: Kernel is Matern 5/2 (ARD) on the rest of the
variables, transfer_learning_task_attr is ignored. Assumes
that data from all tasks can be merged together




Defaults to “matern52_product”











	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state – See above



	Returns:

	New searcher object
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.gp_multifidelity_searcher module


	
class syne_tune.optimizer.schedulers.searchers.gp_multifidelity_searcher.GPMultiFidelitySearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: GPFIFOSearcher

Gaussian process Bayesian optimization for asynchronous Hyperband scheduler.

This searcher must be used with a scheduler of type
MultiFidelitySchedulerMixin. It
provides a novel combination of Bayesian optimization, based on a Gaussian
process surrogate model, with Hyperband scheduling. In particular, observations
across resource levels are modelled jointly.

It is not recommended to create GPMultiFidelitySearcher searcher
objects directly, but rather to create
HyperbandScheduler objects with
searcher="bayesopt", and passing arguments here in search_options.
This will use the appropriate functions from
:mod:syne_tune.optimizer.schedulers.searchers.gp_searcher_factory to
create components in a consistent way.

Most of GPFIFOSearcher
comments apply here as well. In multi-fidelity HPO, we optimize a function
\(f(\mathbf{x}, r)\), \(\mathbf{x}\) the configuration, \(r\)
the resource (or time) attribute. The latter must be a positive integer.
In most applications, resource_attr == "epoch", and the resource is the
number of epochs already trained.

If model == "gp_multitask" (default), we model the function
\(f(\mathbf{x}, r)\) jointly over all resource levels \(r\) at
which it is observed (but see searcher_data in
HyperbandScheduler). The kernel
and mean function of our surrogate model are over \((\mathbf{x}, r)\).
The surrogate model is selected by gp_resource_kernel. More details about
the supported kernels is in:



Tiao, Klein, Lienart, Archambeau, Seeger (2020)

Model-based Asynchronous Hyperparameter and Neural Architecture Search

https://openreview.net/forum?id=a2rFihIU7i






The acquisition function (EI) which is optimized in get_config(), is
obtained by fixing the resource level \(r\) to a value which is
determined depending on the current state. If resource_acq == ‘bohb’,
\(r\) is the largest value <= max_t, where we have seen
\(\ge \mathrm{dimension}(\mathbf{x})\) metric values. If
resource_acq == "first", \(r\) is the first milestone which config
\(\mathbf{x}\) would reach when started.

Additional arguments on top of parent class
GPFIFOSearcher.


	Parameters:

	
	model (str, optional) – Selects surrogate model (learning curve model) to be used.
Choices are:


	”gp_multitask” (default): GP multi-task surrogate model


	”gp_independent”: Independent GPs for each rung level, sharing
an ARD kernel


	”gp_issm”: Gaussian-additive model of ISSM type


	”gp_expdecay”: Gaussian-additive model of exponential decay type
(as in Freeze Thaw Bayesian Optimization)







	gp_resource_kernel (str, optional) – Only relevant for model == "gp_multitask".
Surrogate model over criterion function \(f(\mathbf{x}, r)\),
\(\mathbf{x}\) the config, \(r\) the resource. Note that
\(\mathbf{x}\) is encoded to be a vector with entries in [0, 1],
and \(r\) is linearly mapped to [0, 1], while the criterion data
is normalized to mean 0, variance 1. The reference above provides details
on the models supported here. For the exponential decay kernel, the
base kernel over \(\mathbf{x}\) is Matern 5/2 ARD. See
SUPPORTED_RESOURCE_MODELS
for supported choices. Defaults to “exp-decay-sum”


	resource_acq (str, optional) – Only relevant for ``model in
{"gp_multitask", "gp_independent"}. Determines how the EI
acquisition function is used. Values: “bohb”, “first”. Defaults to “bohb”


	max_size_data_for_model (int, optional) – If this is set, we limit the number of
observations the surrogate model is fitted on this value. If there are
more observations, they are down sampled, see
SubsampleMultiFidelityStateConverter
for details. This down sampling is repeated every time the model is
fit, which ensures that most recent data is taken into account.
The opt_skip_* predicates are evaluated before the state is downsampled.

Pass None not to apply such a threshold. The default is
DEFAULT_MAX_SIZE_DATA_FOR_MODEL.




	opt_skip_num_max_resource (bool, optional) – Parameter for surrogate model fitting,
skip predicate. If True, and number of observations above
opt_skip_init_length, fitting is done only when there is a new
datapoint at r = max_t, and skipped otherwise. Defaults to False


	issm_gamma_one (bool, optional) – Only relevant for model == "gp_issm".
If True, the gamma parameter of the ISSM is fixed to 1, otherwise it
is optimized over. Defaults to False


	expdecay_normalize_inputs (bool, optional) – Only relevant for model ==
"gp_expdecay". If True, resource values r are normalized to [0, 1]
as input to the exponential decay surrogate model. Defaults to False









	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.










	
register_pending(trial_id, config=None, milestone=None)

	Registers trial as pending. This means the corresponding evaluation
task is running. Once it finishes, update is called for this trial.






	
evaluation_failed(trial_id)

	Called by scheduler if an evaluation job for a trial failed.

The searcher should react appropriately (e.g., remove pending evaluations
for this trial, not suggest the configuration again).


	Parameters:

	trial_id (str) – ID of trial whose evaluated failed










	
cleanup_pending(trial_id)

	Removes all pending evaluations for trial trial_id.

This should be called after an evaluation terminates. For various
reasons (e.g., termination due to convergence), pending candidates
for this evaluation may still be present.


	Parameters:

	trial_id (str) – ID of trial whose pending evaluations should be cleared










	
remove_case(trial_id, **kwargs)

	Remove data case previously appended by _update()

For searchers which maintain the dataset of all cases (reports) passed
to update, this method allows to remove one case from the dataset.


	Parameters:

	
	trial_id (str) – ID of trial whose data is to be removed


	kwargs – Extra arguments, optional













	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state – See above



	Returns:

	New searcher object
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.gp_searcher_factory module


	
syne_tune.optimizer.schedulers.searchers.gp_searcher_factory.gp_fifo_searcher_factory(**kwargs)

	Returns kwargs for
_create_internal(),
based on kwargs equal to search_options passed to and extended by
scheduler (see FIFOScheduler).

Extensions of kwargs by the scheduler:


	scheduler: Name of scheduler ("fifo", "hyperband_*")


	config_space: Configuration space




Only Hyperband schedulers:


	resource_attr: Name of resource (or time) attribute


	max_epochs: Maximum resource value





	Parameters:

	kwargs – search_options coming from scheduler



	Return type:

	Dict[str, Any]



	Returns:

	kwargs for _create_internal()










	
syne_tune.optimizer.schedulers.searchers.gp_searcher_factory.gp_multifidelity_searcher_factory(**kwargs)

	Returns kwargs for
_create_internal(),
based on kwargs equal to search_options passed to and extended by
scheduler (see HyperbandScheduler).


	Parameters:

	kwargs – search_options coming from scheduler



	Return type:

	Dict[str, Any]



	Returns:

	kwargs for _create_internal()










	
syne_tune.optimizer.schedulers.searchers.gp_searcher_factory.constrained_gp_fifo_searcher_factory(**kwargs)

	Returns kwargs for
_create_internal(),
based on kwargs equal to search_options passed to and extended by
scheduler (see FIFOScheduler).


	Parameters:

	kwargs – search_options coming from scheduler



	Return type:

	Dict[str, Any]



	Returns:

	kwargs for _create_internal()










	
syne_tune.optimizer.schedulers.searchers.gp_searcher_factory.cost_aware_coarse_gp_fifo_searcher_factory(**kwargs)

	Returns kwargs for
_create_internal(),
based on kwargs equal to search_options passed to and extended by
scheduler (see FIFOScheduler).

This is for the coarse-grained variant, where costs \(c(x)\) are obtained
together with metric values and are given a GP surrogate model.


	Parameters:

	kwargs – search_options coming from scheduler



	Return type:

	Dict[str, Any]



	Returns:

	kwargs for _create_internal()










	
syne_tune.optimizer.schedulers.searchers.gp_searcher_factory.cost_aware_fine_gp_fifo_searcher_factory(**kwargs)

	Returns kwargs for
_create_internal(),
based on kwargs equal to search_options passed to and extended by
scheduler (see FIFOScheduler).

This is for the fine-grained variant, where costs \(c(x, r)\) are
obtained with each report and are represented by a
CostModel
surrogate model.


	Parameters:

	kwargs – search_options coming from scheduler



	Return type:

	Dict[str, Any]



	Returns:

	kwargs for _create_internal()










	
syne_tune.optimizer.schedulers.searchers.gp_searcher_factory.cost_aware_gp_multifidelity_searcher_factory(**kwargs)

	Returns kwargs for
_create_internal(),
based on kwargs equal to search_options passed to and extended by
scheduler (see HyperbandScheduler).


	Parameters:

	kwargs – search_options coming from scheduler



	Return type:

	Dict[str, Any]



	Returns:

	kwargs for _create_internal()










	
syne_tune.optimizer.schedulers.searchers.gp_searcher_factory.hypertune_searcher_factory(**kwargs)

	Returns kwargs for
_create_internal(),
based on kwargs equal to search_options passed to and extended by
scheduler (see HyperbandScheduler).


	Parameters:

	kwargs – search_options coming from scheduler



	Return type:

	Dict[str, Any]



	Returns:

	kwargs for _create_internal()










	
syne_tune.optimizer.schedulers.searchers.gp_searcher_factory.gp_fifo_searcher_defaults(kwargs)

	Returns mandatory, default_options, config_space for
check_and_merge_defaults()
to be applied to search_options for
GPFIFOSearcher.


	Return type:

	(Set[str], dict, dict)



	Returns:

	(mandatory, default_options, config_space)










	
syne_tune.optimizer.schedulers.searchers.gp_searcher_factory.gp_multifidelity_searcher_defaults(kwargs)

	Returns mandatory, default_options, config_space for
check_and_merge_defaults()
to be applied to search_options for
GPMultiFidelitySearcher.


	Return type:

	(Set[str], dict, dict)



	Returns:

	(mandatory, default_options, config_space)










	
syne_tune.optimizer.schedulers.searchers.gp_searcher_factory.constrained_gp_fifo_searcher_defaults(kwargs)

	Returns mandatory, default_options, config_space for
check_and_merge_defaults() to be applied to search_options for
ConstrainedGPFIFOSearcher.


	Return type:

	(Set[str], dict, dict)



	Returns:

	(mandatory, default_options, config_space)










	
syne_tune.optimizer.schedulers.searchers.gp_searcher_factory.cost_aware_gp_fifo_searcher_defaults(kwargs)

	Returns mandatory, default_options, config_space for
check_and_merge_defaults()
to be applied to search_options for
CostAwareGPFIFOSearcher.


	Return type:

	(Set[str], dict, dict)



	Returns:

	(mandatory, default_options, config_space)










	
syne_tune.optimizer.schedulers.searchers.gp_searcher_factory.cost_aware_gp_multifidelity_searcher_defaults(kwargs)

	Returns mandatory, default_options, config_space for
check_and_merge_defaults()
to be applied to search_options for
CostAwareGPMultiFidelitySearcher.


	Return type:

	(Set[str], dict, dict)



	Returns:

	(mandatory, default_options, config_space)










	
syne_tune.optimizer.schedulers.searchers.gp_searcher_factory.hypertune_searcher_defaults(kwargs)

	Returns mandatory, default_options, config_space for
check_and_merge_defaults()
to be applied to search_options for
HyperTuneSearcher.


	Return type:

	(Set[str], dict, dict)



	Returns:

	(mandatory, default_options, config_space)












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.gp_searcher_utils module


	
class syne_tune.optimizer.schedulers.searchers.gp_searcher_utils.MapReward(forward, reverse)

	Bases: object


	
forward: Callable[[float], float]

	




	
reverse: Callable[[float], float]

	








	
syne_tune.optimizer.schedulers.searchers.gp_searcher_utils.map_reward_const_minus_x(const=1.0)

	Factory for map_reward argument in GPMultiFidelitySearcher.


	Return type:

	MapReward










	
syne_tune.optimizer.schedulers.searchers.gp_searcher_utils.encode_state(state)

	
	Return type:

	Dict[str, Any]










	
syne_tune.optimizer.schedulers.searchers.gp_searcher_utils.decode_state(enc_state, hp_ranges)

	
	Return type:

	TuningJobState










	
syne_tune.optimizer.schedulers.searchers.gp_searcher_utils.decode_state_from_old_encoding(enc_state, hp_ranges)

	Decodes TuningJobState from encoding done for the old definition of
TuningJobState. Code maintained for backwards compatibility.

Note: Since the old TuningJobState did not contain trial_id, we need
to make them up here. We assign these IDs in the order
candidate_evaluations, failed_candidates, pending_candidates,
matching for duplicates.


	Parameters:

	
	enc_state (Dict[str, Any]) – 


	hp_ranges (HyperparameterRanges) – 






	Return type:

	TuningJobState



	Returns:

	










	
class syne_tune.optimizer.schedulers.searchers.gp_searcher_utils.ResourceForAcquisitionMap

	Bases: object

In order to use a standard acquisition function (like expected improvement)
for multi-fidelity HPO, we need to decide at which r_acq we would like
to evaluate the AF, w.r.t. the posterior distribution over f(x, r=r_acq).
This decision can depend on the current state.






	
class syne_tune.optimizer.schedulers.searchers.gp_searcher_utils.ResourceForAcquisitionBOHB(threshold, active_metric='target')

	Bases: ResourceForAcquisitionMap

Implements a heuristic proposed in the BOHB paper: r_acq is the
largest r such that we have at least threshold observations at
r. If there are less than threshold observations at all levels,
the smallest level is returned.






	
class syne_tune.optimizer.schedulers.searchers.gp_searcher_utils.ResourceForAcquisitionFirstMilestone

	Bases: ResourceForAcquisitionMap

Here, r_acq is the smallest rung level to be attained by a config
started from scratch.






	
class syne_tune.optimizer.schedulers.searchers.gp_searcher_utils.ResourceForAcquisitionFinal(r_max)

	Bases: ResourceForAcquisitionMap

Here, r_acq = r_max is the largest resource level.






	
syne_tune.optimizer.schedulers.searchers.gp_searcher_utils.resource_for_acquisition_factory(kwargs, hp_ranges)

	
	Return type:

	ResourceForAcquisitionMap












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.hypertune.hypertune_bracket_distribution module


	
class syne_tune.optimizer.schedulers.searchers.hypertune.hypertune_bracket_distribution.HyperTuneBracketDistribution

	Bases: DefaultHyperbandBracketDistribution

Represents the adaptive distribution over brackets [w_k].


	
configure(scheduler)

	This method is called in by the scheduler just after
self.searcher.configure_scheduler. The searcher must be accessible
via self.searcher.
The __call__() method cannot be used before this method has been
called.












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.hypertune.hypertune_searcher module


	
class syne_tune.optimizer.schedulers.searchers.hypertune.hypertune_searcher.HyperTuneSearcher(config_space, **kwargs)

	Bases: GPMultiFidelitySearcher

Implements Hyper-Tune as extension of
GPMultiFidelitySearcher,
see
HyperTuneIndependentGPModel
for references. Two modifications:


	New brackets are sampled from a model-based distribution \([w_k]\)


	The acquisition function is fed with predictive means and variances from
a mixture over rung level distributions, weighted by \([     heta_k]\)




It is not recommended to create HyperTuneSearcher searcher
objects directly, but rather to create
HyperbandScheduler objects with
searcher="hypertune", and passing arguments here in search_options.
This will use the appropriate functions from
:mod:syne_tune.optimizer.schedulers.searchers.gp_searcher_factory to
create components in a consistent way.

The following arguments of the parent class are not relevant here, and are
ignored: gp_resource_kernel, resource_acq, issm_gamma_one,
expdecay_normalize_inputs.

Additional arguments on top of parent class
GPMultiFidelitySearcher:


	Parameters:

	
	model (str, optional) – Selects surrogate model (learning curve model) to be used.
Choices are:


	”gp_multitask”: GP multi-task surrogate model


	”gp_independent” (default): Independent GPs for each rung level,
sharing an ARD kernel




The default is “gp_independent” (as in the Hyper-Tune paper), which
is different to the default in GPMultiFidelitySearcher (which
is “gp_multitask”). “gp_issm”, “gp_expdecay” not supported here.




	hypertune_distribution_num_samples (int, optional) – Parameter for estimating the
distribution, given by \([ heta_k]\). Defaults to 50









	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.hypertune package


	
class syne_tune.optimizer.schedulers.searchers.hypertune.HyperTuneSearcher(config_space, **kwargs)

	Bases: GPMultiFidelitySearcher

Implements Hyper-Tune as extension of
GPMultiFidelitySearcher,
see
HyperTuneIndependentGPModel
for references. Two modifications:


	New brackets are sampled from a model-based distribution \([w_k]\)


	The acquisition function is fed with predictive means and variances from
a mixture over rung level distributions, weighted by \([     heta_k]\)




It is not recommended to create HyperTuneSearcher searcher
objects directly, but rather to create
HyperbandScheduler objects with
searcher="hypertune", and passing arguments here in search_options.
This will use the appropriate functions from
:mod:syne_tune.optimizer.schedulers.searchers.gp_searcher_factory to
create components in a consistent way.

The following arguments of the parent class are not relevant here, and are
ignored: gp_resource_kernel, resource_acq, issm_gamma_one,
expdecay_normalize_inputs.

Additional arguments on top of parent class
GPMultiFidelitySearcher:


	Parameters:

	
	model (str, optional) – Selects surrogate model (learning curve model) to be used.
Choices are:


	”gp_multitask”: GP multi-task surrogate model


	”gp_independent” (default): Independent GPs for each rung level,
sharing an ARD kernel




The default is “gp_independent” (as in the Hyper-Tune paper), which
is different to the default in GPMultiFidelitySearcher (which
is “gp_multitask”). “gp_issm”, “gp_expdecay” not supported here.




	hypertune_distribution_num_samples (int, optional) – Parameter for estimating the
distribution, given by \([ heta_k]\). Defaults to 50









	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.














Submodules



	syne_tune.optimizer.schedulers.searchers.hypertune.hypertune_bracket_distribution module
	HyperTuneBracketDistribution
	HyperTuneBracketDistribution.configure()









	syne_tune.optimizer.schedulers.searchers.hypertune.hypertune_searcher module
	HyperTuneSearcher
	HyperTuneSearcher.configure_scheduler()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.kde.kde_searcher module


	
class syne_tune.optimizer.schedulers.searchers.kde.kde_searcher.KernelDensityEstimator(config_space, metric, points_to_evaluate=None, allow_duplicates=None, mode=None, num_min_data_points=None, top_n_percent=None, min_bandwidth=None, num_candidates=None, bandwidth_factor=None, random_fraction=None, **kwargs)

	Bases: StochasticAndFilterDuplicatesSearcher

Fits two kernel density estimators (KDE) to model the density of the top N
configurations as well as the density of the configurations that are not
among the top N, respectively. New configurations are sampled by optimizing
the ratio of these two densities. KDE as model for Bayesian optimization has
been originally proposed by Bergstra et al. Compared to their original
implementation TPE, we use multi-variate instead of univariate KDE, as
proposed by Falkner et al.
Code is based on the implementation by Falkner et al:
https://github.com/automl/HpBandSter/tree/master/hpbandster



Algorithms for Hyper-Parameter Optimization

J. Bergstra and R. Bardenet and Y. Bengio and B. K{‘e}gl

Proceedings of the 24th International Conference on Advances in Neural Information Processing Systems

https://papers.nips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html






and



BOHB: Robust and Efficient Hyperparameter Optimization at Scale

S. Falkner and A. Klein and F. Hutter

Proceedings of the 35th International Conference on Machine Learning

https://arxiv.org/abs/1807.01774






Note: restrict_configurations is not supported here, this would require
reimplementing the selection of configs in _get_config().

Additional arguments on top of parent class
StochasticAndFilterDuplicatesSearcher:


	Parameters:

	
	mode (Optional[str]) – Mode to use for the metric given, can be “min” or “max”. Is
obtained from scheduler in configure_scheduler(). Defaults to “min”


	num_min_data_points (Optional[int]) – Minimum number of data points that we use to fit
the KDEs. As long as less observations have been received in
update(), randomly drawn configurations are returned in
get_config().
If set to None, we set this to the number of hyperparameters.
Defaults to None.


	top_n_percent (Optional[int]) – Determines how many datapoints we use to fit the first
KDE model for modeling the well performing configurations.
Defaults to 15


	min_bandwidth (Optional[float]) – The minimum bandwidth for the KDE models. Defaults
to 1e-3


	num_candidates (Optional[int]) – Number of candidates that are sampled to optimize
the acquisition function. Defaults to 64


	bandwidth_factor (Optional[int]) – We sample continuous hyperparameter from a
truncated Normal. This factor is multiplied to the bandwidth to define
the standard deviation of this truncated Normal. Defaults to 3


	random_fraction (Optional[float]) – Defines the fraction of configurations that are
drawn uniformly at random instead of sampling from the model.
Defaults to 0.33









	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.










	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state (Dict[str, Any]) – See above



	Returns:

	New searcher object
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.kde.multi_fidelity_kde_searcher module


	
class syne_tune.optimizer.schedulers.searchers.kde.multi_fidelity_kde_searcher.MultiFidelityKernelDensityEstimator(config_space, metric, points_to_evaluate=None, allow_duplicates=None, mode=None, num_min_data_points=None, top_n_percent=None, min_bandwidth=None, num_candidates=None, bandwidth_factor=None, random_fraction=None, resource_attr=None, **kwargs)

	Bases: KernelDensityEstimator

Adapts KernelDensityEstimator to the multi-fidelity setting as proposed
by Falkner et al such that we can use it with Hyperband. Following Falkner
et al, we fit the KDE only on the highest resource level where we have at
least num_min_data_points. Code is based on the implementation by Falkner
et al: https://github.com/automl/HpBandSter/tree/master/hpbandster



BOHB: Robust and Efficient Hyperparameter Optimization at Scale

S. Falkner and A. Klein and F. Hutter

Proceedings of the 35th International Conference on Machine Learning






Additional arguments on top of parent class
KernelDensityEstimator:


	Parameters:

	resource_attr (Optional[str]) – Name of resource attribute. Defaults to
scheduler.resource_attr in configure_scheduler()






	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.kde package


	
class syne_tune.optimizer.schedulers.searchers.kde.KernelDensityEstimator(config_space, metric, points_to_evaluate=None, allow_duplicates=None, mode=None, num_min_data_points=None, top_n_percent=None, min_bandwidth=None, num_candidates=None, bandwidth_factor=None, random_fraction=None, **kwargs)

	Bases: StochasticAndFilterDuplicatesSearcher

Fits two kernel density estimators (KDE) to model the density of the top N
configurations as well as the density of the configurations that are not
among the top N, respectively. New configurations are sampled by optimizing
the ratio of these two densities. KDE as model for Bayesian optimization has
been originally proposed by Bergstra et al. Compared to their original
implementation TPE, we use multi-variate instead of univariate KDE, as
proposed by Falkner et al.
Code is based on the implementation by Falkner et al:
https://github.com/automl/HpBandSter/tree/master/hpbandster



Algorithms for Hyper-Parameter Optimization

J. Bergstra and R. Bardenet and Y. Bengio and B. K{‘e}gl

Proceedings of the 24th International Conference on Advances in Neural Information Processing Systems

https://papers.nips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html






and



BOHB: Robust and Efficient Hyperparameter Optimization at Scale

S. Falkner and A. Klein and F. Hutter

Proceedings of the 35th International Conference on Machine Learning

https://arxiv.org/abs/1807.01774






Note: restrict_configurations is not supported here, this would require
reimplementing the selection of configs in _get_config().

Additional arguments on top of parent class
StochasticAndFilterDuplicatesSearcher:


	Parameters:

	
	mode (Optional[str]) – Mode to use for the metric given, can be “min” or “max”. Is
obtained from scheduler in configure_scheduler(). Defaults to “min”


	num_min_data_points (Optional[int]) – Minimum number of data points that we use to fit
the KDEs. As long as less observations have been received in
update(), randomly drawn configurations are returned in
get_config().
If set to None, we set this to the number of hyperparameters.
Defaults to None.


	top_n_percent (Optional[int]) – Determines how many datapoints we use to fit the first
KDE model for modeling the well performing configurations.
Defaults to 15


	min_bandwidth (Optional[float]) – The minimum bandwidth for the KDE models. Defaults
to 1e-3


	num_candidates (Optional[int]) – Number of candidates that are sampled to optimize
the acquisition function. Defaults to 64


	bandwidth_factor (Optional[int]) – We sample continuous hyperparameter from a
truncated Normal. This factor is multiplied to the bandwidth to define
the standard deviation of this truncated Normal. Defaults to 3


	random_fraction (Optional[float]) – Defines the fraction of configurations that are
drawn uniformly at random instead of sampling from the model.
Defaults to 0.33









	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.










	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state (Dict[str, Any]) – See above



	Returns:

	New searcher object














	
class syne_tune.optimizer.schedulers.searchers.kde.MultiFidelityKernelDensityEstimator(config_space, metric, points_to_evaluate=None, allow_duplicates=None, mode=None, num_min_data_points=None, top_n_percent=None, min_bandwidth=None, num_candidates=None, bandwidth_factor=None, random_fraction=None, resource_attr=None, **kwargs)

	Bases: KernelDensityEstimator

Adapts KernelDensityEstimator to the multi-fidelity setting as proposed
by Falkner et al such that we can use it with Hyperband. Following Falkner
et al, we fit the KDE only on the highest resource level where we have at
least num_min_data_points. Code is based on the implementation by Falkner
et al: https://github.com/automl/HpBandSter/tree/master/hpbandster



BOHB: Robust and Efficient Hyperparameter Optimization at Scale

S. Falkner and A. Klein and F. Hutter

Proceedings of the 35th International Conference on Machine Learning






Additional arguments on top of parent class
KernelDensityEstimator:


	Parameters:

	resource_attr (Optional[str]) – Name of resource attribute. Defaults to
scheduler.resource_attr in configure_scheduler()






	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.














Submodules



	syne_tune.optimizer.schedulers.searchers.kde.kde_searcher module
	KernelDensityEstimator
	KernelDensityEstimator.configure_scheduler()

	KernelDensityEstimator.clone_from_state()









	syne_tune.optimizer.schedulers.searchers.kde.multi_fidelity_kde_searcher module
	MultiFidelityKernelDensityEstimator
	MultiFidelityKernelDensityEstimator.configure_scheduler()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.model_based_searcher module


	
syne_tune.optimizer.schedulers.searchers.model_based_searcher.check_initial_candidates_scorer(initial_scoring)

	
	Return type:

	str










	
class syne_tune.optimizer.schedulers.searchers.model_based_searcher.ModelBasedSearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: StochasticSearcher

Common code for surrogate model based searchers

If num_initial_random_choices > 0, initial configurations are drawn using
an internal RandomSearcher
object, which is created in _assign_random_searcher(). This internal
random searcher shares random_state with the searcher here. This ensures
that if ModelBasedSearcher and RandomSearcher objects are created with
the same random_seed and points_to_evaluate argument, initial
configurations are identical until _get_config_modelbased() kicks in.

Note that this works because random_state is only used in the internal
random searcher until meth:_get_config_modelbased is first called.


	
on_trial_result(trial_id, config, result, update)

	Inform searcher about result

The scheduler passes every result. If update == True, the searcher
should update its surrogate model (if any), otherwise result is an
intermediate result not modelled.

The default implementation calls _update() if update == True.
It can be overwritten by searchers which also react to intermediate
results.


	Parameters:

	
	trial_id (str) – See on_trial_result()


	config (Dict[str, Any]) – See on_trial_result()


	result (Dict[str, Any]) – See on_trial_result()


	update (bool) – Should surrogate model be updated?













	
get_config(**kwargs)

	Runs Bayesian optimization in order to suggest the next config to evaluate.


	Return type:

	Optional[Dict[str, Any]]



	Returns:

	Next config to evaluate at










	
dataset_size()

	
	Returns:

	Size of dataset a model is fitted to, or 0 if no model is
fitted to data










	
model_parameters()

	
	Returns:

	Dictionary with current model (hyper)parameter values if
this is supported; otherwise empty










	
set_params(param_dict)

	




	
get_state()

	The mutable state consists of the GP model parameters, the
TuningJobState, and the skip_optimization predicate (which can have a
mutable state).
We assume that skip_optimization can be pickled.

Note that we do not have to store the state of _random_searcher,
since this internal searcher shares its random_state with the searcher
here.


	Return type:

	Dict[str, Any]










	
property debug_log

	Some subclasses support writing a debug log, using
DebugLogPrinter.
See RandomSearcher
for an example.


	Returns:

	debug_log object`` or None (not supported)














	
syne_tune.optimizer.schedulers.searchers.model_based_searcher.create_initial_candidates_scorer(initial_scoring, predictor, acquisition_class, random_state, active_metric='target')

	
	Return type:

	ScoringFunction










	
class syne_tune.optimizer.schedulers.searchers.model_based_searcher.BayesianOptimizationSearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: ModelBasedSearcher

Common Code for searchers using Bayesian optimization

We implement Bayesian optimization, based on a model factory which
parameterizes the state transformer. This implementation works with
any type of surrogate model and acquisition function, which are
compatible with each other.

The following happens in get_config():


	For the first num_init_random calls, a config is drawn at random
(after points_to_evaluate, which are included in the num_init_random
initial ones). Afterwards, Bayesian optimization is used, unless there
are no finished evaluations yet (a surrogate model cannot be used with no
data at all)


	For BO, model hyperparameter are refit first. This step can be skipped
(see opt_skip_* parameters).


	Next, the BO decision is made based on
BayesianOptimizationAlgorithm.
This involves sampling num_init_candidates` configs are sampled at
random, ranking them with a scoring function (initial_scoring), and
finally runing local optimization starting from the top scoring config.





	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.










	
register_pending(trial_id, config=None, milestone=None)

	Registers trial as pending. This means the corresponding evaluation
task is running. Once it finishes, update is called for this trial.






	
get_batch_configs(batch_size, num_init_candidates_for_batch=None, **kwargs)

	Asks for a batch of batch_size configurations to be suggested. This
is roughly equivalent to calling get_config batch_size times,
marking the suggested configs as pending in the state (but the state
is not modified here). This means the batch is chosen sequentially,
at about the cost of calling get_config batch_size times.

If num_init_candidates_for_batch is given, it is used instead
of num_init_candidates for the selection of all but the first
config in the batch. In order to speed up batch selection, choose
num_init_candidates_for_batch smaller than
num_init_candidates.

If less than batch_size configs are returned, the search space
has been exhausted.

Note: Batch selection does not support debug_log right now: make sure
to switch this off when creating scheduler and searcher.


	Return type:

	List[Dict[str, Union[int, float, str]]]










	
evaluation_failed(trial_id)

	Called by scheduler if an evaluation job for a trial failed.

The searcher should react appropriately (e.g., remove pending evaluations
for this trial, not suggest the configuration again).


	Parameters:

	trial_id (str) – ID of trial whose evaluated failed
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.random_grid_searcher module


	
class syne_tune.optimizer.schedulers.searchers.random_grid_searcher.RandomSearcher(config_space, metric, points_to_evaluate=None, debug_log=False, resource_attr=None, allow_duplicates=None, restrict_configurations=None, **kwargs)

	Bases: StochasticAndFilterDuplicatesSearcher

Searcher which randomly samples configurations to try next.

Additional arguments on top of parent class StochasticAndFilterDuplicatesSearcher:


	Parameters:

	
	debug_log (Union[bool, DebugLogPrinter]) – If True, debug log printing is activated.
Logs which configs are chosen when, and which metric values are
obtained. Defaults to False


	resource_attr (Optional[str]) – Optional. Key in result passed to _update()
for resource value (for multi-fidelity schedulers)









	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.










	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state (Dict[str, Any]) – See above



	Returns:

	New searcher object










	
property debug_log

	Some subclasses support writing a debug log, using
DebugLogPrinter.
See RandomSearcher
for an example.


	Returns:

	debug_log object`` or None (not supported)














	
class syne_tune.optimizer.schedulers.searchers.random_grid_searcher.GridSearcher(config_space, metric, points_to_evaluate=None, num_samples=None, shuffle_config=True, allow_duplicates=False, **kwargs)

	Bases: StochasticSearcher

Searcher that samples configurations from an equally spaced grid over config_space.

It first evaluates configurations defined in points_to_evaluate and then
continues with the remaining points from the grid.

Additional arguments on top of parent class StochasticSearcher.


	Parameters:

	
	num_samples (Optional[Dict[str, int]]) – Dictionary, optional. Number of samples per
hyperparameter. This is required for hyperparameters of type float,
optional for integer hyperparameters, and will be ignored for
other types (categorical, scalar). If left unspecified, a default
value of DEFAULT_NSAMPLE will be used for float parameters, and
the smallest of DEFAULT_NSAMPLE and integer range will be used
for integer parameters.


	shuffle_config (bool) – If True (default), the order of configurations
suggested after those specified in points_to_evaluate is
shuffled. Otherwise, the order will follow the Cartesian product
of the configurations.


	allow_duplicates (bool) – If True, get_config() may return the same
configuration more than once. Defaults to False









	
get_config(**kwargs)

	Select the next configuration from the grid.

This is done without replacement, so previously returned configs are
not suggested again.


	Return type:

	Optional[dict]



	Returns:

	A new configuration that is valid, or None if no new config
can be suggested. The returned configuration is a dictionary that
maps hyperparameters to its values.










	
get_state()

	Together with clone_from_state(), this is needed in order to
store and re-create the mutable state of the searcher.
The state returned here must be pickle-able.


	Return type:

	Dict[str, Any]



	Returns:

	Pickle-able mutable state of searcher










	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state (Dict[str, Any]) – See above



	Returns:

	New searcher object
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.regularized_evolution module


	
class syne_tune.optimizer.schedulers.searchers.regularized_evolution.PopulationElement(result=None, score=0, config=None)

	Bases: object


	
result: Dict[str, Any] = None

	




	
score: int = 0

	




	
config: Dict[str, Any] = None

	








	
class syne_tune.optimizer.schedulers.searchers.regularized_evolution.RegularizedEvolution(config_space, metric, points_to_evaluate=None, population_size=100, sample_size=10, **kwargs)

	Bases: StochasticSearcher

Implements the regularized evolution algorithm. The original implementation
only considers categorical hyperparameters. For integer and float parameters
we sample a new value uniformly at random. Reference:



Real, E., Aggarwal, A., Huang, Y., and Le, Q. V.

Regularized Evolution for Image Classifier Architecture Search.

In Proceedings of the Conference on Artificial Intelligence (AAAI’19)






The code is based one the original regularized evolution open-source
implementation:
https://colab.research.google.com/github/google-research/google-research/blob/master/evolution/regularized_evolution_algorithm/regularized_evolution.ipynb

Additional arguments on top of parent class
StochasticSearcher:


	Parameters:

	
	mode – Mode to use for the metric given, can be “min” or “max”,
defaults to “min”


	population_size (int) – Size of the population, defaults to 100


	sample_size (int) – Size of the candidate set to obtain a parent for the
mutation, defaults to 10









	
get_config(**kwargs)

	Suggest a new configuration.

Note: Query _next_initial_config() for initial configs to return
first.


	Parameters:

	kwargs – Extra information may be passed from scheduler to
searcher



	Return type:

	Optional[dict]



	Returns:

	New configuration. The searcher may return None if a new
configuration cannot be suggested. In this case, the tuning will
stop. This happens if searchers never suggest the same config more
than once, and all configs in the (finite) search space are
exhausted.










	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.










	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state (Dict[str, Any]) – See above



	Returns:

	New searcher object
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.searcher module


	
syne_tune.optimizer.schedulers.searchers.searcher.impute_points_to_evaluate(points_to_evaluate, config_space)

	Transforms points_to_evaluate argument to
BaseSearcher. Each
config in the list can be partially specified, or even be an empty dict.
For each hyperparameter not specified, the default value is determined
using a midpoint heuristic. Also, duplicate entries are filtered out.
If None (default), this is mapped to [dict()], a single default config
determined by the midpoint heuristic. If [] (empty list), no initial
configurations are specified.


	Parameters:

	
	points_to_evaluate (Optional[List[Dict[str, Any]]]) – Argument to
BaseSearcher


	config_space (Dict[str, Any]) – Configuration space






	Return type:

	List[Dict[str, Any]]



	Returns:

	List of fully specified initial configs










	
class syne_tune.optimizer.schedulers.searchers.searcher.BaseSearcher(config_space, metric, points_to_evaluate=None, mode='min')

	Bases: object

Base class of searchers, which are components of schedulers responsible for
implementing get_config().


Note

This is an abstract base class. In order to implement a new searcher, try to
start from
StochasticAndFilterDuplicatesSearcher
or StochasticSearcher,
which implement generally useful properties.




	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space


	metric (Union[List[str], str]) – Name of metric passed to update(). Can be obtained from
scheduler in configure_scheduler(). In the case of multi-objective optimization,


metric is a list of strings specifying all objectives to be optimized.







	points_to_evaluate (Optional[List[Dict[str, Any]]]) – List of configurations to be evaluated
initially (in that order). Each config in the list can be partially
specified, or even be an empty dict. For each hyperparameter not
specified, the default value is determined using a midpoint heuristic.
If None (default), this is mapped to [dict()], a single default config
determined by the midpoint heuristic. If [] (empty list), no initial
configurations are specified.


	mode (Union[List[str], str]) – Should metric be minimized (“min”, default) or maximized
(“max”). In the case of multi-objective optimization, mode can be a list defining for
each metric if it is minimized or maximized









	
configure_scheduler(scheduler)

	Some searchers need to obtain information from the scheduler they are
used with, in order to configure themselves.
This method has to be called before the searcher can be used.


	Parameters:

	scheduler (TrialScheduler) – Scheduler the searcher is used with.










	
get_config(**kwargs)

	Suggest a new configuration.

Note: Query _next_initial_config() for initial configs to return
first.


	Parameters:

	kwargs – Extra information may be passed from scheduler to
searcher



	Return type:

	Optional[Dict[str, Any]]



	Returns:

	New configuration. The searcher may return None if a new
configuration cannot be suggested. In this case, the tuning will
stop. This happens if searchers never suggest the same config more
than once, and all configs in the (finite) search space are
exhausted.










	
on_trial_result(trial_id, config, result, update)

	Inform searcher about result

The scheduler passes every result. If update == True, the searcher
should update its surrogate model (if any), otherwise result is an
intermediate result not modelled.

The default implementation calls _update() if update == True.
It can be overwritten by searchers which also react to intermediate
results.


	Parameters:

	
	trial_id (str) – See on_trial_result()


	config (Dict[str, Any]) – See on_trial_result()


	result (Dict[str, Any]) – See on_trial_result()


	update (bool) – Should surrogate model be updated?













	
register_pending(trial_id, config=None, milestone=None)

	Signals to searcher that evaluation for trial has started, but not yet
finished, which allows model-based searchers to register this evaluation
as pending.


	Parameters:

	
	trial_id (str) – ID of trial to be registered as pending evaluation


	config (Optional[Dict[str, Any]]) – If trial_id has not been registered with the
searcher, its configuration must be passed here. Ignored
otherwise.


	milestone (Optional[int]) – For multi-fidelity schedulers, this is the next
rung level the evaluation will attend, so that model registers
(config, milestone) as pending.













	
remove_case(trial_id, **kwargs)

	Remove data case previously appended by _update()

For searchers which maintain the dataset of all cases (reports) passed
to update, this method allows to remove one case from the dataset.


	Parameters:

	
	trial_id (str) – ID of trial whose data is to be removed


	kwargs – Extra arguments, optional













	
evaluation_failed(trial_id)

	Called by scheduler if an evaluation job for a trial failed.

The searcher should react appropriately (e.g., remove pending evaluations
for this trial, not suggest the configuration again).


	Parameters:

	trial_id (str) – ID of trial whose evaluated failed










	
cleanup_pending(trial_id)

	Removes all pending evaluations for trial trial_id.

This should be called after an evaluation terminates. For various
reasons (e.g., termination due to convergence), pending candidates
for this evaluation may still be present.


	Parameters:

	trial_id (str) – ID of trial whose pending evaluations should be cleared










	
dataset_size()

	
	Returns:

	Size of dataset a model is fitted to, or 0 if no model is
fitted to data










	
model_parameters()

	
	Returns:

	Dictionary with current model (hyper)parameter values if
this is supported; otherwise empty










	
get_state()

	Together with clone_from_state(), this is needed in order to
store and re-create the mutable state of the searcher.
The state returned here must be pickle-able.


	Return type:

	Dict[str, Any]



	Returns:

	Pickle-able mutable state of searcher










	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state (Dict[str, Any]) – See above



	Returns:

	New searcher object










	
property debug_log: DebugLogPrinter | None

	Some subclasses support writing a debug log, using
DebugLogPrinter.
See RandomSearcher
for an example.


	Returns:

	debug_log object`` or None (not supported)
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.searcher_base module


	
syne_tune.optimizer.schedulers.searchers.searcher_base.extract_random_seed(**kwargs)

	
	Return type:

	(int, Dict[str, Any])










	
syne_tune.optimizer.schedulers.searchers.searcher_base.sample_random_configuration(hp_ranges, random_state, exclusion_list=None)

	Samples a configuration from config_space at random.


	Parameters:

	
	hp_ranges (HyperparameterRanges) – Used for sampling configurations


	random_state (RandomState) – PRN generator


	exclusion_list (Optional[ExclusionList]) – Configurations not to be returned






	Return type:

	Optional[Dict[str, Any]]



	Returns:

	New configuration, or None if configuration space has been
exhausted










	
class syne_tune.optimizer.schedulers.searchers.searcher_base.StochasticSearcher(config_space, metric, points_to_evaluate=None, **kwargs)

	Bases: BaseSearcher

Base class of searchers which use random decisions. Creates the
random_state member, which must be used for all random draws.

Making proper use of this interface allows us to run experiments with
control of random seeds, e.g. for paired comparisons or integration testing.

Additional arguments on top of parent class BaseSearcher:


	Parameters:

	
	random_seed_generator (RandomSeedGenerator, optional) – If given, random seed is drawn from there


	random_seed (int, optional) – Used if random_seed_generator is not given.









	
get_state()

	Together with clone_from_state(), this is needed in order to
store and re-create the mutable state of the searcher.
The state returned here must be pickle-able.


	Return type:

	Dict[str, Any]



	Returns:

	Pickle-able mutable state of searcher










	
set_random_state(random_state)

	








	
class syne_tune.optimizer.schedulers.searchers.searcher_base.StochasticAndFilterDuplicatesSearcher(config_space, metric, points_to_evaluate=None, allow_duplicates=None, restrict_configurations=None, **kwargs)

	Bases: StochasticSearcher

Base class for searchers with the following properties:


	Random decisions use common random_state


	Maintains exclusion list to filter out duplicates in
get_config()
if allows_duplicates == False`. If this is ``True, duplicates are not
filtered, and the exclusion list is used only to avoid configurations of
failed trials.


	If restrict_configurations is given, this is a list of configurations,
and the searcher only suggests configurations from there. If
allow_duplicates == False, entries are popped off this list once
suggested.
points_to_evaluate is filtered to only contain entries in this set.




In order to make use of these features:


	Reject configurations in get_config() if should_not_suggest()
returns True.
If the configuration is drawn at random, use _get_random_config(),
which incorporates this filtering


	Implement _get_config() instead of get_config(). The latter
adds the new config to the exclusion list if allow_duplicates == False




Note: Not all searchers which filter duplicates make use of this class.

Additional arguments on top of parent class StochasticSearcher:


	Parameters:

	
	allow_duplicates (Optional[bool]) – See above. Defaults to False


	restrict_configurations (Optional[List[Dict[str, Any]]]) – See above, optional









	
property allow_duplicates: bool

	




	
should_not_suggest(config)

	
	Parameters:

	config (Dict[str, Any]) – Configuration



	Return type:

	bool



	Returns:

	get_config() should not suggest this configuration?










	
get_config(**kwargs)

	Suggest a new configuration.

Note: Query _next_initial_config() for initial configs to return
first.


	Parameters:

	kwargs – Extra information may be passed from scheduler to
searcher



	Return type:

	Optional[Dict[str, Any]]



	Returns:

	New configuration. The searcher may return None if a new
configuration cannot be suggested. In this case, the tuning will
stop. This happens if searchers never suggest the same config more
than once, and all configs in the (finite) search space are
exhausted.










	
register_pending(trial_id, config=None, milestone=None)

	Signals to searcher that evaluation for trial has started, but not yet
finished, which allows model-based searchers to register this evaluation
as pending.


	Parameters:

	
	trial_id (str) – ID of trial to be registered as pending evaluation


	config (Optional[Dict[str, Any]]) – If trial_id has not been registered with the
searcher, its configuration must be passed here. Ignored
otherwise.


	milestone (Optional[int]) – For multi-fidelity schedulers, this is the next
rung level the evaluation will attend, so that model registers
(config, milestone) as pending.













	
evaluation_failed(trial_id)

	Called by scheduler if an evaluation job for a trial failed.

The searcher should react appropriately (e.g., remove pending evaluations
for this trial, not suggest the configuration again).


	Parameters:

	trial_id (str) – ID of trial whose evaluated failed










	
get_state()

	Together with clone_from_state(), this is needed in order to
store and re-create the mutable state of the searcher.
The state returned here must be pickle-able.


	Return type:

	Dict[str, Any]



	Returns:

	Pickle-able mutable state of searcher
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.searcher_callback module


	
class syne_tune.optimizer.schedulers.searchers.searcher_callback.StoreResultsAndModelParamsCallback(add_wallclock_time=True)

	Bases: StoreResultsCallback

Extends StoreResultsCallback by also
storing the current surrogate model parameters in on_trial_result().
This works for schedulers with model-based searchers. For other schedulers,
this callback behaves the same as the superclass.


	
on_tuning_start(tuner)

	Called at start of tuning loop


	Parameters:

	tuner – Tuner object










	
on_trial_result(trial, status, result, decision)

	Called when a new result (reported by a trial) is observed

The arguments here are inputs or outputs of scheduler.on_trial_result
(called just before).


	Parameters:

	
	trial (Trial) – Trial whose report has been received


	status (str) – Status of trial before scheduler.on_trial_result has
been called


	result (Dict[str, Any]) – Result dict received


	decision (str) – Decision returned by scheduler.on_trial_result

















	
class syne_tune.optimizer.schedulers.searchers.searcher_callback.SimulatorAndModelParamsCallback

	Bases: SimulatorCallback

Extends
SimulatorCallback
by also storing the current surrogate model parameters in
on_trial_result(). This works for schedulers with model-based searchers.
For other schedulers, this callback behaves the same as the superclass.


	
on_tuning_start(tuner)

	Called at start of tuning loop


	Parameters:

	tuner – Tuner object










	
on_trial_result(trial, status, result, decision)

	Called when a new result (reported by a trial) is observed

The arguments here are inputs or outputs of scheduler.on_trial_result
(called just before).


	Parameters:

	
	trial (Trial) – Trial whose report has been received


	status (str) – Status of trial before scheduler.on_trial_result has
been called


	result (Dict[str, Any]) – Result dict received


	decision (str) – Decision returned by scheduler.on_trial_result



















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.searcher_factory module


	
syne_tune.optimizer.schedulers.searchers.searcher_factory.searcher_factory(searcher_name, **kwargs)

	Factory for searcher objects

This function creates searcher objects from string argument name and
additional kwargs. It is typically called in the constructor of a
scheduler (see FIFOScheduler),
which provides most of the required kwargs.


	Parameters:

	
	searcher_name (str) – Value of searcher argument to scheduler (see
FIFOScheduler)


	kwargs – Argument to
BaseSearcher constructor






	Return type:

	BaseSearcher



	Returns:

	New searcher object












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.sklearn.sklearn_surrogate_searcher module


	
class syne_tune.optimizer.schedulers.searchers.sklearn.sklearn_surrogate_searcher.SKLearnSurrogateSearcher(config_space, metric, estimator, points_to_evaluate=None, scoring_class=None, num_initial_candidates=250, num_initial_random_choices=3, allow_duplicates=False, restrict_configurations=None, clone_from_state=False, **kwargs)

	Bases: BayesianOptimizationSearcher

SKLearn Surrogate Bayesian optimization for FIFO scheduler

This searcher must be used with
FIFOScheduler. It provides
Bayesian optimization, based on a scikit-learn estimator based surrogate model.

Additional arguments on top of parent class
StochasticSearcher:


	Parameters:

	
	estimator (SKLearnEstimator) – Instance of
SKLearnEstimator
to be used as surrogate model


	scoring_class (Optional[Callable[[Any], ScoringFunction]]) – The scoring function (or acquisition
function) class and any extra parameters used to instantiate it. If
None, expected improvement (EI) is used. Note that the acquisition
function is not locally optimized with this searcher.


	num_initial_candidates (int) – Number of candidates sampled for scoring with
acquisition function.


	num_initial_random_choices (int) – Number of randomly chosen candidates before
surrogate model is used.


	allow_duplicates (bool) – If True, allow for the same candidate to be
selected more than once.


	restrict_configurations (Optional[List[Dict[str, Any]]]) – If given, the searcher only suggests
configurations from this list. If allow_duplicates == False,
entries are popped off this list once suggested.









	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state – See above



	Returns:

	New searcher object
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.sklearn package


	
class syne_tune.optimizer.schedulers.searchers.sklearn.SKLearnSurrogateSearcher(config_space, metric, estimator, points_to_evaluate=None, scoring_class=None, num_initial_candidates=250, num_initial_random_choices=3, allow_duplicates=False, restrict_configurations=None, clone_from_state=False, **kwargs)

	Bases: BayesianOptimizationSearcher

SKLearn Surrogate Bayesian optimization for FIFO scheduler

This searcher must be used with
FIFOScheduler. It provides
Bayesian optimization, based on a scikit-learn estimator based surrogate model.

Additional arguments on top of parent class
StochasticSearcher:


	Parameters:

	
	estimator (SKLearnEstimator) – Instance of
SKLearnEstimator
to be used as surrogate model


	scoring_class (Optional[Callable[[Any], ScoringFunction]]) – The scoring function (or acquisition
function) class and any extra parameters used to instantiate it. If
None, expected improvement (EI) is used. Note that the acquisition
function is not locally optimized with this searcher.


	num_initial_candidates (int) – Number of candidates sampled for scoring with
acquisition function.


	num_initial_random_choices (int) – Number of randomly chosen candidates before
surrogate model is used.


	allow_duplicates (bool) – If True, allow for the same candidate to be
selected more than once.


	restrict_configurations (Optional[List[Dict[str, Any]]]) – If given, the searcher only suggests
configurations from this list. If allow_duplicates == False,
entries are popped off this list once suggested.









	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state – See above



	Returns:

	New searcher object














Submodules



	syne_tune.optimizer.schedulers.searchers.sklearn.sklearn_surrogate_searcher module
	SKLearnSurrogateSearcher
	SKLearnSurrogateSearcher.clone_from_state()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.utils.common module




            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.utils.default_arguments module


	
class syne_tune.optimizer.schedulers.searchers.utils.default_arguments.CheckType

	Bases: object


	
assert_valid(key, value)

	








	
class syne_tune.optimizer.schedulers.searchers.utils.default_arguments.Float(lower=None, upper=None)

	Bases: CheckType


	
assert_valid(key, value)

	








	
class syne_tune.optimizer.schedulers.searchers.utils.default_arguments.Integer(lower=None, upper=None)

	Bases: CheckType


	
assert_valid(key, value)

	








	
class syne_tune.optimizer.schedulers.searchers.utils.default_arguments.IntegerOrNone(lower=None, upper=None)

	Bases: Integer


	
assert_valid(key, value)

	








	
class syne_tune.optimizer.schedulers.searchers.utils.default_arguments.Categorical(choices)

	Bases: CheckType


	
assert_valid(key, value)

	








	
class syne_tune.optimizer.schedulers.searchers.utils.default_arguments.String

	Bases: CheckType


	
assert_valid(key, value)

	








	
class syne_tune.optimizer.schedulers.searchers.utils.default_arguments.Boolean

	Bases: CheckType


	
assert_valid(key, value)

	








	
class syne_tune.optimizer.schedulers.searchers.utils.default_arguments.Dictionary

	Bases: CheckType


	
assert_valid(key, value)

	








	
syne_tune.optimizer.schedulers.searchers.utils.default_arguments.check_and_merge_defaults(options, mandatory, default_options, constraints=None, dict_name=None)

	First, check that all keys in mandatory appear in options. Second, create
result_options by merging options and default_options, where entries in
options have precedence. Finally, if constraints is given, this is used to
check validity of values.


	Parameters:

	
	options (Dict[str, Any]) – Input arguments


	mandatory (Set[str]) – Set of mandatory argument names


	default_options (Dict[str, Any]) – Default values for options


	constraints (Optional[Dict[str, CheckType]]) – See above, optional


	dict_name (Optional[str]) – Prefix used in assert messages, optional






	Return type:

	Dict[str, Any]



	Returns:

	Output arguments










	
syne_tune.optimizer.schedulers.searchers.utils.default_arguments.filter_by_key(options, remove_keys)

	Filter options by removing entries whose keys are in remove_keys.
Used to filter kwargs passed to a constructor, before passing it to
the superclass constructor.


	Parameters:

	
	options (Dict[str, Any]) – Arguments to be filtered


	remove_keys (Set[str]) – See above






	Return type:

	Dict[str, Any]



	Returns:

	Filtered options










	
syne_tune.optimizer.schedulers.searchers.utils.default_arguments.assert_no_invalid_options(options, all_keys, name)

	






            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.utils.exclusion_list module


	
class syne_tune.optimizer.schedulers.searchers.utils.exclusion_list.ExclusionList(hp_ranges, configurations=None)

	Bases: object

Maintains exclusion list of configs, to avoid choosing configs several
times. In fact, self.excl_set maintains a set of match strings.

The exclusion list contains non-extended configs, but it can be fed with
and queried with extended configs. In that case, the resource attribute
is removed from the config.


	Parameters:

	
	hp_ranges (HyperparameterRanges) – Encodes configurations to vectors


	configurations (Union[List[Dict[str, Union[int, float, str]]], Set[str], None]) – Initial configurations. Default is empty









	
contains(config)

	
	Return type:

	bool










	
add(config)

	




	
copy()

	
	Return type:

	ExclusionList










	
config_space_exhausted()

	
	Return type:

	bool










	
get_state()

	
	Return type:

	Dict[str, Any]










	
clone_from_state(state)

	








	
class syne_tune.optimizer.schedulers.searchers.utils.exclusion_list.ExclusionListFromState(state, filter_observed_data=None)

	Bases: ExclusionList








            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.utils.hp_ranges module


	
class syne_tune.optimizer.schedulers.searchers.utils.hp_ranges.HyperparameterRanges(config_space, name_last_pos=None, value_for_last_pos=None, active_config_space=None, prefix_keys=None)

	Bases: object

Wraps configuration space, provides services around encoding of
hyperparameters (mapping configurations to [0, 1] vectors and
vice versa).

If name_last_pos is given, the hyperparameter of that name is assigned
the final position in the vector returned by to_ndarray(). This can be
used to single out the (time) resource for a GP model, where that
component has to come last.

If in this case (name_last_pos given), value_for_last_pos is also
given, some methods are modified:


	random_config() samples a config as normal, but then overwrites the
name_last_pos component by value_for_last_pos


	get_ndarray_bounds() works as normal, but returns bound (a, a) for
name_last_pos component, where a is the internal value corresponding
to value_for_last_pos




The use case is HPO with a resource attribute. This attribute should be
fixed when optimizing the acquisition function, but can take different
values in the evaluation data (coming from all previous searches).

If active_config_space is given, it contains a subset of non-constant
hyperparameters in config_space, and the range of each entry is a
subset of the range of the corresponding config_space entry. These
active ranges affect the choice of new configs (by sampling). While the
internal encoding is based on original ranges, search is restricted to
active ranges (e.g., optimization of surrogate model). This option is
required to implement transfer tuning, where domain ranges in
config_space may be narrower than what data from past tuning jobs
requires.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space. Constant hyperparameters are
filtered out here


	name_last_pos (Optional[str]) – See above, optional


	value_for_last_pos – See above, optional


	active_config_space (Optional[dict]) – See above, optional


	prefix_keys (Optional[List[str]]) – If given, these keys into config_space come first
in the internal ordering, which determines the internal
encoding. Optional









	
property internal_keys: List[str]

	




	
property config_space_for_sampling: Dict[str, Any]

	




	
to_ndarray(config)

	Map configuration to [0, 1] encoded vector


	Parameters:

	config (Dict[str, Union[int, float, str]]) – Configuration to encode



	Return type:

	ndarray



	Returns:

	Encoded vector










	
to_ndarray_matrix(configs)

	Map configurations to [0, 1] encoded matrix


	Parameters:

	configs (Iterable[Dict[str, Union[int, float, str]]]) – Configurations to encode



	Return type:

	ndarray



	Returns:

	Matrix of encoded vectors (rows)










	
property ndarray_size: int

	
	Returns:

	Dimensionality of encoded vector returned by to_ndarray










	
from_ndarray(enc_config)

	Maps encoded vector back to configuration (can involve rounding)

The encoded vector enc_config need to be in the image of
to_ndarray. In fact, any [0, 1] valued vector of dimensionality
ndarray_size is allowed.


	Parameters:

	enc_config (ndarray) – Encoded vector



	Return type:

	Dict[str, Union[int, float, str]]



	Returns:

	Configuration corresponding to encoded vector










	
property encoded_ranges: Dict[str, Tuple[int, int]]

	Encoded ranges are [0, 1] or closed subintervals thereof, in case
active_config_space is used.


	Returns:

	Ranges of hyperparameters in the encoded ndarray representation










	
is_attribute_fixed()

	
	Returns:

	Is last position attribute fixed?










	
random_config(random_state)

	Draws random configuration


	Parameters:

	random_state (RandomState) – Random state



	Return type:

	Dict[str, Union[int, float, str]]



	Returns:

	Random configuration










	
random_configs(random_state, num_configs)

	Draws random configurations


	Parameters:

	
	random_state – Random state


	num_configs (int) – Number of configurations to sample






	Return type:

	List[Dict[str, Union[int, float, str]]]



	Returns:

	Random configurations










	
get_ndarray_bounds()

	
	Return type:

	List[Tuple[float, float]]



	Returns:

	List of (lower, upper) bounds for each dimension in
encoded vector representation.










	
filter_for_last_pos_value(configs)

	If is_attribute_fixed, configs is filtered by removing
entries whose name_last_pos attribute value is different from
value_for_last_pos. Otherwise, it is returned unchanged.


	Parameters:

	configs (List[Dict[str, Union[int, float, str]]]) – List of configs to be filtered



	Return type:

	List[Dict[str, Union[int, float, str]]]



	Returns:

	Filtered list of configs










	
config_to_tuple(config, keys=None, skip_last=False)

	
	Parameters:

	
	config (Dict[str, Union[int, float, str]]) – Configuration


	keys (Optional[List[str]]) – Overrides _internal_keys


	skip_last (bool) – If True and name_last_pos is used, the
corresponding attribute is skipped, so that config and tuple
are non-extended






	Return type:

	Tuple[Union[str, int, float], ...]



	Returns:

	Tuple representation










	
tuple_to_config(config_tpl, keys=None, skip_last=False)

	Reverse of config_to_tuple().


	Parameters:

	
	config_tpl (Tuple[Union[str, int, float], ...]) – Tuple representation


	keys (Optional[List[str]]) – Overrides _internal_keys


	skip_last (bool) – If True and name_last_pos is used, the
corresponding attribute is skipped, so that config and tuple
are non-extended






	Return type:

	Dict[str, Union[int, float, str]]



	Returns:

	Configuration corresponding to config_tpl










	
config_to_match_string(config, keys=None, skip_last=False)

	Maps configuration to match string, used to compare for approximate
equality. Two configurations are considered to be different if their
match strings are not the same.


	Parameters:

	
	config (Dict[str, Union[int, float, str]]) – Configuration


	keys (Optional[List[str]]) – Overrides _internal_keys


	skip_last (bool) – If True and name_last_pos is used, the
corresponding attribute is skipped, so that config and match
string are non-extended






	Return type:

	str



	Returns:

	Match string
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_factory module


	
syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_factory.make_hyperparameter_ranges(config_space, name_last_pos=None, value_for_last_pos=None, active_config_space=None, prefix_keys=None)

	Default method to create HyperparameterRanges from config_space


	Parameters:

	
	config_space (Dict) – Configuration space


	name_last_pos (Optional[str]) – See HyperparameterRanges, optional


	value_for_last_pos – See HyperparameterRanges, optional


	active_config_space (Optional[Dict]) – See HyperparameterRanges, optional


	prefix_keys (Optional[List[str]]) – See HyperparameterRanges, optional






	Return type:

	HyperparameterRanges



	Returns:

	New object












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl module


	
class syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRange(name)

	Bases: object


	
property name: str

	




	
to_ndarray(hp)

	
	Return type:

	ndarray










	
from_ndarray(cand_ndarray)

	
	Return type:

	Union[str, int, float]










	
ndarray_size()

	
	Return type:

	int










	
get_ndarray_bounds()

	
	Return type:

	List[Tuple[float, float]]














	
syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.scale_from_zero_one(value, lower_bound, upper_bound, scaling, lower_internal, upper_internal)

	




	
class syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeContinuous(name, lower_bound, upper_bound, scaling, active_lower_bound=None, active_upper_bound=None)

	Bases: HyperparameterRange

Real valued hyperparameter.
If active_lower_bound and/or active_upper_bound are given, the
feasible interval for values of new configs is reduced, but data can
still contain configs with values in [lower_bound, upper_bound], and
internal encoding is done w.r.t. this original range.


	Parameters:

	
	name (str) – Name of hyperparameter


	lower_bound (float) – Lower bound (included)


	upper_bound (float) – Upper bound (included)


	scaling (Scaling) – Determines internal representation, whereby
parameter = scaling(internal).


	active_lower_bound (Optional[float]) – See above


	active_upper_bound (Optional[float]) – See above









	
to_ndarray(hp)

	
	Return type:

	ndarray










	
from_ndarray(ndarray)

	
	Return type:

	Union[str, int, float]










	
get_ndarray_bounds()

	
	Return type:

	List[Tuple[float, float]]














	
class syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeInteger(name, lower_bound, upper_bound, scaling, active_lower_bound=None, active_upper_bound=None)

	Bases: HyperparameterRange

Integer valued hyperparameter.
Both bounds are included in the valid values. Under the hood generates
a continuous range from lower_bound - 0.5 to upper_bound + 0.5.
See docs for continuous hyperparameter for more information.


	Parameters:

	
	name (str) – Name of hyperparameter


	lower_bound (int) – Lower bound (integer, included)


	upper_bound (int) – Upper bound (integer, included)


	scaling (Scaling) – Determines internal representation, whereby
parameter = scaling(internal).


	active_lower_bound (Optional[int]) – See above


	active_upper_bound (Optional[int]) – See above









	
property scaling: Scaling

	




	
to_ndarray(hp)

	
	Return type:

	ndarray










	
from_ndarray(ndarray)

	
	Return type:

	Union[str, int, float]










	
get_ndarray_bounds()

	
	Return type:

	List[Tuple[float, float]]














	
class syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeFiniteRange(name, lower_bound, upper_bound, size, scaling, cast_int=False)

	Bases: HyperparameterRange

Finite range numerical hyperparameter, see
FiniteRange. Internally, we use an int
with linear scaling.

Note: Different to HyperparameterRangeContinuous, we require that
lower_bound < upper_bound and size >=2.


	Parameters:

	
	name (str) – Name of hyperparameter


	lower_bound (float) – Lower bound (included)


	upper_bound (float) – Upper bound (included)


	size (int) – Number of values in range


	scaling (Scaling) – Determines internal representation, whereby
parameter = scaling(internal).


	cast_int (bool) – If True, values are cast to int









	
property scaling: Scaling

	




	
to_ndarray(hp)

	
	Return type:

	ndarray










	
from_ndarray(ndarray)

	
	Return type:

	Union[str, int, float]










	
get_ndarray_bounds()

	
	Return type:

	List[Tuple[float, float]]














	
class syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeCategorical(name, choices)

	Bases: HyperparameterRange

Base class for categorical hyperparameter.


	Parameters:

	
	name (str) – Name of hyperparameter


	choices (Tuple[Any, ...]) – Values parameter can take













	
class syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeCategoricalNonBinary(name, choices, active_choices=None)

	Bases: HyperparameterRangeCategorical

Can take on discrete set of values. We use one-hot encoding internally.
If the value range has size 2, it is more efficient to use
HyperparameterRangeCategoricalBinary.


	Parameters:

	
	name (str) – Name of hyperparameter


	choices (Tuple[Any, ...]) – Values parameter can take


	active_choices (Optional[Tuple[Any, ...]]) – If given, must be nonempty subset of choices.









	
ndarray_size()

	
	Return type:

	int










	
to_ndarray(hp)

	
	Return type:

	ndarray










	
from_ndarray(cand_ndarray)

	
	Return type:

	Union[str, int, float]










	
get_ndarray_bounds()

	
	Return type:

	List[Tuple[float, float]]














	
class syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeCategoricalBinary(name, choices, active_choices=None)

	Bases: HyperparameterRangeCategorical

Here, the value range must be of size 2. The internal encoding is a
single int, so 1 instead of 2 dimensions.


	Parameters:

	
	name (str) – Name of hyperparameter


	choices (Tuple[Any, ...]) – Values parameter can take (must be size 2)


	active_choices (Optional[Tuple[Any, ...]]) – If given, must be nonempty subset of choices.









	
to_ndarray(hp)

	
	Return type:

	ndarray










	
from_ndarray(cand_ndarray)

	
	Return type:

	Union[str, int, float]










	
get_ndarray_bounds()

	
	Return type:

	List[Tuple[float, float]]














	
class syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeOrdinalEqual(name, choices, active_choices=None)

	Bases: HyperparameterRangeCategorical

Ordinal hyperparameter, equal distance encoding. See also
Ordinal.


	Parameters:

	
	name (str) – Name of hyperparameter


	choices (Tuple[Any, ...]) – Values parameter can take


	active_choices (Optional[Tuple[Any, ...]]) – If given, must be nonempty contiguous
subsequence of choices.









	
to_ndarray(hp)

	
	Return type:

	ndarray










	
from_ndarray(cand_ndarray)

	
	Return type:

	Union[str, int, float]










	
get_ndarray_bounds()

	
	Return type:

	List[Tuple[float, float]]














	
class syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangeOrdinalNearestNeighbor(name, choices, log_scale=False, active_choices=None)

	Bases: HyperparameterRangeCategorical

Ordinal hyperparameter, nearest neighbour encoding. See also
OrdinalNearestNeighbor.


	Parameters:

	
	name (str) – Name of hyperparameter


	choices (Tuple[Any, ...]) – Values parameter can take (numerical values, strictly
increasing, size >= 2)


	log_scale (bool) – If True, nearest neighbour done in log (choices must
be positive)


	active_choices (Optional[Tuple[Any, ...]]) – If given, must be nonempty contiguous
subsequence of choices.









	
property log_scale: bool

	




	
to_ndarray(hp)

	
	Return type:

	ndarray










	
from_ndarray(cand_ndarray)

	
	Return type:

	Union[str, int, float]










	
get_ndarray_bounds()

	
	Return type:

	List[Tuple[float, float]]














	
class syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.HyperparameterRangesImpl(config_space, name_last_pos=None, value_for_last_pos=None, active_config_space=None, prefix_keys=None)

	Bases: HyperparameterRanges

Basic implementation of
HyperparameterRanges.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space


	name_last_pos (Optional[str]) – See HyperparameterRanges, optional


	value_for_last_pos – See HyperparameterRanges, optional


	active_config_space (Optional[Dict[str, Any]]) – See HyperparameterRanges, optional


	prefix_keys (Optional[List[str]]) – See HyperparameterRanges, optional









	
property ndarray_size: int

	
	Returns:

	Dimensionality of encoded vector returned by to_ndarray










	
to_ndarray(config)

	Map configuration to [0, 1] encoded vector


	Parameters:

	config (Dict[str, Union[int, float, str]]) – Configuration to encode



	Return type:

	ndarray



	Returns:

	Encoded vector










	
from_ndarray(enc_config)

	Maps encoded vector back to configuration (can involve rounding)

The encoded vector enc_config need to be in the image of
to_ndarray. In fact, any [0, 1] valued vector of dimensionality
ndarray_size is allowed.


	Parameters:

	enc_config (ndarray) – Encoded vector



	Return type:

	Dict[str, Union[int, float, str]]



	Returns:

	Configuration corresponding to encoded vector










	
property encoded_ranges: Dict[str, Tuple[int, int]]

	Encoded ranges are [0, 1] or closed subintervals thereof, in case
active_config_space is used.


	Returns:

	Ranges of hyperparameters in the encoded ndarray representation










	
get_ndarray_bounds()

	
	Return type:

	List[Tuple[float, float]]



	Returns:

	List of (lower, upper) bounds for each dimension in
encoded vector representation.














	
syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl.decode_extended_features(features_ext, resource_attr_range)

	Given matrix of features from extended configs, corresponding to
ExtendedConfiguration,
split into feature matrix from normal configs and resource values.


	Parameters:

	
	features_ext (ndarray) – Matrix of features from extended configs


	resource_attr_range (Tuple[int, int]) – (r_min, r_max)






	Return type:

	(ndarray, ndarray)



	Returns:

	(features, resources)












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.utils.scaling module


	
class syne_tune.optimizer.schedulers.searchers.utils.scaling.Scaling

	Bases: object


	
to_internal(value)

	
	Return type:

	float










	
from_internal(value)

	
	Return type:

	float














	
class syne_tune.optimizer.schedulers.searchers.utils.scaling.LinearScaling

	Bases: Scaling


	
to_internal(value)

	
	Return type:

	float










	
from_internal(value)

	
	Return type:

	float














	
class syne_tune.optimizer.schedulers.searchers.utils.scaling.LogScaling

	Bases: Scaling


	
to_internal(value)

	
	Return type:

	float










	
from_internal(value)

	
	Return type:

	float














	
class syne_tune.optimizer.schedulers.searchers.utils.scaling.ReverseLogScaling

	Bases: Scaling


	
to_internal(value)

	
	Return type:

	float










	
from_internal(value)

	
	Return type:

	float














	
syne_tune.optimizer.schedulers.searchers.utils.scaling.get_scaling(hp_range)

	
	Return type:

	Scaling












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.utils.warmstarting module


	
syne_tune.optimizer.schedulers.searchers.utils.warmstarting.create_hp_ranges_for_warmstarting(**kwargs)

	See GPFIFOSearcher for
details on “transfer_learning_task_attr”,
“transfer_learning_active_task”, “transfer_learning_active_config_space”
as optional fields in kwargs. If given, they determine
active_config_space and prefix_keys of hp_ranges created here,
and they also place constraints on config_space.

This function is not only called in gp_searcher_factory to create
hp_ranges for a new
GPFIFOSearcher object. It
is also needed to create the
TuningJobState
object containing the data to be used in warmstarting.


	Return type:

	HyperparameterRanges










	
syne_tune.optimizer.schedulers.searchers.utils.warmstarting.create_filter_observed_data_for_warmstarting(**kwargs)

	See GPFIFOSearcher for details on transfer_learning_task_attr’,
‘transfer_learning_active_task’ as optional fields in kwargs.


	Return type:

	Optional[Callable[[Dict[str, Union[int, float, str]]], bool]]










	
syne_tune.optimizer.schedulers.searchers.utils.warmstarting.create_base_gp_kernel_for_warmstarting(hp_ranges, **kwargs)

	In the transfer learning case, the base kernel is a product of
two Matern52 kernels, the first non-ARD over the categorical
parameter determining the task, the second ARD over the remaining
parameters.


	Return type:

	KernelFunction












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.searchers.utils package


	
class syne_tune.optimizer.schedulers.searchers.utils.HyperparameterRanges(config_space, name_last_pos=None, value_for_last_pos=None, active_config_space=None, prefix_keys=None)

	Bases: object

Wraps configuration space, provides services around encoding of
hyperparameters (mapping configurations to [0, 1] vectors and
vice versa).

If name_last_pos is given, the hyperparameter of that name is assigned
the final position in the vector returned by to_ndarray(). This can be
used to single out the (time) resource for a GP model, where that
component has to come last.

If in this case (name_last_pos given), value_for_last_pos is also
given, some methods are modified:


	random_config() samples a config as normal, but then overwrites the
name_last_pos component by value_for_last_pos


	get_ndarray_bounds() works as normal, but returns bound (a, a) for
name_last_pos component, where a is the internal value corresponding
to value_for_last_pos




The use case is HPO with a resource attribute. This attribute should be
fixed when optimizing the acquisition function, but can take different
values in the evaluation data (coming from all previous searches).

If active_config_space is given, it contains a subset of non-constant
hyperparameters in config_space, and the range of each entry is a
subset of the range of the corresponding config_space entry. These
active ranges affect the choice of new configs (by sampling). While the
internal encoding is based on original ranges, search is restricted to
active ranges (e.g., optimization of surrogate model). This option is
required to implement transfer tuning, where domain ranges in
config_space may be narrower than what data from past tuning jobs
requires.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space. Constant hyperparameters are
filtered out here


	name_last_pos (Optional[str]) – See above, optional


	value_for_last_pos – See above, optional


	active_config_space (Optional[dict]) – See above, optional


	prefix_keys (Optional[List[str]]) – If given, these keys into config_space come first
in the internal ordering, which determines the internal
encoding. Optional









	
property internal_keys: List[str]

	




	
property config_space_for_sampling: Dict[str, Any]

	




	
to_ndarray(config)

	Map configuration to [0, 1] encoded vector


	Parameters:

	config (Dict[str, Union[int, float, str]]) – Configuration to encode



	Return type:

	ndarray



	Returns:

	Encoded vector










	
to_ndarray_matrix(configs)

	Map configurations to [0, 1] encoded matrix


	Parameters:

	configs (Iterable[Dict[str, Union[int, float, str]]]) – Configurations to encode



	Return type:

	ndarray



	Returns:

	Matrix of encoded vectors (rows)










	
property ndarray_size: int

	
	Returns:

	Dimensionality of encoded vector returned by to_ndarray










	
from_ndarray(enc_config)

	Maps encoded vector back to configuration (can involve rounding)

The encoded vector enc_config need to be in the image of
to_ndarray. In fact, any [0, 1] valued vector of dimensionality
ndarray_size is allowed.


	Parameters:

	enc_config (ndarray) – Encoded vector



	Return type:

	Dict[str, Union[int, float, str]]



	Returns:

	Configuration corresponding to encoded vector










	
property encoded_ranges: Dict[str, Tuple[int, int]]

	Encoded ranges are [0, 1] or closed subintervals thereof, in case
active_config_space is used.


	Returns:

	Ranges of hyperparameters in the encoded ndarray representation










	
is_attribute_fixed()

	
	Returns:

	Is last position attribute fixed?










	
random_config(random_state)

	Draws random configuration


	Parameters:

	random_state (RandomState) – Random state



	Return type:

	Dict[str, Union[int, float, str]]



	Returns:

	Random configuration










	
random_configs(random_state, num_configs)

	Draws random configurations


	Parameters:

	
	random_state – Random state


	num_configs (int) – Number of configurations to sample






	Return type:

	List[Dict[str, Union[int, float, str]]]



	Returns:

	Random configurations










	
get_ndarray_bounds()

	
	Return type:

	List[Tuple[float, float]]



	Returns:

	List of (lower, upper) bounds for each dimension in
encoded vector representation.










	
filter_for_last_pos_value(configs)

	If is_attribute_fixed, configs is filtered by removing
entries whose name_last_pos attribute value is different from
value_for_last_pos. Otherwise, it is returned unchanged.


	Parameters:

	configs (List[Dict[str, Union[int, float, str]]]) – List of configs to be filtered



	Return type:

	List[Dict[str, Union[int, float, str]]]



	Returns:

	Filtered list of configs










	
config_to_tuple(config, keys=None, skip_last=False)

	
	Parameters:

	
	config (Dict[str, Union[int, float, str]]) – Configuration


	keys (Optional[List[str]]) – Overrides _internal_keys


	skip_last (bool) – If True and name_last_pos is used, the
corresponding attribute is skipped, so that config and tuple
are non-extended






	Return type:

	Tuple[Union[str, int, float], ...]



	Returns:

	Tuple representation










	
tuple_to_config(config_tpl, keys=None, skip_last=False)

	Reverse of config_to_tuple().


	Parameters:

	
	config_tpl (Tuple[Union[str, int, float], ...]) – Tuple representation


	keys (Optional[List[str]]) – Overrides _internal_keys


	skip_last (bool) – If True and name_last_pos is used, the
corresponding attribute is skipped, so that config and tuple
are non-extended






	Return type:

	Dict[str, Union[int, float, str]]



	Returns:

	Configuration corresponding to config_tpl










	
config_to_match_string(config, keys=None, skip_last=False)

	Maps configuration to match string, used to compare for approximate
equality. Two configurations are considered to be different if their
match strings are not the same.


	Parameters:

	
	config (Dict[str, Union[int, float, str]]) – Configuration


	keys (Optional[List[str]]) – Overrides _internal_keys


	skip_last (bool) – If True and name_last_pos is used, the
corresponding attribute is skipped, so that config and match
string are non-extended






	Return type:

	str



	Returns:

	Match string














	
syne_tune.optimizer.schedulers.searchers.utils.make_hyperparameter_ranges(config_space, name_last_pos=None, value_for_last_pos=None, active_config_space=None, prefix_keys=None)

	Default method to create HyperparameterRanges from config_space


	Parameters:

	
	config_space (Dict) – Configuration space


	name_last_pos (Optional[str]) – See HyperparameterRanges, optional


	value_for_last_pos – See HyperparameterRanges, optional


	active_config_space (Optional[Dict]) – See HyperparameterRanges, optional


	prefix_keys (Optional[List[str]]) – See HyperparameterRanges, optional






	Return type:

	HyperparameterRanges



	Returns:

	New object










	
class syne_tune.optimizer.schedulers.searchers.utils.HyperparameterRangesImpl(config_space, name_last_pos=None, value_for_last_pos=None, active_config_space=None, prefix_keys=None)

	Bases: HyperparameterRanges

Basic implementation of
HyperparameterRanges.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space


	name_last_pos (Optional[str]) – See HyperparameterRanges, optional


	value_for_last_pos – See HyperparameterRanges, optional


	active_config_space (Optional[Dict[str, Any]]) – See HyperparameterRanges, optional


	prefix_keys (Optional[List[str]]) – See HyperparameterRanges, optional









	
property ndarray_size: int

	
	Returns:

	Dimensionality of encoded vector returned by to_ndarray










	
to_ndarray(config)

	Map configuration to [0, 1] encoded vector


	Parameters:

	config (Dict[str, Union[int, float, str]]) – Configuration to encode



	Return type:

	ndarray



	Returns:

	Encoded vector










	
from_ndarray(enc_config)

	Maps encoded vector back to configuration (can involve rounding)

The encoded vector enc_config need to be in the image of
to_ndarray. In fact, any [0, 1] valued vector of dimensionality
ndarray_size is allowed.


	Parameters:

	enc_config (ndarray) – Encoded vector



	Return type:

	Dict[str, Union[int, float, str]]



	Returns:

	Configuration corresponding to encoded vector










	
property encoded_ranges: Dict[str, Tuple[int, int]]

	Encoded ranges are [0, 1] or closed subintervals thereof, in case
active_config_space is used.


	Returns:

	Ranges of hyperparameters in the encoded ndarray representation










	
get_ndarray_bounds()

	
	Return type:

	List[Tuple[float, float]]



	Returns:

	List of (lower, upper) bounds for each dimension in
encoded vector representation.














	
class syne_tune.optimizer.schedulers.searchers.utils.LinearScaling

	Bases: Scaling


	
to_internal(value)

	
	Return type:

	float










	
from_internal(value)

	
	Return type:

	float














	
class syne_tune.optimizer.schedulers.searchers.utils.LogScaling

	Bases: Scaling


	
to_internal(value)

	
	Return type:

	float










	
from_internal(value)

	
	Return type:

	float














	
class syne_tune.optimizer.schedulers.searchers.utils.ReverseLogScaling

	Bases: Scaling


	
to_internal(value)

	
	Return type:

	float










	
from_internal(value)

	
	Return type:

	float














	
syne_tune.optimizer.schedulers.searchers.utils.get_scaling(hp_range)

	
	Return type:

	Scaling
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	IntegerOrNone
	IntegerOrNone.assert_valid()





	Categorical
	Categorical.assert_valid()





	String
	String.assert_valid()





	Boolean
	Boolean.assert_valid()





	Dictionary
	Dictionary.assert_valid()





	check_and_merge_defaults()

	filter_by_key()

	assert_no_invalid_options()





	syne_tune.optimizer.schedulers.searchers.utils.exclusion_list module
	ExclusionList
	ExclusionList.contains()

	ExclusionList.add()

	ExclusionList.copy()

	ExclusionList.config_space_exhausted()

	ExclusionList.get_state()

	ExclusionList.clone_from_state()





	ExclusionListFromState





	syne_tune.optimizer.schedulers.searchers.utils.hp_ranges module
	HyperparameterRanges
	HyperparameterRanges.internal_keys

	HyperparameterRanges.config_space_for_sampling

	HyperparameterRanges.to_ndarray()

	HyperparameterRanges.to_ndarray_matrix()

	HyperparameterRanges.ndarray_size

	HyperparameterRanges.from_ndarray()

	HyperparameterRanges.encoded_ranges

	HyperparameterRanges.is_attribute_fixed()

	HyperparameterRanges.random_config()

	HyperparameterRanges.random_configs()

	HyperparameterRanges.get_ndarray_bounds()

	HyperparameterRanges.filter_for_last_pos_value()

	HyperparameterRanges.config_to_tuple()

	HyperparameterRanges.tuple_to_config()

	HyperparameterRanges.config_to_match_string()









	syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_factory module
	make_hyperparameter_ranges()





	syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_impl module
	HyperparameterRange
	HyperparameterRange.name

	HyperparameterRange.to_ndarray()

	HyperparameterRange.from_ndarray()

	HyperparameterRange.ndarray_size()

	HyperparameterRange.get_ndarray_bounds()





	scale_from_zero_one()

	HyperparameterRangeContinuous
	HyperparameterRangeContinuous.to_ndarray()

	HyperparameterRangeContinuous.from_ndarray()

	HyperparameterRangeContinuous.get_ndarray_bounds()





	HyperparameterRangeInteger
	HyperparameterRangeInteger.scaling

	HyperparameterRangeInteger.to_ndarray()

	HyperparameterRangeInteger.from_ndarray()

	HyperparameterRangeInteger.get_ndarray_bounds()





	HyperparameterRangeFiniteRange
	HyperparameterRangeFiniteRange.scaling

	HyperparameterRangeFiniteRange.to_ndarray()

	HyperparameterRangeFiniteRange.from_ndarray()

	HyperparameterRangeFiniteRange.get_ndarray_bounds()





	HyperparameterRangeCategorical

	HyperparameterRangeCategoricalNonBinary
	HyperparameterRangeCategoricalNonBinary.ndarray_size()

	HyperparameterRangeCategoricalNonBinary.to_ndarray()

	HyperparameterRangeCategoricalNonBinary.from_ndarray()

	HyperparameterRangeCategoricalNonBinary.get_ndarray_bounds()





	HyperparameterRangeCategoricalBinary
	HyperparameterRangeCategoricalBinary.to_ndarray()

	HyperparameterRangeCategoricalBinary.from_ndarray()

	HyperparameterRangeCategoricalBinary.get_ndarray_bounds()





	HyperparameterRangeOrdinalEqual
	HyperparameterRangeOrdinalEqual.to_ndarray()

	HyperparameterRangeOrdinalEqual.from_ndarray()

	HyperparameterRangeOrdinalEqual.get_ndarray_bounds()





	HyperparameterRangeOrdinalNearestNeighbor
	HyperparameterRangeOrdinalNearestNeighbor.log_scale

	HyperparameterRangeOrdinalNearestNeighbor.to_ndarray()

	HyperparameterRangeOrdinalNearestNeighbor.from_ndarray()

	HyperparameterRangeOrdinalNearestNeighbor.get_ndarray_bounds()





	HyperparameterRangesImpl
	HyperparameterRangesImpl.ndarray_size

	HyperparameterRangesImpl.to_ndarray()

	HyperparameterRangesImpl.from_ndarray()

	HyperparameterRangesImpl.encoded_ranges

	HyperparameterRangesImpl.get_ndarray_bounds()





	decode_extended_features()





	syne_tune.optimizer.schedulers.searchers.utils.scaling module
	Scaling
	Scaling.to_internal()

	Scaling.from_internal()





	LinearScaling
	LinearScaling.to_internal()

	LinearScaling.from_internal()





	LogScaling
	LogScaling.to_internal()

	LogScaling.from_internal()





	ReverseLogScaling
	ReverseLogScaling.to_internal()

	ReverseLogScaling.from_internal()





	get_scaling()





	syne_tune.optimizer.schedulers.searchers.utils.warmstarting module
	create_hp_ranges_for_warmstarting()

	create_filter_observed_data_for_warmstarting()

	create_base_gp_kernel_for_warmstarting()













            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.synchronous.dehb module


	
class syne_tune.optimizer.schedulers.synchronous.dehb.TrialInformation(encoded_config, level, metric_val=None)

	Bases: object

Information the scheduler maintains per trial.


	
encoded_config: ndarray

	




	
level: int

	




	
metric_val: Optional[float] = None

	








	
class syne_tune.optimizer.schedulers.synchronous.dehb.ExtendedSlotInRung(bracket_id, slot_in_rung)

	Bases: object

Extends SlotInRung mostly for convenience


	
slot_in_rung()

	
	Return type:

	SlotInRung














	
class syne_tune.optimizer.schedulers.synchronous.dehb.DifferentialEvolutionHyperbandScheduler(config_space, rungs_first_bracket, num_brackets_per_iteration=None, **kwargs)

	Bases: SynchronousHyperbandCommon

Differential Evolution Hyperband, as proposed in



DEHB: Evolutionary Hyperband for Scalable, Robust and Efficient Hyperparameter Optimization

Noor Awad, Neeratyoy Mallik, Frank Hutter

IJCAI 30 (2021), pages 2147-2153

https://arxiv.org/abs/2105.09821






We implement DEHB as a variant of synchronous Hyperband, which may
differ slightly from the implementation of the authors.
Main differences to synchronous Hyperband:


	In DEHB, trials are not paused and potentially promoted (except in the
very first bracket). Therefore, checkpointing is not used (except in
the very first bracket, if support_pause_resume is True)


	Only the initial configurations are drawn at random (or drawn from the
searcher). Whenever possible, new configurations (in their internal
encoding) are derived from earlier ones by way of differential evolution





	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for trial evaluation function


	rungs_first_bracket (List[Tuple[int, int]]) – Determines rung level systems for each
bracket, see
DifferentialEvolutionHyperbandBracketManager


	num_brackets_per_iteration (Optional[int]) – Number of brackets per iteration. The
algorithm cycles through these brackets in one iteration. If not
given, the maximum number is used (i.e., len(rungs_first_bracket))


	metric (str) – Name of metric to optimize, key in result’s obtained via
on_trial_result()


	searcher (str, optional) – Searcher for get_config decisions. Passed to
searcher_factory() along
with search_options and extra information. Supported values:
SUPPORTED_SEARCHERS_HYPERBAND.
If searcher == "random_encoded" (default), the encoded configs are
sampled directly, each entry independently from U([0, 1]).
This distribution has higher entropy than for “random” if
there are discrete hyperparameters in config_space. Note that
points_to_evaluate is still used in this case.


	search_options (Dict[str, Any], optional) – Passed to
searcher_factory().
Note: If search_options["allow_duplicates"] == True, then
suggest() may return a configuration more than once


	mode (str, optional) – Mode to use for the metric given, can be “min” (default) or
“max”


	points_to_evaluate (List[dict], optional) – List of configurations to be evaluated
initially (in that order). Each config in the list can be partially
specified, or even be an empty dict. For each hyperparameter not
specified, the default value is determined using a midpoint heuristic.
If None (default), this is mapped to [dict()], a single default config
determined by the midpoint heuristic. If [] (empty list), no initial
configurations are specified.


	random_seed (int, optional) – Master random seed. Generators used in the scheduler
or searcher are seeded using
RandomSeedGenerator.
If not given, the master random seed is drawn at random here.


	max_resource_attr (str, optional) – Key name in config for fixed attribute
containing the maximum resource. If given, trials need not be
stopped, which can run more efficiently.


	max_resource_level (int, optional) – Largest rung level, corresponds to max_t in
FIFOScheduler. Must be positive
int larger than grace_period. If this is not given, it is inferred
like in FIFOScheduler. In
particular, it is not needed if max_resource_attr is given.


	resource_attr (str, optional) – Name of resource attribute in results obtained via
on_trial_result(). The type of resource must be int. Default to
“epoch”


	mutation_factor (float, optional) – In \((0, 1]\). Factor \(F\) used in the rand/1
mutation operation of DE. Default to 0.5


	crossover_probability (float, optional) – In \((0, 1)\). Probability \(p\) used
in crossover operation (child entries are chosen with probability
\(p\)). Defaults to 0.5


	support_pause_resume (bool, optional) – If True, _suggest() supports pause and
resume in the first bracket (this is the default). If the objective
supports checkpointing, this is made use of. Defaults to True.
Note: The resumed trial still gets assigned a new trial_id, but it
starts from the earlier checkpoint.


	searcher_data (str, optional) – Relevant only if a model-based searcher is used.
Example: For NN tuning and resource_attr == "epoch", we receive a
result for each epoch, but not all epoch values are also rung levels.
searcher_data determines which of these results are passed to the
searcher. As a rule, the more data the searcher receives, the better
its fit, but also the more expensive get_config may become. Choices:


	”rungs” (default): Only results at rung levels. Cheapest


	”all”: All results. Most expensive




Note: For a Gaussian additive learning curve surrogate model, this
has to be set to “all”.











	
MAX_RETRIES = 50

	




	
property rung_levels: List[int]

	
	Returns:

	Rung levels (positive int; increasing), may or may not
include max_resource_level










	
property num_brackets: int

	
	Returns:

	Number of brackets (i.e., rung level systems). If the scheduler
does not use brackets, it has to return 1










	
on_trial_result(trial, result)

	Called on each intermediate result reported by a trial.

At this point, the trial scheduler can make a decision by returning
one of SchedulerDecision.CONTINUE,
SchedulerDecision.PAUSE, or SchedulerDecision.STOP.
This will only be called when the trial is currently running.


	Parameters:

	
	trial (Trial) – Trial for which results are reported


	result (Dict[str, Any]) – Result dictionary






	Return type:

	str



	Returns:

	Decision what to do with the trial










	
on_trial_error(trial)

	Given the trial is currently pending, we send a result at its
milestone for metric value NaN. Such trials are ranked after all others
and will most likely not be promoted.






	
metric_names()

	
	Return type:

	List[str]



	Returns:

	List of metric names. The first one is the target
metric optimized over, unless the scheduler is a genuine
multi-objective metric (for example, for sampling the Pareto front)










	
metric_mode()

	
	Return type:

	str



	Returns:

	“min” if target metric is minimized, otherwise “max”.
Here, “min” should be the default. For a genuine multi-objective
scheduler, a list of modes is returned
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.synchronous.dehb_bracket module


	
class syne_tune.optimizer.schedulers.synchronous.dehb_bracket.DifferentialEvolutionHyperbandBracket(rungs, mode)

	Bases: SynchronousBracket

Represents a bracket in Differential Evolution Hyperband (DEHB).

There are a number of differences to brackets in standard synchronous
Hyperband (SynchronousHyperbandBracket):


	on_result(): result.trial_id overwrites trial_id in rung
even if latter is not None.


	Promotions are not triggered automatically when a rung is complete


	Some additional methods





	
property num_rungs: int

	




	
size_of_current_rung()

	
	Return type:

	int










	
trial_id_for_slot(rung_index, slot_index)

	
	Return type:

	Optional[int]










	
top_list_for_previous_rung()

	Returns list of trial_ids corresponding to best scoring entries
in rung below the currently active one (which must not be the base
rung). The list is of the size of the current rung.


	Return type:

	List[int]
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.synchronous.dehb_bracket_manager module


	
class syne_tune.optimizer.schedulers.synchronous.dehb_bracket_manager.DifferentialEvolutionHyperbandBracketManager(rungs_first_bracket, mode, num_brackets_per_iteration=None)

	Bases: SynchronousHyperbandBracketManager

Special case of SynchronousHyperbandBracketManager to manage DEHB
brackets (type DifferentialEvolutionHyperbandBracket).

In DEHB, the list of brackets is determined by the first one and the number
of brackets. Also, later brackets have less total budget, because the size
of a rung is determined by its level, independent of the bracket. This is
different to what is done in synchronous Hyperband, where the rungs of
later brackets have larger sizes, so the total budget of each bracket is
the same.

We also need additional methods to access trial_id’s in specific rungs, as
well as entries of the top lists for completed rungs. This is because DEHB
controls the creation of new configurations at higher rungs, while
synchronous Hyperband relies on automatic promotion from lower rungs.


	
size_of_current_rung(bracket_id)

	
	Return type:

	int










	
trial_id_from_parent_slot(bracket_id, level, slot_index)

	The parent slot has the same slot index and rung level in the
largest bracket < bracket_id with a trial_id not None. If no
such slot exists, None is returned.
For a cross-over or selection operation, the target is chosen
from the parent slot.


	Return type:

	Optional[int]










	
top_of_previous_rung(bracket_id, pos)

	For the current rung in bracket bracket_id, consider the slots of
the previous rung (below) in sorted order. We return the trial_id of
position pos (so for pos=0, the best entry).


	Return type:

	int
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.synchronous.hyperband module


	
class syne_tune.optimizer.schedulers.synchronous.hyperband.SynchronousHyperbandCommon(config_space, **kwargs)

	Bases: TrialSchedulerWithSearcher, MultiFidelitySchedulerMixin

Common code for _create_internal() in
SynchronousHyperbandScheduler
and
DifferentialEvolutionHyperbandScheduler


	
property searcher: BaseSearcher | None

	




	
property resource_attr: str

	
	Returns:

	Name of resource attribute in reported results










	
property max_resource_level: int

	
	Returns:

	Maximum resource level










	
property searcher_data: str

	
	Returns:

	Relevant only if a model-based searcher is used.
Example: For NN tuning and resource_attr == "epoch", we receive
a result for each epoch, but not all epoch values are also rung
levels. searcher_data determines which of these results are
passed to the searcher. As a rule, the more data the searcher
receives, the better its fit, but also the more expensive
get_config() may become. Choices:


	”rungs”: Only results at rung levels. Cheapest


	”all”: All results. Most expensive


	”rungs_and_last”: Results at rung levels plus last recent one.
Not available for all multi-fidelity schedulers



















	
class syne_tune.optimizer.schedulers.synchronous.hyperband.SynchronousHyperbandScheduler(config_space, bracket_rungs, **kwargs)

	Bases: SynchronousHyperbandCommon, DefaultRemoveCheckpointsSchedulerMixin

Synchronous Hyperband. Compared to
HyperbandScheduler, this is also
scheduling jobs asynchronously, but decision-making is synchronized,
in that trials are only promoted to the next milestone once the rung they
are currently paused at, is completely occupied.

Our implementation never delays scheduling of a job. If the currently
active bracket does not accept jobs, we assign the job to a later bracket.
This means that at any point in time, several brackets can be active, but
jobs are preferentially assigned to the first one (the “primary” active
bracket).


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for trial evaluation function


	bracket_rungs (List[List[Tuple[int, int]]]) – Determines rung level systems for each bracket, see
SynchronousHyperbandBracketManager


	metric (str) – Name of metric to optimize, key in result’s obtained via
on_trial_result()


	searcher (str, optional) – Searcher for get_config decisions. Passed to
searcher_factory() along
with search_options and extra information. Supported values:
SUPPORTED_SEARCHERS_HYPERBAND.
Defaults to “random” (i.e., random search)


	search_options (Dict[str, Any], optional) – Passed to
searcher_factory().


	mode (str, optional) – Mode to use for the metric given, can be “min” (default) or
“max”


	points_to_evaluate (List[dict], optional) – List of configurations to be evaluated
initially (in that order). Each config in the list can be partially
specified, or even be an empty dict. For each hyperparameter not
specified, the default value is determined using a midpoint heuristic.
If None (default), this is mapped to [dict()], a single default config
determined by the midpoint heuristic. If [] (empty list), no initial
configurations are specified.


	random_seed (int, optional) – Master random seed. Generators used in the scheduler
or searcher are seeded using
RandomSeedGenerator.
If not given, the master random seed is drawn at random here.


	max_resource_attr (str, optional) – Key name in config for fixed attribute
containing the maximum resource. If given, trials need not be
stopped, which can run more efficiently.


	max_resource_level (int, optional) – Largest rung level, corresponds to max_t in
FIFOScheduler. Must be positive
int larger than grace_period. If this is not given, it is inferred
like in FIFOScheduler. In
particular, it is not needed if max_resource_attr is given.


	resource_attr (str, optional) – Name of resource attribute in results obtained via
``on_trial_result(). The type of resource must be int. Default to
“epoch”


	searcher_data (str, optional) – Relevant only if a model-based searcher is used.
Example: For NN tuning and resource_attr == "epoch", we receive a
result for each epoch, but not all epoch values are also rung levels.
searcher_data determines which of these results are passed to the
searcher. As a rule, the more data the searcher receives, the better
its fit, but also the more expensive get_config may become. Choices:


	”rungs” (default): Only results at rung levels. Cheapest


	”all”: All results. Most expensive




Note: For a Gaussian additive learning curve surrogate model, this
has to be set to “all”.











	
property rung_levels: List[int]

	
	Returns:

	Rung levels (positive int; increasing), may or may not
include max_resource_level










	
property num_brackets: int

	
	Returns:

	Number of brackets (i.e., rung level systems). If the scheduler
does not use brackets, it has to return 1










	
on_trial_result(trial, result)

	Called on each intermediate result reported by a trial.

At this point, the trial scheduler can make a decision by returning
one of SchedulerDecision.CONTINUE,
SchedulerDecision.PAUSE, or SchedulerDecision.STOP.
This will only be called when the trial is currently running.


	Parameters:

	
	trial (Trial) – Trial for which results are reported


	result (Dict[str, Any]) – Result dictionary






	Return type:

	str



	Returns:

	Decision what to do with the trial










	
on_trial_error(trial)

	Given the trial is currently pending, we send a result at its
milestone for metric value NaN. Such trials are ranked after all others
and will most likely not be promoted.






	
metric_names()

	
	Return type:

	List[str]



	Returns:

	List of metric names. The first one is the target
metric optimized over, unless the scheduler is a genuine
multi-objective metric (for example, for sampling the Pareto front)










	
metric_mode()

	
	Return type:

	str



	Returns:

	“min” if target metric is minimized, otherwise “max”.
Here, “min” should be the default. For a genuine multi-objective
scheduler, a list of modes is returned










	
trials_checkpoints_can_be_removed()

	Supports the general case (see header comment).
This method returns IDs of paused trials for which checkpoints can safely
be removed. These trials either cannot be resumed anymore, or it is very
unlikely they will be resumed. Any trial ID needs to be returned only once,
not over and over. If a trial gets stopped (by returning
SchedulerDecision.STOP in on_trial_result()), its checkpoint
is removed anyway, so its ID does not have to be returned here.


	Return type:

	List[int]



	Returns:

	IDs of paused trials for which checkpoints can be removed
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.synchronous.hyperband_bracket module


	
class syne_tune.optimizer.schedulers.synchronous.hyperband_bracket.SlotInRung(rung_index, level, slot_index, trial_id, metric_val)

	Bases: object

Used to communicate slot positions and content for them.


	
rung_index: int

	




	
level: int

	




	
slot_index: int

	




	
trial_id: Optional[int]

	




	
metric_val: Optional[float]

	








	
class syne_tune.optimizer.schedulers.synchronous.hyperband_bracket.SynchronousBracket(mode)

	Bases: object

Base class for a single bracket in synchronous Hyperband algorithms.

A bracket consists of a list of rungs. Each rung consists of a number of
slots and a resource level (called rung level). The larger the rung level,
the smaller the number of slots.

A slot is occupied (by a metric value), free, or pending. A pending slot
has already been returned by next_free_slot(). Slots
in the lowest rung (smallest rung level, largest size) are filled first.
At any point in time, only slots in the lowest not fully occupied rung
can be filled. If there are no free slots in the current rung, but there
are pending ones, the bracket is blocked, and another bracket needs to
be worked on.


	
static assert_check_rungs(rungs)

	




	
property num_rungs: int

	




	
is_bracket_complete()

	
	Return type:

	bool










	
num_pending_slots()

	
	Return type:

	int



	Returns:

	Number of pending slots (have been returned by
next_free_slot, but not yet occupied










	
next_free_slot()

	
	Return type:

	Optional[SlotInRung]










	
on_result(result)

	Provides result for slot previously requested by next_free_slot.
Here, result.metric is written to the slot in order to make it
occupied. Also, result.trial_id is written there.

We normally return None. But if the result passed completes the
current rung, this triggers the creation of a child run which consists
of promoted trials from the current rung. In this case, we return the
IDs of trials which have not been promoted. This is used in for early
removal of checkpoints, see
trials_checkpoints_can_be_removed().


	Parameters:

	result (SlotInRung) – See above



	Return type:

	Optional[List[int]]



	Returns:

	See above














	
class syne_tune.optimizer.schedulers.synchronous.hyperband_bracket.SynchronousHyperbandBracket(rungs, mode)

	Bases: SynchronousBracket

Represents a bracket in standard synchronous Hyperband.

When a rung is fully occupied, slots for the next rung are assigned with
the trial_id’s having the best metric values. At any point in time, only
slots in the lowest not fully occupied rung can be filled.


	
property num_rungs: int

	








	
syne_tune.optimizer.schedulers.synchronous.hyperband_bracket.get_top_list(rung, new_len, mode)

	Returns list of IDs of trials of len new_len which should be promoted,
because they performed best. We also return the list of IDs of the remaining
trials, which are not to be promoted.


	Parameters:

	
	rung (List[Tuple[int, float]]) – Current rung which has just been completed


	new_len (int) – Size of new rung


	mode (str) – “min” or “max”






	Return type:

	(List[int], List[int])



	Returns:

	(top_list, remaining_list)












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.synchronous.hyperband_bracket_manager module


	
class syne_tune.optimizer.schedulers.synchronous.hyperband_bracket_manager.SynchronousHyperbandBracketManager(bracket_rungs, mode)

	Bases: object

Maintains all brackets, relays requests for another job and report of
result to one of the brackets.

Each bracket contains a number of rungs, the largest one max_num_rungs.
A bracket with k rungs has offset max_num_rungs - k. Hyperband cycles
through brackets with offset 0, ..., num_brackets - 1, where
num_brackets <= max_num_rungs.

At any given time, one bracket is primary, all other active brackets are
secondary. Jobs are preferentially assigned to the primary bracket, but
if its current rung has no free slots (all are pending), secondary
brackets are considered.

Each bracket has a bracket_id (nonnegative int). The primary bracket
always has the lowest id of all active ones. For job assignment, we iterate
over active brackets starting from the primary, and assign the job to the
first bracket which has a free slot. If none of the active brackets have
a free slot, a new bracket is created.


	Parameters:

	
	bracket_rungs (List[List[Tuple[int, int]]]) – Rungs for successive brackets, from largest to
smallest


	mode (str) – Criterion is minimized (‘min’) or maximized (‘max’)









	
property bracket_rungs: List[List[Tuple[int, int]]]

	




	
level_to_prev_level(bracket_id, level)

	
	Parameters:

	
	bracket_id (int) – 


	level (int) – Level in bracket






	Return type:

	int



	Returns:

	Previous level; or 0










	
next_job()

	Called by scheduler to request a new job. Jobs are preferentially
assigned to the primary bracket, which has the lowest id among all
active brackets. If the primary bracket does not accept jobs (because
all remaining slots are already pending), further active brackets are
polled. If none of the active brackets accept jobs, a new bracket is
created.

The job description returned is (bracket_id, slot_in_rung), where
slot_in_rung is SlotInRung, containing the info of what
is to be done (trial_id, level fields). It is this entry which
has to be returned in ‘on_result``, which the metric_val field set.
If the job returned here has trial_id == None, it comes from the
lowest rung of its bracket, and the trial_id has to be set as well
when returning the record in on_result.


	Return type:

	Tuple[int, SlotInRung]



	Returns:

	Tuple (bracket_id, slot_in_rung)










	
on_result(result)

	Called by scheduler to provide result for previously requested job.
See next_job().


	Parameters:

	result (Tuple[int, SlotInRung]) – Tuple (bracket_id, slot_in_rung)



	Return type:

	Optional[List[int]]



	Returns:

	See on_result()
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.synchronous.hyperband_impl module


	
class syne_tune.optimizer.schedulers.synchronous.hyperband_impl.SynchronousGeometricHyperbandScheduler(config_space, **kwargs)

	Bases: SynchronousHyperbandScheduler

Special case of SynchronousHyperbandScheduler with rung system
defined by geometric sequences (see
SynchronousHyperbandRungSystem.geometric()). This is the most
frequently used case.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for trial evaluation function


	metric (str) – Name of metric to optimize, key in result’s obtained via
on_trial_result()


	grace_period (int, optional) – Smallest (resource) rung level. Must be positive int.
Defaults to 1


	reduction_factor (float, optional) – Approximate ratio of successive rung levels. Must
be >= 2. Defaults to 3


	brackets (int, optional) – Number of brackets to be used. The default is to use the
maximum number of brackets per iteration. Pass 1 for successive halving.


	searcher (str, optional) – Selects searcher. Passed to
searcher_factory().
Defaults to “random”


	search_options (Dict[str, Any], optional) – Passed to
searcher_factory().


	mode (str, optional) – Mode to use for the metric given, can be “min” (default) or
“max”


	points_to_evaluate (List[dict], optional) – List of configurations to be evaluated
initially (in that order). Each config in the list can be partially
specified, or even be an empty dict. For each hyperparameter not
specified, the default value is determined using a midpoint heuristic.
If None (default), this is mapped to [dict()], a single default config
determined by the midpoint heuristic. If [] (empty list), no initial
configurations are specified.


	random_seed (int, optional) – Master random seed. Generators used in the scheduler
or searcher are seeded using
RandomSeedGenerator.
If not given, the master random seed is drawn at random here.


	max_resource_level (int, optional) – Largest rung level, corresponds to max_t in
FIFOScheduler. Must be positive
int larger than grace_period. If this is not given, it is inferred
like in FIFOScheduler. In
particular, it is not needed if max_resource_attr is given.


	max_resource_attr (str, optional) – Key name in config for fixed attribute
containing the maximum resource. If given, trials need not be
stopped, which can run more efficiently.


	resource_attr (str, optional) – Name of resource attribute in results obtained via
``on_trial_result(). The type of resource must be int. Default to
“epoch”


	searcher_data (str, optional) – Relevant only if a model-based searcher is used.
Example: For NN tuning and resource_attr == "epoch", we receive a
result for each epoch, but not all epoch values are also rung levels.
searcher_data determines which of these results are passed to the
searcher. As a rule, the more data the searcher receives, the better
its fit, but also the more expensive get_config may become. Choices:


	”rungs” (default): Only results at rung levels. Cheapest


	”all”: All results. Most expensive




Note: For a Gaussian additive learning curve surrogate model, this
has to be set to “all”.















	
class syne_tune.optimizer.schedulers.synchronous.hyperband_impl.GeometricDifferentialEvolutionHyperbandScheduler(config_space, **kwargs)

	Bases: DifferentialEvolutionHyperbandScheduler

Special case of DifferentialEvolutionHyperbandScheduler with
rung system defined by geometric sequences. This is the most frequently
used case.


	Parameters:

	
	config_space (Dict[str, Any]) – Configuration space for trial evaluation function


	grace_period (int, optional) – Smallest (resource) rung level. Must be positive int.
Defaults to 1


	reduction_factor (float, optional) – Approximate ratio of successive rung levels. Must
be >= 2. Defaults to 3


	brackets (int, optional) – Number of brackets to be used. The default is to use the
maximum number of brackets per iteration. Pass 1 for successive halving.


	metric (str) – Name of metric to optimize, key in result’s obtained via
on_trial_result()


	searcher (str, optional) – Selects searcher. Passed to
searcher_factory()..
If searcher == "random_encoded" (default), the encoded configs are
sampled directly, each entry independently from U([0, 1]).
This distribution has higher entropy than for “random” if
there are discrete hyperparameters in config_space. Note that
points_to_evaluate is still used in this case.


	search_options (Dict[str, Any], optional) – Passed to
searcher_factory().


	mode (str, optional) – Mode to use for the metric given, can be “min” (default) or
“max”


	points_to_evaluate (List[dict], optional) – List of configurations to be evaluated
initially (in that order). Each config in the list can be partially
specified, or even be an empty dict. For each hyperparameter not
specified, the default value is determined using a midpoint heuristic.
If None (default), this is mapped to [dict()], a single default config
determined by the midpoint heuristic. If [] (empty list), no initial
configurations are specified.


	random_seed (int, optional) – Master random seed. Generators used in the scheduler
or searcher are seeded using
RandomSeedGenerator.
If not given, the master random seed is drawn at random here.


	max_resource_level (int, optional) – Largest rung level, corresponds to max_t in
FIFOScheduler. Must be positive
int larger than grace_period. If this is not given, it is inferred
like in FIFOScheduler. In
particular, it is not needed if max_resource_attr is given.


	max_resource_attr (str, optional) – Key name in config for fixed attribute
containing the maximum resource. If given, trials need not be
stopped, which can run more efficiently.


	resource_attr (str, optional) – Name of resource attribute in results obtained via
on_trial_result(). The type of resource must be int. Default to
“epoch”


	mutation_factor (float, optional) – In \((0, 1]\). Factor \(F\) used in the rand/1
mutation operation of DE. Default to 0.5


	crossover_probability (float, optional) – In \((0, 1)\). Probability \(p\) used
in crossover operation (child entries are chosen with probability
\(p\)). Defaults to 0.5


	support_pause_resume (bool, optional) – If True, _suggest() supports pause and
resume in the first bracket (this is the default). If the objective
supports checkpointing, this is made use of. Defaults to True.
Note: The resumed trial still gets assigned a new trial_id, but it
starts from the earlier checkpoint.















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.synchronous.hyperband_rung_system module


	
class syne_tune.optimizer.schedulers.synchronous.hyperband_rung_system.SynchronousHyperbandRungSystem

	Bases: object

Collects factory methods for RungSystemsPerBracket rung systems to be
used in SynchronousHyperbandBracketManager.


	
static geometric(min_resource, max_resource, reduction_factor, num_brackets=None)

	This is the geometric progression setup from the original papers on
successive halving and Hyperband.

If smax = ceil(log(max_resource / min_resource) /
log(reduction_factor)), there can be at most s_max + 1 brackets.
Here, bracket s has r_num = s_max - s + 1 rungs, and the size of
rung r in bracket s is


n(r,s) = ceil( (s_max + 1) / r_num) *
power(reduction_factor, r_num - r - 1)





	Parameters:

	
	min_resource (int) – Smallest resource level (positive int)


	max_resource (int) – Largest resource level (positive int)


	reduction_factor (float) – Approximate ratio between successive rung levels


	num_brackets (Optional[int]) – Number of brackets. If not given, the maximum number
of brackets is used. Pass 1 for successive halving






	Return type:

	List[List[Tuple[int, int]]]



	Returns:

	Rung system
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.transfer_learning.bounding_box module


	
class syne_tune.optimizer.schedulers.transfer_learning.bounding_box.BoundingBox(scheduler_fun, config_space, metric, transfer_learning_evaluations, mode=None, num_hyperparameters_per_task=1)

	Bases: TransferLearningMixin, TrialScheduler

Simple baseline that computes a bounding-box of the best candidate found in
previous tasks to restrict the search space to only good candidates. The
bounding-box is obtained by restricting to the min-max of the best numerical
hyperparameters and restricting to the set of the best candidates on categorical
parameters. Reference:



Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning.

Valerio Perrone, Huibin Shen, Matthias Seeger, Cédric Archambeau, Rodolphe Jenatton.

NeurIPS 2019.






scheduler_fun is used to create the scheduler to be used here, feeding
it with the modified config space. Any additional scheduler arguments
(such as points_to_evaluate) should be encoded inside this function.
Example:

from syne_tune.optimizer.baselines import RandomSearch

def scheduler_fun(new_config_space: Dict[str, Any], mode: str, metric: str):
    return RandomSearch(new_config_space, metric, mode)

bb_scheduler = BoundingBox(scheduler_fun, ...)





Here, bb_scheduler represents random search, where the hyperparameter
ranges are restricted to contain the best evalutions of previous tasks,
as provided by transfer_learning_evaluations.


	Parameters:

	
	scheduler_fun (Callable[[dict, str, str], TrialScheduler]) – Maps tuple of configuration space (dict), mode (str),
metric (str) to a scheduler. This is required since the final
configuration space is known only after computing a bounding-box.


	config_space (Dict[str, Any]) – Initial configuration space to consider, will be updated
to the bounding of the best evaluations of previous tasks


	metric (str) – Objective name to optimize, must be present in transfer
learning evaluations.


	mode (Optional[str]) – Mode to be considered, default to “min”.


	transfer_learning_evaluations (Dict[str, TransferLearningTaskEvaluations]) – Dictionary from task name to
offline evaluations.


	num_hyperparameters_per_task (int) – Number of the best configurations to
use per task when computing the bounding box, defaults to 1.









	
suggest(trial_id)

	Returns a suggestion for a new trial, or one to be resumed

This method returns suggestion of type TrialSuggestion (unless
there is no config left to explore, and None is returned).

If suggestion.spawn_new_trial_id is True, a new trial is to be
started with config suggestion.config. Typically, this new trial
is started from scratch. But if suggestion.checkpoint_trial_id is
given, the trial is to be (warm)started from the checkpoint written
for the trial with this ID. The new trial has ID trial_id.

If suggestion.spawn_new_trial_id is False, an existing and currently
paused trial is to be resumed, whose ID is
suggestion.checkpoint_trial_id. If this trial has a checkpoint, we
start from there. In this case, suggestion.config is optional. If not
given (default), the config of the resumed trial does not change.
Otherwise, its config is overwritten by suggestion.config (see
HyperbandScheduler with
type="promotion" for an example why this can be useful).

Apart from the HP config, additional fields can be appended to the
dict, these are passed to the trial function as well.


	Parameters:

	trial_id (int) – ID for new trial to be started (ignored if existing
trial to be resumed)



	Return type:

	Optional[TrialSuggestion]



	Returns:

	Suggestion for a trial to be started or to be resumed, see
above. If no suggestion can be made, None is returned










	
on_trial_add(trial)

	Called when a new trial is added to the trial runner.

Additions are normally triggered by suggest.


	Parameters:

	trial (Trial) – Trial to be added










	
on_trial_complete(trial, result)

	Notification for the completion of trial.

Note that on_trial_result() is called with the same result before.
However, if the scheduler only uses one final report from each
trial, it may ignore on_trial_result() and just use result here.


	Parameters:

	
	trial (Trial) – Trial which is completing


	result (Dict[str, Any]) – Result dictionary













	
on_trial_remove(trial)

	Called to remove trial.

This is called when the trial is in PAUSED or PENDING state. Otherwise,
call on_trial_complete().


	Parameters:

	trial (Trial) – Trial to be removed










	
on_trial_error(trial)

	Called when a trial has failed.


	Parameters:

	trial (Trial) – Trial for which error is reported.










	
on_trial_result(trial, result)

	Called on each intermediate result reported by a trial.

At this point, the trial scheduler can make a decision by returning
one of SchedulerDecision.CONTINUE,
SchedulerDecision.PAUSE, or SchedulerDecision.STOP.
This will only be called when the trial is currently running.


	Parameters:

	
	trial (Trial) – Trial for which results are reported


	result (Dict[str, Any]) – Result dictionary






	Return type:

	str



	Returns:

	Decision what to do with the trial










	
metric_mode()

	
	Return type:

	str



	Returns:

	“min” if target metric is minimized, otherwise “max”.
Here, “min” should be the default. For a genuine multi-objective
scheduler, a list of modes is returned
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.transfer_learning.quantile_based.normalization_transforms module


	
class syne_tune.optimizer.schedulers.transfer_learning.quantile_based.normalization_transforms.GaussianTransform(y, random_state=None)

	Bases: object

Transform data into Gaussian by applying psi = Phi^{-1} o F where F is the truncated empirical CDF.
:type y: array
:param y: shape (n, dim)
:type random_state: Optional[RandomState]
:param random_state: If specified, randomize the rank when consecutive values exists between extreme values.


If none use lowest rank of duplicated values.





	
static z_transform(series, values_sorted, random_state=None)

	
	Parameters:

	
	series – shape (n, dim)


	values_sorted – series sorted on the first axis


	random_state (Optional[RandomState]) – if not None, ranks are drawn uniformly for values with consecutive ranges






	Returns:

	data with same shape as input series where distribution is normalized on all dimensions










	
transform(y)

	
	Parameters:

	y (array) – shape (n, dim)



	Returns:

	shape (n, dim), distributed along a normal














	
class syne_tune.optimizer.schedulers.transfer_learning.quantile_based.normalization_transforms.StandardTransform(y)

	Bases: object


	
transform(y)

	








	
syne_tune.optimizer.schedulers.transfer_learning.quantile_based.normalization_transforms.from_string(name, random_state=None)

	






            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.transfer_learning.quantile_based.quantile_based_searcher module


	
syne_tune.optimizer.schedulers.transfer_learning.quantile_based.quantile_based_searcher.extract_input_output(transfer_learning_evaluations, normalization, random_state)

	




	
syne_tune.optimizer.schedulers.transfer_learning.quantile_based.quantile_based_searcher.fit_model(config_space, transfer_learning_evaluations, normalization, max_fit_samples, random_state, model=XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=None, n_jobs=None, num_parallel_tree=None, random_state=None, ...))

	




	
syne_tune.optimizer.schedulers.transfer_learning.quantile_based.quantile_based_searcher.eval_model(model_pipeline, X, y)

	




	
syne_tune.optimizer.schedulers.transfer_learning.quantile_based.quantile_based_searcher.subsample(X, y, max_samples=10000, random_state=None)

	Subsample both X and y with max_samples elements. If max_samples is not set then X and y are returned as such
and if it is set, the index of X is reset.
:rtype: Tuple[DataFrame, array]
:return: (X, y) with max_samples sampled elements.






	
class syne_tune.optimizer.schedulers.transfer_learning.quantile_based.quantile_based_searcher.QuantileBasedSurrogateSearcher(config_space, metric, transfer_learning_evaluations, mode=None, max_fit_samples=100000, normalization='gaussian', **kwargs)

	Bases: StochasticSearcher

Implements the transfer-learning method:



A Quantile-based Approach for Hyperparameter Transfer Learning.

David Salinas, Huibin Shen, Valerio Perrone.

ICML 2020.






This is the Copula Thompson Sampling approach described in the paper where a
surrogate is fitted on the transfer learning data to predict mean/variance of
configuration performance given a hyperparameter. The surrogate is then sampled
from and the best configurations are returned as next candidate to evaluate.

Additional arguments on top of parent class
StochasticSearcher:


	Parameters:

	
	mode (Optional[str]) – Whether to minimize or maximize, default to “min”.


	transfer_learning_evaluations (Dict[str, TransferLearningTaskEvaluations]) – Dictionary from task name to offline
evaluations.


	max_fit_samples (int) – Maximum number to use when fitting the method.
Defaults to 100000


	normalization (str) – Default to “gaussian” which first computes the rank
and then applies Gaussian inverse CDF. “standard” applies just
standard normalization (remove mean and divide by variance) but can
perform significantly worse.









	
clone_from_state(state)

	Together with get_state(), this is needed in order to store and
re-create the mutable state of the searcher.

Given state as returned by get_state(), this method combines the
non-pickle-able part of the immutable state from self with state
and returns the corresponding searcher clone. Afterwards, self is
not used anymore.


	Parameters:

	state (Dict[str, Any]) – See above



	Returns:

	New searcher object










	
get_config(**kwargs)

	Suggest a new configuration.

Note: Query _next_initial_config() for initial configs to return
first.


	Parameters:

	kwargs – Extra information may be passed from scheduler to
searcher



	Return type:

	Optional[dict]



	Returns:

	New configuration. The searcher may return None if a new
configuration cannot be suggested. In this case, the tuning will
stop. This happens if searchers never suggest the same config more
than once, and all configs in the (finite) search space are
exhausted.
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.transfer_learning.quantile_based package


Submodules



	syne_tune.optimizer.schedulers.transfer_learning.quantile_based.normalization_transforms module
	GaussianTransform
	GaussianTransform.z_transform()

	GaussianTransform.transform()





	StandardTransform
	StandardTransform.transform()





	from_string()





	syne_tune.optimizer.schedulers.transfer_learning.quantile_based.quantile_based_searcher module
	extract_input_output()

	fit_model()

	eval_model()

	subsample()

	QuantileBasedSurrogateSearcher
	QuantileBasedSurrogateSearcher.clone_from_state()

	QuantileBasedSurrogateSearcher.get_config()

















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.transfer_learning.rush module


	
class syne_tune.optimizer.schedulers.transfer_learning.rush.RUSHScheduler(config_space, transfer_learning_evaluations, metric, type='stopping', points_to_evaluate=None, custom_rush_points=None, num_hyperparameters_per_task=1, **kwargs)

	Bases: TransferLearningMixin, HyperbandScheduler

A transfer learning variation of Hyperband which uses previously
well-performing hyperparameter configurations as an initialization. The best
hyperparameter configuration of each individual task provided is evaluated.
The one among them which performs best on the current task will serve as a
hurdle and is used to prune other candidates. This changes the standard
successive halving promotion as follows. As usual, only the top-performing
fraction is promoted to the next rung level. However, these candidates need
to be at least as good as the hurdle configuration to be promoted. In practice
this means that much fewer candidates can be promoted. Reference:



A resource-efficient method for repeated HPO and NAS.

Giovanni Zappella, David Salinas, Cédric Archambeau.

AutoML workshop @ ICML 2021.






Additional arguments on top of parent class
HyperbandScheduler.


	Parameters:

	
	transfer_learning_evaluations (Dict[str, TransferLearningTaskEvaluations]) – Dictionary from task name to offline
evaluations.


	points_to_evaluate (Optional[List[dict]]) – If given, these configurations are evaluated
after custom_rush_points and configurations inferred from
transfer_learning_evaluations. These points are not used to prune
any configurations.


	custom_rush_points (Optional[List[dict]]) – If given, these configurations are evaluated
first, in addition to top performing configurations from other tasks
and also serve to preemptively prune underperforming configurations


	num_hyperparameters_per_task (int) – The number of top hyperparameter
configurations to consider per task. Defaults to 1















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.transfer_learning.zero_shot module


	
class syne_tune.optimizer.schedulers.transfer_learning.zero_shot.ZeroShotTransfer(config_space, metric, transfer_learning_evaluations, mode='min', sort_transfer_learning_evaluations=True, use_surrogates=False, **kwargs)

	Bases: TransferLearningMixin, StochasticSearcher

A zero-shot transfer hyperparameter optimization method which jointly selects
configurations that minimize the average rank obtained on historic metadata
(transfer_learning_evaluations). This is a searcher which can be used
with FIFOScheduler. Reference:



Sequential Model-Free Hyperparameter Tuning.

Martin Wistuba, Nicolas Schilling, Lars Schmidt-Thieme.

IEEE International Conference on Data Mining (ICDM) 2015.






Additional arguments on top of parent class
StochasticSearcher:


	Parameters:

	
	transfer_learning_evaluations (Dict[str, TransferLearningTaskEvaluations]) – Dictionary from task name to
offline evaluations.


	mode (str) – Whether to minimize (“min”, default) or maximize (“max”)


	sort_transfer_learning_evaluations (bool) – Use False if the
hyperparameters for each task in transfer_learning_evaluations are
already in the same order. If set to True, hyperparameters are sorted.
Defaults to True


	use_surrogates (bool) – If the same configuration is not evaluated on all
tasks, set this to True. This will generate a set of configurations
and will impute their performance using surrogate models.
Defaults to False









	
get_config(**kwargs)

	Suggest a new configuration.

Note: Query _next_initial_config() for initial configs to return
first.


	Parameters:

	kwargs – Extra information may be passed from scheduler to
searcher



	Return type:

	Optional[dict]



	Returns:

	New configuration. The searcher may return None if a new
configuration cannot be suggested. In this case, the tuning will
stop. This happens if searchers never suggest the same config more
than once, and all configs in the (finite) search space are
exhausted.
















            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.utils.simple_profiler module


	
class syne_tune.optimizer.schedulers.utils.simple_profiler.ProfilingBlock(meta, time_stamp, durations)

	Bases: object


	
meta: Dict[str, Any]

	




	
time_stamp: float

	




	
durations: Dict[str, List[float]]

	








	
class syne_tune.optimizer.schedulers.utils.simple_profiler.SimpleProfiler

	Bases: object

Useful to profile time of recurring computations, for example
get_config calls in searchers.

Measurements are divided into blocks. A block is started by begin_block.
Each block stores meta data, a time stamp when begin_block was called
(relative to the time stamp for the first block, which is 0), and a dict of
lists of durations, whose keys are tags. A tag corresponds to a range of
code to be profiled. It may be executed many times within a block,
therefore lists of durations.

Tags can have multiple levels of prefixes, corresponding to brackets.


	
begin_block(meta)

	




	
push_prefix(prefix)

	




	
pop_prefix()

	




	
start(tag)

	




	
stop(tag)

	




	
clear()

	




	
records_as_dict()

	Return records as a dict of lists, can be converted into Pandas
data-frame by:
:rtype: Dict[str, Any]


pandas.DataFrame.fromDict(…)




Each entry corresponds to a column.












            

          

      

      

    

  

    
      
          
            
  
syne_tune.optimizer.schedulers.utils.successive_halving module


	
syne_tune.optimizer.schedulers.utils.successive_halving.successive_halving_rung_levels(rung_levels, grace_period, reduction_factor, rung_increment, max_t)

	Creates rung_levels from grace_period, reduction_factor

Note: If rung_levels is given and rung_levels[-1] == max_t, we strip
off this final entry, so that all rung levels are < max_t.


	Parameters:

	
	rung_levels (Optional[List[int]]) – If given, this is returned (but see above)


	grace_period (int) – See HyperbandScheduler


	reduction_factor (Optional[float]) – See HyperbandScheduler


	rung_increment (Optional[int]) – See HyperbandScheduler


	max_t (int) – See HyperbandScheduler






	Return type:

	List[int]



	Returns:

	List of rung levels












            

          

      

      

    

  

    
      
          
            
  
Code in benchmarking/examples/benchmark_dehb

Comparison of
DEHB
against a number of baselines.


benchmarking/examples/benchmark_dehb/baselines.py

from typing import Dict, Any
from syne_tune.experiments.baselines import (
    convert_categorical_to_ordinal,
    convert_categorical_to_ordinal_numeric,
)
from syne_tune.experiments.default_baselines import (
    ASHA,
    SyncHyperband,
    SyncBOHB,
    DEHB,
    SyncMOBSTER,
)


class Methods:
    ASHA = "ASHA"
    SYNCHB = "SYNCHB"
    DEHB = "DEHB"
    BOHB = "BOHB"
    ASHA_ORD = "ASHA-ORD"
    SYNCHB_ORD = "SYNCHB-ORD"
    DEHB_ORD = "DEHB-ORD"
    BOHB_ORD = "BOHB-ORD"
    ASHA_STOP = "ASHA-STOP"
    SYNCMOBSTER = "SYNCMOBSTER"


def conv_numeric_then_rest(margs) -> Dict[str, Any]:
    return convert_categorical_to_ordinal(
        convert_categorical_to_ordinal_numeric(
            margs.config_space, kind=margs.fcnet_ordinal
        )
    )


methods = {
    Methods.ASHA: lambda method_arguments: ASHA(
        method_arguments,
        type="promotion",
    ),
    Methods.SYNCHB: lambda method_arguments: SyncHyperband(method_arguments),
    Methods.DEHB: lambda method_arguments: DEHB(method_arguments),
    Methods.BOHB: lambda method_arguments: SyncBOHB(method_arguments),
    Methods.ASHA_ORD: lambda method_arguments: ASHA(
        method_arguments,
        config_space=conv_numeric_then_rest(method_arguments),
        type="promotion",
    ),
    Methods.SYNCHB_ORD: lambda method_arguments: SyncHyperband(
        method_arguments,
        config_space=conv_numeric_then_rest(method_arguments),
    ),
    Methods.DEHB_ORD: lambda method_arguments: DEHB(
        method_arguments,
        config_space=conv_numeric_then_rest(method_arguments),
    ),
    Methods.BOHB_ORD: lambda method_arguments: SyncBOHB(
        method_arguments,
        config_space=conv_numeric_then_rest(method_arguments),
    ),
    Methods.ASHA_STOP: lambda method_arguments: ASHA(
        method_arguments,
        type="stopping",
    ),
    Methods.SYNCMOBSTER: lambda method_arguments: SyncMOBSTER(method_arguments),
}








benchmarking/examples/benchmark_dehb/benchmark_definitions.py

from syne_tune.experiments.benchmark_definitions import (
    nas201_benchmark_definitions,
    fcnet_benchmark_definitions,
    lcbench_selected_benchmark_definitions,
    yahpo_lcbench_selected_benchmark_definitions,
)


benchmark_definitions = {
    **nas201_benchmark_definitions,
    **fcnet_benchmark_definitions,
    **lcbench_selected_benchmark_definitions,
    **yahpo_lcbench_selected_benchmark_definitions,
}








benchmarking/examples/benchmark_dehb/hpo_main.py

from typing import Dict, Any

from baselines import methods
from benchmark_definitions import benchmark_definitions
from syne_tune.experiments.launchers.hpo_main_simulator import main
from syne_tune.util import recursive_merge


extra_args = [
    dict(
        name="num_brackets",
        type=int,
        help="Number of brackets",
    ),
]


def map_method_args(args, method: str, method_kwargs: Dict[str, Any]) -> Dict[str, Any]:
    if args.num_brackets is not None:
        new_dict = {
            "scheduler_kwargs": {"brackets": args.num_brackets},
        }
        method_kwargs = recursive_merge(method_kwargs, new_dict)
    return method_kwargs


if __name__ == "__main__":
    main(methods, benchmark_definitions, extra_args, map_method_args)








benchmarking/examples/benchmark_dehb/launch_remote.py

from pathlib import Path

from benchmark_definitions import benchmark_definitions
from baselines import methods, Methods
from hpo_main import extra_args
from syne_tune.experiments.launchers.launch_remote_simulator import launch_remote


if __name__ == "__main__":

    def _is_expensive_method(method: str) -> bool:
        return method == Methods.SYNCMOBSTER

    entry_point = Path(__file__).parent / "hpo_main.py"
    launch_remote(
        entry_point=entry_point,
        methods=methods,
        benchmark_definitions=benchmark_definitions,
        extra_args=extra_args,
        is_expensive_method=_is_expensive_method,
    )








benchmarking/examples/benchmark_dehb/requirements.txt

syne-tune[gpsearchers,kde,blackbox-repository,yahpo,aws]
tqdm










            

          

      

      

    

  

    
      
          
            
  
Code in benchmarking/examples/benchmark_dyhpo

Comparison of
DyHPO
against a number of baselines.


benchmarking/examples/benchmark_dyhpo/baselines.py

from syne_tune.experiments.default_baselines import (
    BayesianOptimization,
    DyHPO,
    ASHA,
    MOBSTER,
    HyperTune,
)


class Methods:
    BO = "BO"
    ASHA = "ASHA"
    MOBSTER = "MOBSTER"
    HYPERTUNE = "HyperTune"
    DYHPO = "DYHPO"


methods = {
    Methods.BO: lambda method_arguments: BayesianOptimization(method_arguments),
    Methods.ASHA: lambda method_arguments: ASHA(method_arguments, type="promotion"),
    Methods.MOBSTER: lambda method_arguments: MOBSTER(
        method_arguments, type="promotion"
    ),
    Methods.HYPERTUNE: lambda method_arguments: HyperTune(
        method_arguments, type="promotion"
    ),
    Methods.DYHPO: lambda method_arguments: DyHPO(method_arguments),
}








benchmarking/examples/benchmark_dyhpo/benchmark_definitions.py

from syne_tune.experiments.benchmark_definitions import (
    nas201_benchmark_definitions,
    lcbench_selected_benchmark_definitions,
)


benchmark_definitions = {
    **lcbench_selected_benchmark_definitions,
    **nas201_benchmark_definitions,
}








benchmarking/examples/benchmark_dyhpo/hpo_main.py

from typing import Dict, Any, Optional, List

from baselines import methods
from benchmark_definitions import benchmark_definitions
from syne_tune import Tuner
from syne_tune.experiments.launchers.hpo_main_simulator import main
from syne_tune.optimizer.schedulers import HyperbandScheduler
from syne_tune.optimizer.schedulers.searchers.dyhpo.hyperband_dyhpo import (
    DyHPORungSystem,
)
from syne_tune.results_callback import ExtraResultsComposer
from syne_tune.util import recursive_merge


extra_args = [
    dict(
        name="num_brackets",
        type=int,
        help="Number of brackets",
    ),
    dict(
        name="probability_sh",
        type=float,
        help="Parameter for DyHPO: Probability of making SH promotion decision",
    ),
    dict(
        name="rung_increment",
        type=int,
        help="Increment between rung levels",
    ),
    dict(
        name="opt_skip_period",
        type=int,
        help="Period for fitting surrogate model. Only used for DyHPO",
    ),
]


def map_method_args(args, method: str, method_kwargs: Dict[str, Any]) -> Dict[str, Any]:
    scheduler_kwargs = dict()
    if method.startswith("DYHPO"):
        if args.rung_increment is not None:
            scheduler_kwargs["rung_increment"] = args.rung_increment
        if args.probability_sh is not None:
            scheduler_kwargs["probability_sh"] = args.probability_sh
        if args.opt_skip_period is not None:
            scheduler_kwargs["search_options"] = {
                "opt_skip_period": args.opt_skip_period,
            }
    if args.num_brackets is not None:
        scheduler_kwargs["brackets"] = args.num_brackets
    if scheduler_kwargs:
        method_kwargs = recursive_merge(
            method_kwargs, {"scheduler_kwargs": scheduler_kwargs}
        )
    return method_kwargs


class DyHPOExtraResults(ExtraResultsComposer):
    def __call__(self, tuner: "Tuner") -> Optional[Dict[str, Any]]:
        # Only for DyHPO
        result = None
        scheduler = tuner.scheduler
        if (
            isinstance(scheduler, HyperbandScheduler)
            and scheduler.scheduler_type == "dyhpo"
        ):
            result = scheduler.terminator._rung_systems[0].summary_schedule_records()
        return result

    def keys(self) -> List[str]:
        return DyHPORungSystem.summary_schedule_keys()


if __name__ == "__main__":
    extra_results = DyHPOExtraResults()
    main(methods, benchmark_definitions, extra_args, map_method_args, extra_results)








benchmarking/examples/benchmark_dyhpo/launch_remote.py

from pathlib import Path

from benchmark_definitions import benchmark_definitions
from baselines import methods
from hpo_main import extra_args
from syne_tune.experiments.launchers.launch_remote_simulator import launch_remote


if __name__ == "__main__":

    def _is_expensive_method(method: str) -> bool:
        return method not in ["RS", "BO", "ASHA"]

    entry_point = Path(__file__).parent / "hpo_main.py"
    launch_remote(
        entry_point=entry_point,
        methods=methods,
        benchmark_definitions=benchmark_definitions,
        extra_args=extra_args,
        is_expensive_method=_is_expensive_method,
    )








benchmarking/examples/benchmark_dyhpo/requirements.txt

syne-tune[gpsearchers,blackbox-repository,aws]
tqdm










            

          

      

      

    

  

    
      
          
            
  
Code in benchmarking/examples/benchmark_hypertune

Comparison of
Hyper-Tune
against a number of baselines. This example also demonstrate how results can
be plotted.


benchmarking/examples/benchmark_hypertune/baselines.py

from syne_tune.experiments.default_baselines import (
    ASHA,
    MOBSTER,
    HyperTune,
    SyncHyperband,
    SyncBOHB,
)


class Methods:
    ASHA = "ASHA"
    MOBSTER_JOINT = "MOBSTER-JOINT"
    MOBSTER_INDEP = "MOBSTER-INDEP"
    HYPERTUNE_INDEP = "HYPERTUNE-INDEP"
    HYPERTUNE_JOINT = "HYPERTUNE-JOINT"
    SYNCHB = "SYNCHB"
    BOHB = "BOHB"


methods = {
    Methods.ASHA: lambda method_arguments: ASHA(
        method_arguments,
        type="promotion",
    ),
    Methods.MOBSTER_JOINT: lambda method_arguments: MOBSTER(
        method_arguments,
        type="promotion",
    ),
    Methods.MOBSTER_INDEP: lambda method_arguments: MOBSTER(
        method_arguments,
        type="promotion",
        search_options=dict(model="gp_independent"),
    ),
    Methods.HYPERTUNE_INDEP: lambda method_arguments: HyperTune(
        method_arguments,
        type="promotion",
        search_options=dict(model="gp_independent"),
    ),
    Methods.HYPERTUNE_JOINT: lambda method_arguments: HyperTune(
        method_arguments,
        type="promotion",
        search_options=dict(model="gp_multitask"),
    ),
    Methods.SYNCHB: lambda method_arguments: SyncHyperband(method_arguments),
    Methods.BOHB: lambda method_arguments: SyncBOHB(method_arguments),
}








benchmarking/examples/benchmark_hypertune/benchmark_definitions.py

from syne_tune.experiments.benchmark_definitions import (
    nas201_benchmark_definitions,
    fcnet_benchmark_definitions,
    lcbench_selected_benchmark_definitions,
)


benchmark_definitions = {
    **nas201_benchmark_definitions,
    **fcnet_benchmark_definitions,
    **lcbench_selected_benchmark_definitions,
}








benchmarking/examples/benchmark_hypertune/hpo_main.py

from typing import Dict, Any

from baselines import methods
from benchmark_definitions import benchmark_definitions
from syne_tune.experiments.launchers.hpo_main_simulator import main
from syne_tune.util import recursive_merge


extra_args = [
    dict(
        name="num_brackets",
        type=int,
        help="Number of brackets",
    ),
    dict(
        name="num_samples",
        type=int,
        default=50,
        help="Number of samples for Hyper-Tune distribution",
    ),
]


def map_method_args(args, method: str, method_kwargs: Dict[str, Any]) -> Dict[str, Any]:
    if method.startswith("HYPERTUNE"):
        scheduler_kwargs = {
            "search_options": {"hypertune_distribution_num_samples": args.num_samples},
        }
    else:
        scheduler_kwargs = dict()
    if args.num_brackets is not None:
        scheduler_kwargs["brackets"] = args.num_brackets
    if scheduler_kwargs:
        method_kwargs = recursive_merge(
            method_kwargs, {"scheduler_kwargs": scheduler_kwargs}
        )
    return method_kwargs


if __name__ == "__main__":
    main(methods, benchmark_definitions, extra_args, map_method_args)








benchmarking/examples/benchmark_hypertune/launch_remote.py

from pathlib import Path

from benchmark_definitions import benchmark_definitions
from baselines import methods
from hpo_main import extra_args
from syne_tune.experiments.launchers.launch_remote_simulator import launch_remote


if __name__ == "__main__":

    def _is_expensive_method(method: str) -> bool:
        return method.startswith("MOBSTER") or method.startswith("HYPERTUNE")

    entry_point = Path(__file__).parent / "hpo_main.py"
    launch_remote(
        entry_point=entry_point,
        methods=methods,
        benchmark_definitions=benchmark_definitions,
        extra_args=extra_args,
        is_expensive_method=_is_expensive_method,
    )








benchmarking/examples/benchmark_hypertune/plot_results.py

from typing import Dict, Any, Optional
import logging

from baselines import methods
from benchmark_definitions import benchmark_definitions
from syne_tune.experiments import ComparativeResults, PlotParameters, SubplotParameters


def metadata_to_setup(metadata: Dict[str, Any]) -> Optional[str]:
    # The setup is the algorithm. No filtering
    return metadata["algorithm"]


SETUPS_RIGHT = ("ASHA", "SYNCHB", "BOHB")


def metadata_to_subplot(metadata: Dict[str, Any]) -> Optional[int]:
    return int(metadata["algorithm"] in SETUPS_RIGHT)


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)
    experiment_name = "docs-1"
    experiment_names = (experiment_name,)
    setups = list(methods.keys())
    num_runs = 15
    download_from_s3 = False  # Set ``True`` in order to download files from S3
    # Plot parameters across all benchmarks
    plot_params = PlotParameters(
        xlabel="wall-clock time",
        aggregate_mode="iqm_bootstrap",
        grid=True,
    )
    # We would like two subplots (1 row, 2 columns), with MOBSTER and HYPERTUNE
    # results on the left, and the remaining baselines on the right. Each
    # column gets its own title, and legends are shown in both
    plot_params.subplots = SubplotParameters(
        nrows=1,
        ncols=2,
        kwargs=dict(sharey="all"),
        titles=["Model-based Methods", "Baselines"],
        legend_no=[0, 1],
    )
    # The creation of ``results`` downloads files from S3 (only if
    # ``download_from_s3 == True``), reads the metadata and creates an inverse
    # index. If any result files are missing, or there are too many of them,
    # warning messages are printed
    results = ComparativeResults(
        experiment_names=experiment_names,
        setups=setups,
        num_runs=num_runs,
        metadata_to_setup=metadata_to_setup,
        plot_params=plot_params,
        metadata_to_subplot=metadata_to_subplot,
        download_from_s3=download_from_s3,
    )
    # We can now create plots for the different benchmarks
    # First: nas201-cifar100
    benchmark_name = "nas201-cifar100"
    benchmark = benchmark_definitions[benchmark_name]
    # These parameters overwrite those given at construction
    plot_params = PlotParameters(
        metric=benchmark.metric,
        mode=benchmark.mode,
        ylim=(0.265, 0.31),
    )
    results.plot(
        benchmark_name=benchmark_name,
        plot_params=plot_params,
        file_name=f"./{experiment_name}-{benchmark_name}.png",
    )
    # Next: nas201-ImageNet16-120
    benchmark_name = "nas201-ImageNet16-120"
    benchmark = benchmark_definitions[benchmark_name]
    # These parameters overwrite those given at construction
    plot_params = PlotParameters(
        metric=benchmark.metric,
        mode=benchmark.mode,
        ylim=(0.535, 0.58),
    )
    results.plot(
        benchmark_name=benchmark_name,
        plot_params=plot_params,
        file_name=f"./{experiment_name}-{benchmark_name}.png",
    )








benchmarking/examples/benchmark_hypertune/requirements.txt

syne-tune[gpsearchers,kde,blackbox-repository,aws]
tqdm










            

          

      

      

    

  

    
      
          
            
  
Code in benchmarking/examples/fine_tuning_transformer_glue

Selecting pre-trained transformer model from Hugging Face zoo and
fine-tuning it to a GLUE task. This is in fact a whole family of benchmarks:


	f"finetune_transformer_glue_{dataset}": Tune number of hyperparameters
for fixed pre-trained model, selected by --model_type


	f"finetune_transformer_glue_modsel_{dataset}": Tune the same
hyperparameters and select the best pre-trained model from a list of 9
choices




Here, dataset selects the GLUE document classification task (values are
“cola”, “mnli”, “mrpc”, “qnli”, “qqp”, “rte”, “sst2”, “stsb”, “wnli”).


benchmarking/examples/fine_tuning_transformer_glue/baselines.py

from syne_tune.experiments.default_baselines import (
    BayesianOptimization,
    MOBSTER,
)


class Methods:
    BO = "BO"
    MOBSTER = "MOBSTER"


methods = {
    Methods.BO: lambda method_arguments: BayesianOptimization(method_arguments),
    Methods.MOBSTER: lambda method_arguments: MOBSTER(method_arguments),
}








benchmarking/examples/fine_tuning_transformer_glue/hpo_main.py

from typing import Dict, Any

from benchmarking.examples.fine_tuning_transformer_glue.baselines import methods
from benchmarking.benchmark_definitions import (
    real_benchmark_definitions as benchmark_definitions,
)
from benchmarking.benchmark_definitions.finetune_transformer_glue import (
    PRETRAINED_MODELS,
    MAX_RESOURCE_ATTR,
    MODEL_TYPE_ATTR,
)
from syne_tune.config_space import Domain
from syne_tune.experiments.launchers.hpo_main_local import main


extra_args = [
    dict(
        name="num_train_epochs",
        type=int,
        default=3,
        help="Maximum number of training epochs",
    ),
    dict(
        name="model_type",
        type=str,
        default="bert-base-cased",
        choices=tuple(PRETRAINED_MODELS),
        help="Pre-trained model to start fine-tuning from",
    ),
]


def map_method_args(args, method: str, method_kwargs: Dict[str, Any]) -> Dict[str, Any]:
    # We need to change ``method_kwargs.config_space``, based on ``extra_args``
    new_method_kwargs = method_kwargs.copy()
    new_config_space = new_method_kwargs["config_space"].copy()
    choose_model = isinstance(["model_name_or_path"], Domain)
    new_config_space[MAX_RESOURCE_ATTR] = args.num_train_epochs
    if not choose_model:
        new_config_space[MODEL_TYPE_ATTR] = args.model_type
    else:
        # Need to change ``points_to_evaluate``
        default_configuration = new_method_kwargs["scheduler_kwargs"][
            "points_to_evaluate"
        ][0]
        new_default_configuration = {
            **default_configuration,
            MODEL_TYPE_ATTR: args.model_type,
        }
        new_method_kwargs["scheduler_kwargs"]["points_to_evaluate"] = [
            new_default_configuration
        ]
    new_method_kwargs["config_space"] = new_config_space
    return new_method_kwargs


if __name__ == "__main__":
    main(methods, benchmark_definitions, extra_args, map_method_args)








benchmarking/examples/fine_tuning_transformer_glue/launch_remote.py

from pathlib import Path

import benchmarking
from benchmarking.benchmark_definitions import (
    real_benchmark_definitions as benchmark_definitions,
)
from benchmarking.examples.fine_tuning_transformer_glue.baselines import methods
from benchmarking.examples.fine_tuning_transformer_glue.hpo_main import extra_args
from syne_tune.experiments.launchers.launch_remote_local import launch_remote


if __name__ == "__main__":
    entry_point = Path(__file__).parent / "hpo_main.py"
    launch_remote(
        entry_point=entry_point,
        methods=methods,
        benchmark_definitions=benchmark_definitions,
        source_dependencies=benchmarking.__path__,
        extra_args=extra_args,
    )








benchmarking/examples/launch_local/requirements-synetune.txt

syne-tune[gpsearchers,aws]
tqdm










            

          

      

      

    

  

    
      
          
            
  
Code in benchmarking/examples/launch_local

Comparison of baseline methods on real benchmark, using the
LocalBackend.


benchmarking/examples/launch_local/baselines.py

from syne_tune.experiments.default_baselines import (
    RandomSearch,
    BayesianOptimization,
    ASHA,
    MOBSTER,
)


class Methods:
    RS = "RS"
    BO = "BO"
    ASHA = "ASHA"
    MOBSTER = "MOBSTER"


methods = {
    Methods.RS: lambda method_arguments: RandomSearch(method_arguments),
    Methods.BO: lambda method_arguments: BayesianOptimization(method_arguments),
    Methods.ASHA: lambda method_arguments: ASHA(method_arguments, type="promotion"),
    Methods.MOBSTER: lambda method_arguments: MOBSTER(
        method_arguments, type="promotion"
    ),
}








benchmarking/examples/launch_local/hpo_main.py

from benchmarking.examples.launch_local.baselines import methods
from benchmarking.benchmark_definitions import (
    real_benchmark_definitions as benchmark_definitions,
)
from syne_tune.experiments.launchers.hpo_main_local import main


if __name__ == "__main__":
    main(methods, benchmark_definitions)








benchmarking/examples/launch_local/launch_remote.py

from pathlib import Path

import benchmarking
from benchmarking.benchmark_definitions import (
    real_benchmark_definitions as benchmark_definitions,
)
from benchmarking.examples.launch_local.baselines import methods
from syne_tune.experiments.launchers.launch_remote_local import launch_remote


if __name__ == "__main__":
    entry_point = Path(__file__).parent / "hpo_main.py"
    launch_remote(
        entry_point=entry_point,
        methods=methods,
        benchmark_definitions=benchmark_definitions,
        source_dependencies=benchmarking.__path__,
    )








benchmarking/examples/launch_local/requirements-synetune.txt

syne-tune[gpsearchers,aws]
tqdm










            

          

      

      

    

  

    
      
          
            
  
Code in benchmarking/examples/launch_sagemaker

Comparison of baseline methods on real benchmark, using the
SageMakerBackend.


benchmarking/examples/launch_sagemaker/baselines.py

from syne_tune.experiments.default_baselines import (
    RandomSearch,
    BayesianOptimization,
    ASHA,
    MOBSTER,
)


class Methods:
    RS = "RS"
    BO = "BO"
    ASHA = "ASHA"
    MOBSTER = "MOBSTER"


methods = {
    Methods.RS: lambda method_arguments: RandomSearch(method_arguments),
    Methods.BO: lambda method_arguments: BayesianOptimization(method_arguments),
    Methods.ASHA: lambda method_arguments: ASHA(method_arguments, type="promotion"),
    Methods.MOBSTER: lambda method_arguments: MOBSTER(
        method_arguments, type="promotion"
    ),
}








benchmarking/examples/launch_sagemaker/hpo_main.py

from benchmarking.examples.launch_sagemaker.baselines import methods
from benchmarking.benchmark_definitions import (
    real_benchmark_definitions as benchmark_definitions,
)
from syne_tune.experiments.launchers.hpo_main_sagemaker import main


if __name__ == "__main__":
    main(methods, benchmark_definitions)








benchmarking/examples/launch_sagemaker/launch_remote.py

from pathlib import Path

import benchmarking
from benchmarking.benchmark_definitions import (
    real_benchmark_definitions as benchmark_definitions,
)
from benchmarking.examples.launch_sagemaker.baselines import methods
from syne_tune.experiments.launchers.launch_remote_sagemaker import launch_remote


if __name__ == "__main__":
    entry_point = Path(__file__).parent / "hpo_main.py"
    launch_remote(
        entry_point=entry_point,
        methods=methods,
        benchmark_definitions=benchmark_definitions,
        source_dependencies=benchmarking.__path__,
    )








benchmarking/examples/launch_sagemaker/requirements.txt

syne-tune[gpsearchers,aws]
tqdm










            

          

      

      

    

  

    
      
          
            
  
Transformer Trained on WikiText-2

Here, we train a transformer model on the WikiText-2 dataset. This is a
language modeling problem.


Reporting Once at the End

In the first script, we evaluate the trained model only once, at the end, and
report one metric value back to Syne Tune. This training script works for
random search and Bayesian optimization, but not for ASHA or MOBSTER.


benchmarking/nursery/odsc_tutorial/transformer_wikitext2/code/training_script_report_end.py

import argparse
import os
import logging
import math
from pathlib import Path
import time

try:
    # Benchmark-specific imports are done here, in order to avoid import
    # errors if the dependencies are not installed (such errors should happen
    # only when the code is really called)
    import numpy as np
    from filelock import SoftFileLock, Timeout
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
except ImportError:
    logging.info(
        f"Please install benchmark-specific dependencies ({Path(__file__).parent / 'requirements.txt'})"
    )
try:
    from apex import amp
except ImportError:
    print("Failed to import apex. You can still train with --precision {float|double}.")

from syne_tune import Reporter
from syne_tune.config_space import randint, uniform, loguniform, add_to_argparse


METRIC_NAME = "val_loss"

MAX_RESOURCE_ATTR = "epochs"


_config_space = {
    "lr": loguniform(1e-6, 1e-3),
    "dropout": uniform(0, 0.99),
    "batch_size": randint(16, 48),
    "momentum": uniform(0, 0.99),
    "clip": uniform(0, 1),
}


DATASET_PATH = "https://raw.githubusercontent.com/pytorch/examples/master/word_language_model/data/wikitext-2/"


def download_wikitext2_dataset(root):
    import urllib

    path = os.path.join(root, "wikitext-2")
    for fname in ("train.txt", "valid.txt", "test.txt"):
        fh = os.path.join(path, fname)
        if not os.path.exists(fh):
            os.makedirs(path, exist_ok=True)
            urllib.request.urlretrieve(DATASET_PATH + fname, fh)


class Dictionary(object):
    def __init__(self):
        self.word2idx = {}
        self.idx2word = []

    def add_word(self, word):
        if word not in self.word2idx:
            self.idx2word.append(word)
            self.word2idx[word] = len(self.idx2word) - 1
        return self.word2idx[word]

    def __len__(self):
        return len(self.idx2word)


class Corpus(object):
    def __init__(self, path):
        self.dictionary = Dictionary()
        self.train = None
        self.valid = None
        self.test = None
        if not self.load_cache(path):
            self.train = self.tokenize(os.path.join(path, "train.txt"))
            self.valid = self.tokenize(os.path.join(path, "valid.txt"))
            self.test = self.tokenize(os.path.join(path, "test.txt"))
            self.save_cache(path)

    def load_cache(self, path):
        for cache in ["dict.pt", "train.pt", "valid.pt", "test.pt"]:
            cache_path = os.path.join(path, cache)
            if not os.path.exists(cache_path):
                return False
        self.dictionary = torch.load(os.path.join(path, "dict.pt"))
        self.train = torch.load(os.path.join(path, "train.pt"))
        self.valid = torch.load(os.path.join(path, "valid.pt"))
        self.test = torch.load(os.path.join(path, "test.pt"))
        return True

    def save_cache(self, path):
        torch.save(self.dictionary, os.path.join(path, "dict.pt"))
        torch.save(self.train, os.path.join(path, "train.pt"))
        torch.save(self.valid, os.path.join(path, "valid.pt"))
        torch.save(self.test, os.path.join(path, "test.pt"))

    def tokenize(self, path):
        """Tokenizes a text file."""
        assert os.path.exists(path)
        # Add words to the dictionary
        with open(path, "r", encoding="utf8") as f:
            for line in f:
                words = line.split() + ["<eos>"]
                for word in words:
                    self.dictionary.add_word(word)

        # Tokenize file content
        with open(path, "r", encoding="utf8") as f:
            idss = []
            for line in f:
                words = line.split() + ["<eos>"]
                ids = []
                for word in words:
                    ids.append(self.dictionary.word2idx[word])
                idss.append(torch.tensor(ids).type(torch.int64))
            ids = torch.cat(idss)

        return ids


def get_batch(source, i, bptt):
    seq_len = min(bptt, len(source) - 1 - i)
    data = source[i : i + seq_len]
    target = source[i + 1 : i + 1 + seq_len].view(-1)
    return data, target


def batchloader(train_data, bptt):
    for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
        yield get_batch(train_data, i, bptt)


def batchify(data, bsz, device):
    # Work out how cleanly we can divide the dataset into bsz parts.
    nbatch = data.size(0) // bsz
    # Trim off any extra elements that wouldn't cleanly fit (remainders).
    data = data.narrow(0, 0, nbatch * bsz)
    # Evenly divide the data across the bsz batches.
    data = data.view(bsz, -1).t().contiguous()
    return data.to(device)


def setprec(t, precision):
    if precision == "half":
        # do nothing since this is handled by AMP
        return t
    elif precision == "float":
        return t.float()
    elif precision == "double":
        return t.double()
    else:
        raise ValueError(f"invalid precision string {precision}")


def download_dataset(config):
    path = config["input_data_dir"]
    os.makedirs(path, exist_ok=True)
    # Lock protection is needed for backends which run multiple worker
    # processes on the same instance
    lock_path = os.path.join(path, "lock")
    lock = SoftFileLock(lock_path)
    try:
        with lock.acquire(timeout=120, poll_intervall=1):
            # Make sure files are present locally
            download_wikitext2_dataset(path)
            corpus = Corpus(os.path.join(path, "wikitext-2"))
    except Timeout:
        print(
            "WARNING: Could not obtain lock for dataset files. Trying anyway...",
            flush=True,
        )
        # Make sure files are present locally
        download_wikitext2_dataset(path)
        corpus = Corpus(os.path.join(path, "wikitext-2"))
    return corpus


def evaluate(model, valid_data, criterion, config, ntokens):
    # Turn on evaluation mode which disables dropout
    model.eval()
    bptt = config["bptt"]
    total_loss = 0.0
    with torch.no_grad():
        for i in range(0, valid_data.size(0) - 1, bptt):
            data, targets = get_batch(valid_data, i, bptt)
            output = model(data)
            output = output.view(-1, ntokens)
            total_loss += len(data) * criterion(output, targets).item()
    return total_loss / (len(valid_data) - 1)


def train(model, train_data, optimizer, criterion, config, ntokens, epoch):
    # Turn on training mode which enables dropout
    model.train()
    bptt = config["bptt"]
    precision = config["precision"]
    log_interval = config["log_interval"]
    total_loss = 0.0
    epoch_loss = 0.0
    start_time = time.time()
    first_loss = None
    for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
        data, targets = get_batch(train_data, i, bptt)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        optimizer.zero_grad()
        output = model(data)
        output = output.view(-1, ntokens)
        loss = criterion(output, targets)
        if torch.isnan(loss):
            exit(0)
        if precision == "half":
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()
        clip = config["clip"]
        if clip > 0:
            # ``clip_grad_norm`` helps prevent the exploding gradient problem in RNNs / LSTMs.
            if precision == "half":
                params = amp.master_params(optimizer)
            else:
                params = model.parameters()
            torch.nn.utils.clip_grad_norm_(params, clip)
        optimizer.step()
        total_loss += loss.item()
        epoch_loss += len(data) * loss.item()
        if batch % log_interval == 0 and batch > 0:
            cur_loss = total_loss / log_interval
            elapsed = time.time() - start_time
            print(
                "| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.5f} | ms/batch {:5.2f} | "
                "loss {:5.2f} | ppl {:8.2f}".format(
                    epoch,
                    batch,
                    len(train_data) // bptt,
                    config["lr"],
                    elapsed * 1000 / log_interval,
                    cur_loss,
                    np.exp(cur_loss),
                )
            )
            total_loss = 0
            start_time = time.time()
            if first_loss is None:
                first_loss = cur_loss
    return epoch_loss / (len(train_data) - 1), first_loss


def create_training_objects(config, ntokens, device):
    precision = config["precision"]
    d_model = config["d_model"]
    model = TransformerModel(
        ntokens,
        ninp=d_model,
        nhead=config["nhead"],
        nhid=d_model * config["ffn_ratio"],
        nlayers=config["nlayers"],
        dropout=config["dropout"],
    )
    model = model.to(device)
    model = setprec(model, precision)
    criterion = nn.NLLLoss()
    if config["optimizer_name"] == "sgd":
        optimizer = torch.optim.SGD(
            model.parameters(),
            lr=config["lr"],
            momentum=config["momentum"],
        )
    elif config["optimizer_name"] == "adam":
        optimizer = torch.optim.Adam(
            model.parameters(),
            lr=config["lr"],
            betas=(config["momentum"], 0.999),
        )
    else:
        raise ValueError(f"optimizer_name = {config['optimizer_name']} not supported")
    # half-precision black magic
    if precision == "half":
        model, optimizer = amp.initialize(
            model, optimizer, opt_level="O1", min_loss_scale=0.0001, verbosity=0
        )
    return model, optimizer, criterion


def objective(config):
    torch.manual_seed(config["seed"])
    use_cuda = config["use_cuda"]
    if torch.cuda.is_available() and not use_cuda:
        print("WARNING: You have a CUDA device, so you should run with --use-cuda 1")
    device = torch.device("cuda" if use_cuda else "cpu")
    # [1]
    # Download data, setup data loaders
    corpus = download_dataset(config)
    ntokens = len(corpus.dictionary)
    train_data = batchify(corpus.train, bsz=config["batch_size"], device=device)
    valid_data = batchify(corpus.valid, bsz=10, device=device)
    # Used for reporting metrics to Syne Tune
    report = Reporter()
    # [2]
    # Create model and optimizer
    model, optimizer, criterion = create_training_objects(config, ntokens, device)
    # [3]
    for epoch in range(1, config[MAX_RESOURCE_ATTR] + 1):
        train(model, train_data, optimizer, criterion, config, ntokens, epoch)
    # [4]
    # Report validation loss back to Syne Tune
    val_loss = evaluate(model, valid_data, criterion, config, ntokens)
    report(**{METRIC_NAME: val_loss})


if __name__ == "__main__":
    # Temporarily leave PositionalEncoding module here. Will be moved somewhere else.
    class PositionalEncoding(nn.Module):
        r"""Inject some information about the relative or absolute position of the tokens
            in the sequence. The positional encodings have the same dimension as
            the embeddings, so that the two can be summed. Here, we use sine and cosine
            functions of different frequencies.
        .. math::
            \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
            \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
            \text{where pos is the word position and i is the embed idx)
        Args:
            d_model: the embed dim (required).
            dropout: the dropout value (default=0.1).
            max_len: the max. length of the incoming sequence (default=5000).
        Examples:
            >>> pos_encoder = PositionalEncoding(d_model)
        """

        def __init__(self, d_model, dropout=0.1, max_len=5000):
            super(PositionalEncoding, self).__init__()
            self.dropout = nn.Dropout(p=dropout)

            pe = torch.zeros(max_len, d_model)
            position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
            div_term = torch.exp(
                torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)
            )
            pe[:, 0::2] = torch.sin(position * div_term)
            pe[:, 1::2] = torch.cos(position * div_term)
            pe = pe.unsqueeze(0).transpose(0, 1)
            self.register_buffer("pe", pe)

        def forward(self, x):
            r"""Inputs of forward function
            Args:
                x: the sequence fed to the positional encoder model (required).
            Shape:
                x: [sequence length, batch size, embed dim]
                output: [sequence length, batch size, embed dim]
            Examples:
                >>> output = pos_encoder(x)
            """

            x = x + self.pe[: x.size(0), :]
            return self.dropout(x)

    class TransformerModel(nn.Module):
        """Container module with an encoder, a recurrent or transformer module, and a decoder."""

        def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
            super(TransformerModel, self).__init__()
            try:
                from torch.nn import TransformerEncoder, TransformerEncoderLayer
            except ImportError:
                raise ImportError(
                    "TransformerEncoder module does not exist in PyTorch 1.1 or lower."
                )
            self.model_type = "Transformer"
            self.src_mask = None
            self.pos_encoder = PositionalEncoding(ninp, dropout)
            encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
            self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
            self.encoder = nn.Embedding(ntoken, ninp)
            self.ninp = ninp
            self.decoder = nn.Linear(ninp, ntoken)

            self.init_weights()

        @staticmethod
        def _generate_square_subsequent_mask(sz):
            mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
            mask = (
                mask.float()
                .masked_fill(mask == 0, float("-inf"))
                .masked_fill(mask == 1, float(0.0))
            )
            return mask

        def init_weights(self):
            initrange = 0.1
            nn.init.uniform_(self.encoder.weight, -initrange, initrange)
            nn.init.zeros_(self.decoder.bias)
            nn.init.uniform_(self.decoder.weight, -initrange, initrange)

        def forward(self, src, has_mask=True):
            if has_mask:
                device = src.device
                if self.src_mask is None or self.src_mask.size(0) != len(src):
                    mask = self._generate_square_subsequent_mask(len(src)).to(device)
                    self.src_mask = mask
            else:
                self.src_mask = None

            src = self.encoder(src) * math.sqrt(self.ninp)
            src = self.pos_encoder(src)
            output = self.transformer_encoder(src, self.src_mask)
            output = self.decoder(output)
            return F.log_softmax(output, dim=-1)

    root = logging.getLogger()
    root.setLevel(logging.INFO)

    parser = argparse.ArgumentParser(
        description="PyTorch Wikitext-2 Transformer Language Model",
        formatter_class=argparse.RawTextHelpFormatter,
    )
    parser.add_argument(
        "--" + MAX_RESOURCE_ATTR, type=int, default=40, help="upper epoch limit"
    )
    parser.add_argument("--use_cuda", type=int, default=1)
    parser.add_argument(
        "--input_data_dir",
        type=str,
        default="./",
        help="location of the data corpus",
    )
    parser.add_argument(
        "--optimizer_name", type=str, default="sgd", choices=["sgd", "adam"]
    )
    parser.add_argument("--bptt", type=int, default=35, help="sequence length")
    parser.add_argument("--seed", type=int, default=1111, help="random seed")
    parser.add_argument(
        "--precision", type=str, default="float", help="float | double | half"
    )
    parser.add_argument(
        "--log_interval",
        type=int,
        default=200,
        help="report interval",
    )
    parser.add_argument("--d_model", type=int, default=256, help="width of the model")
    parser.add_argument(
        "--ffn_ratio", type=int, default=1, help="the ratio of d_ffn to d_model"
    )
    parser.add_argument("--nlayers", type=int, default=2, help="number of layers")
    parser.add_argument(
        "--nhead",
        type=int,
        default=2,
        help="the number of heads in the encoder/decoder of the transformer model",
    )
    add_to_argparse(parser, _config_space)

    args, _ = parser.parse_known_args()
    args.use_cuda = bool(args.use_cuda)

    objective(config=vars(args))









Reporting After Each Epoch

In the second script, we evaluate the model at the end of each epoch and
report results to Syne Tune then. This training script works for ASHA and
MOBSTER as well, as long as they stop trials, but not pause and resume
them.


benchmarking/nursery/odsc_tutorial/transformer_wikitext2/code/training_script_no_checkpoints.py

import argparse
import os
import logging
import math
from pathlib import Path
import time

try:
    # Benchmark-specific imports are done here, in order to avoid import
    # errors if the dependencies are not installed (such errors should happen
    # only when the code is really called)
    import numpy as np
    from filelock import SoftFileLock, Timeout
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
except ImportError:
    logging.info(
        f"Please install benchmark-specific dependencies ({Path(__file__).parent / 'requirements.txt'})"
    )
try:
    from apex import amp
except ImportError:
    print("Failed to import apex. You can still train with --precision {float|double}.")

from syne_tune import Reporter
from syne_tune.config_space import randint, uniform, loguniform, add_to_argparse


METRIC_NAME = "val_loss"

RESOURCE_ATTR = "epoch"

MAX_RESOURCE_ATTR = "epochs"


_config_space = {
    "lr": loguniform(1e-6, 1e-3),
    "dropout": uniform(0, 0.99),
    "batch_size": randint(16, 48),
    "momentum": uniform(0, 0.99),
    "clip": uniform(0, 1),
}


DATASET_PATH = "https://raw.githubusercontent.com/pytorch/examples/master/word_language_model/data/wikitext-2/"


def download_wikitext2_dataset(root):
    import urllib

    path = os.path.join(root, "wikitext-2")
    for fname in ("train.txt", "valid.txt", "test.txt"):
        fh = os.path.join(path, fname)
        if not os.path.exists(fh):
            os.makedirs(path, exist_ok=True)
            urllib.request.urlretrieve(DATASET_PATH + fname, fh)


class Dictionary(object):
    def __init__(self):
        self.word2idx = {}
        self.idx2word = []

    def add_word(self, word):
        if word not in self.word2idx:
            self.idx2word.append(word)
            self.word2idx[word] = len(self.idx2word) - 1
        return self.word2idx[word]

    def __len__(self):
        return len(self.idx2word)


class Corpus(object):
    def __init__(self, path):
        self.dictionary = Dictionary()
        self.train = None
        self.valid = None
        self.test = None
        if not self.load_cache(path):
            self.train = self.tokenize(os.path.join(path, "train.txt"))
            self.valid = self.tokenize(os.path.join(path, "valid.txt"))
            self.test = self.tokenize(os.path.join(path, "test.txt"))
            self.save_cache(path)

    def load_cache(self, path):
        for cache in ["dict.pt", "train.pt", "valid.pt", "test.pt"]:
            cache_path = os.path.join(path, cache)
            if not os.path.exists(cache_path):
                return False
        self.dictionary = torch.load(os.path.join(path, "dict.pt"))
        self.train = torch.load(os.path.join(path, "train.pt"))
        self.valid = torch.load(os.path.join(path, "valid.pt"))
        self.test = torch.load(os.path.join(path, "test.pt"))
        return True

    def save_cache(self, path):
        torch.save(self.dictionary, os.path.join(path, "dict.pt"))
        torch.save(self.train, os.path.join(path, "train.pt"))
        torch.save(self.valid, os.path.join(path, "valid.pt"))
        torch.save(self.test, os.path.join(path, "test.pt"))

    def tokenize(self, path):
        """Tokenizes a text file."""
        assert os.path.exists(path)
        # Add words to the dictionary
        with open(path, "r", encoding="utf8") as f:
            for line in f:
                words = line.split() + ["<eos>"]
                for word in words:
                    self.dictionary.add_word(word)

        # Tokenize file content
        with open(path, "r", encoding="utf8") as f:
            idss = []
            for line in f:
                words = line.split() + ["<eos>"]
                ids = []
                for word in words:
                    ids.append(self.dictionary.word2idx[word])
                idss.append(torch.tensor(ids).type(torch.int64))
            ids = torch.cat(idss)

        return ids


def get_batch(source, i, bptt):
    seq_len = min(bptt, len(source) - 1 - i)
    data = source[i : i + seq_len]
    target = source[i + 1 : i + 1 + seq_len].view(-1)
    return data, target


def batchloader(train_data, bptt):
    for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
        yield get_batch(train_data, i, bptt)


def batchify(data, bsz, device):
    # Work out how cleanly we can divide the dataset into bsz parts.
    nbatch = data.size(0) // bsz
    # Trim off any extra elements that wouldn't cleanly fit (remainders).
    data = data.narrow(0, 0, nbatch * bsz)
    # Evenly divide the data across the bsz batches.
    data = data.view(bsz, -1).t().contiguous()
    return data.to(device)


def setprec(t, precision):
    if precision == "half":
        # do nothing since this is handled by AMP
        return t
    elif precision == "float":
        return t.float()
    elif precision == "double":
        return t.double()
    else:
        raise ValueError(f"invalid precision string {precision}")


def download_dataset(config):
    path = config["input_data_dir"]
    os.makedirs(path, exist_ok=True)
    # Lock protection is needed for backends which run multiple worker
    # processes on the same instance
    lock_path = os.path.join(path, "lock")
    lock = SoftFileLock(lock_path)
    try:
        with lock.acquire(timeout=120, poll_intervall=1):
            # Make sure files are present locally
            download_wikitext2_dataset(path)
            corpus = Corpus(os.path.join(path, "wikitext-2"))
    except Timeout:
        print(
            "WARNING: Could not obtain lock for dataset files. Trying anyway...",
            flush=True,
        )
        # Make sure files are present locally
        download_wikitext2_dataset(path)
        corpus = Corpus(os.path.join(path, "wikitext-2"))
    return corpus


def evaluate(model, valid_data, criterion, config, ntokens):
    # Turn on evaluation mode which disables dropout
    model.eval()
    bptt = config["bptt"]
    total_loss = 0.0
    with torch.no_grad():
        for i in range(0, valid_data.size(0) - 1, bptt):
            data, targets = get_batch(valid_data, i, bptt)
            output = model(data)
            output = output.view(-1, ntokens)
            total_loss += len(data) * criterion(output, targets).item()
    return total_loss / (len(valid_data) - 1)


def train(model, train_data, optimizer, criterion, config, ntokens, epoch):
    # Turn on training mode which enables dropout
    model.train()
    bptt = config["bptt"]
    precision = config["precision"]
    log_interval = config["log_interval"]
    total_loss = 0.0
    epoch_loss = 0.0
    start_time = time.time()
    first_loss = None
    for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
        data, targets = get_batch(train_data, i, bptt)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        optimizer.zero_grad()
        output = model(data)
        output = output.view(-1, ntokens)
        loss = criterion(output, targets)
        if torch.isnan(loss):
            exit(0)
        if precision == "half":
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()
        clip = config["clip"]
        if clip > 0:
            # ``clip_grad_norm`` helps prevent the exploding gradient problem in RNNs / LSTMs.
            if precision == "half":
                params = amp.master_params(optimizer)
            else:
                params = model.parameters()
            torch.nn.utils.clip_grad_norm_(params, clip)
        optimizer.step()
        total_loss += loss.item()
        epoch_loss += len(data) * loss.item()
        if batch % log_interval == 0 and batch > 0:
            cur_loss = total_loss / log_interval
            elapsed = time.time() - start_time
            print(
                "| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.5f} | ms/batch {:5.2f} | "
                "loss {:5.2f} | ppl {:8.2f}".format(
                    epoch,
                    batch,
                    len(train_data) // bptt,
                    config["lr"],
                    elapsed * 1000 / log_interval,
                    cur_loss,
                    np.exp(cur_loss),
                )
            )
            total_loss = 0
            start_time = time.time()
            if first_loss is None:
                first_loss = cur_loss
    return epoch_loss / (len(train_data) - 1), first_loss


def create_training_objects(config, ntokens, device):
    precision = config["precision"]
    d_model = config["d_model"]
    model = TransformerModel(
        ntokens,
        ninp=d_model,
        nhead=config["nhead"],
        nhid=d_model * config["ffn_ratio"],
        nlayers=config["nlayers"],
        dropout=config["dropout"],
    )
    model = model.to(device)
    model = setprec(model, precision)
    criterion = nn.NLLLoss()
    if config["optimizer_name"] == "sgd":
        optimizer = torch.optim.SGD(
            model.parameters(),
            lr=config["lr"],
            momentum=config["momentum"],
        )
    elif config["optimizer_name"] == "adam":
        optimizer = torch.optim.Adam(
            model.parameters(),
            lr=config["lr"],
            betas=(config["momentum"], 0.999),
        )
    else:
        raise ValueError(f"optimizer_name = {config['optimizer_name']} not supported")
    # half-precision black magic
    if precision == "half":
        model, optimizer = amp.initialize(
            model, optimizer, opt_level="O1", min_loss_scale=0.0001, verbosity=0
        )
    return model, optimizer, criterion


def objective(config):
    torch.manual_seed(config["seed"])
    use_cuda = config["use_cuda"]
    if torch.cuda.is_available() and not use_cuda:
        print("WARNING: You have a CUDA device, so you should run with --use-cuda 1")
    device = torch.device("cuda" if use_cuda else "cpu")
    # Download data, setup data loaders
    corpus = download_dataset(config)
    ntokens = len(corpus.dictionary)
    train_data = batchify(corpus.train, bsz=config["batch_size"], device=device)
    valid_data = batchify(corpus.valid, bsz=10, device=device)
    # Used for reporting metrics to Syne Tune
    report = Reporter()
    # Create model and optimizer
    model, optimizer, criterion = create_training_objects(config, ntokens, device)

    for epoch in range(1, config[MAX_RESOURCE_ATTR] + 1):
        train(model, train_data, optimizer, criterion, config, ntokens, epoch)
        val_loss = evaluate(model, valid_data, criterion, config, ntokens)
        print("-" * 89)
        print(
            f"| end of epoch {epoch:3d} | valid loss {val_loss:5.2f} | "
            f"valid ppl {np.exp(val_loss):8.2f}"
        )
        print("-" * 89)
        # Report validation loss back to Syne Tune
        report(**{RESOURCE_ATTR: epoch, METRIC_NAME: val_loss})


if __name__ == "__main__":
    # Temporarily leave PositionalEncoding module here. Will be moved somewhere else.
    class PositionalEncoding(nn.Module):
        r"""Inject some information about the relative or absolute position of the tokens
            in the sequence. The positional encodings have the same dimension as
            the embeddings, so that the two can be summed. Here, we use sine and cosine
            functions of different frequencies.
        .. math::
            \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
            \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
            \text{where pos is the word position and i is the embed idx)
        Args:
            d_model: the embed dim (required).
            dropout: the dropout value (default=0.1).
            max_len: the max. length of the incoming sequence (default=5000).
        Examples:
            >>> pos_encoder = PositionalEncoding(d_model)
        """

        def __init__(self, d_model, dropout=0.1, max_len=5000):
            super(PositionalEncoding, self).__init__()
            self.dropout = nn.Dropout(p=dropout)

            pe = torch.zeros(max_len, d_model)
            position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
            div_term = torch.exp(
                torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)
            )
            pe[:, 0::2] = torch.sin(position * div_term)
            pe[:, 1::2] = torch.cos(position * div_term)
            pe = pe.unsqueeze(0).transpose(0, 1)
            self.register_buffer("pe", pe)

        def forward(self, x):
            r"""Inputs of forward function
            Args:
                x: the sequence fed to the positional encoder model (required).
            Shape:
                x: [sequence length, batch size, embed dim]
                output: [sequence length, batch size, embed dim]
            Examples:
                >>> output = pos_encoder(x)
            """

            x = x + self.pe[: x.size(0), :]
            return self.dropout(x)

    class TransformerModel(nn.Module):
        """Container module with an encoder, a recurrent or transformer module, and a decoder."""

        def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
            super(TransformerModel, self).__init__()
            try:
                from torch.nn import TransformerEncoder, TransformerEncoderLayer
            except ImportError:
                raise ImportError(
                    "TransformerEncoder module does not exist in PyTorch 1.1 or lower."
                )
            self.model_type = "Transformer"
            self.src_mask = None
            self.pos_encoder = PositionalEncoding(ninp, dropout)
            encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
            self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
            self.encoder = nn.Embedding(ntoken, ninp)
            self.ninp = ninp
            self.decoder = nn.Linear(ninp, ntoken)

            self.init_weights()

        @staticmethod
        def _generate_square_subsequent_mask(sz):
            mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
            mask = (
                mask.float()
                .masked_fill(mask == 0, float("-inf"))
                .masked_fill(mask == 1, float(0.0))
            )
            return mask

        def init_weights(self):
            initrange = 0.1
            nn.init.uniform_(self.encoder.weight, -initrange, initrange)
            nn.init.zeros_(self.decoder.bias)
            nn.init.uniform_(self.decoder.weight, -initrange, initrange)

        def forward(self, src, has_mask=True):
            if has_mask:
                device = src.device
                if self.src_mask is None or self.src_mask.size(0) != len(src):
                    mask = self._generate_square_subsequent_mask(len(src)).to(device)
                    self.src_mask = mask
            else:
                self.src_mask = None

            src = self.encoder(src) * math.sqrt(self.ninp)
            src = self.pos_encoder(src)
            output = self.transformer_encoder(src, self.src_mask)
            output = self.decoder(output)
            return F.log_softmax(output, dim=-1)

    root = logging.getLogger()
    root.setLevel(logging.INFO)

    parser = argparse.ArgumentParser(
        description="PyTorch Wikitext-2 Transformer Language Model",
        formatter_class=argparse.RawTextHelpFormatter,
    )
    parser.add_argument(
        "--" + MAX_RESOURCE_ATTR, type=int, default=40, help="upper epoch limit"
    )
    parser.add_argument("--use_cuda", type=int, default=1)
    parser.add_argument(
        "--input_data_dir",
        type=str,
        default="./",
        help="location of the data corpus",
    )
    parser.add_argument(
        "--optimizer_name", type=str, default="sgd", choices=["sgd", "adam"]
    )
    parser.add_argument("--bptt", type=int, default=35, help="sequence length")
    parser.add_argument("--seed", type=int, default=1111, help="random seed")
    parser.add_argument(
        "--precision", type=str, default="float", help="float | double | half"
    )
    parser.add_argument(
        "--log_interval",
        type=int,
        default=200,
        help="report interval",
    )
    parser.add_argument("--d_model", type=int, default=256, help="width of the model")
    parser.add_argument(
        "--ffn_ratio", type=int, default=1, help="the ratio of d_ffn to d_model"
    )
    parser.add_argument("--nlayers", type=int, default=2, help="number of layers")
    parser.add_argument(
        "--nhead",
        type=int,
        default=2,
        help="the number of heads in the encoder/decoder of the transformer model",
    )
    add_to_argparse(parser, _config_space)

    args, _ = parser.parse_known_args()
    args.use_cuda = bool(args.use_cuda)

    objective(config=vars(args))









Reporting After Each Epoch With Checkpointing

The final script is like the second, but we also add checkpointing. This
training script can be used with all methods implemented in Syne Tune.


benchmarking/nursery/odsc_tutorial/transformer_wikitext2/code/training_script.py

import argparse
import os
import logging
import math
from pathlib import Path
import time

try:
    # Benchmark-specific imports are done here, in order to avoid import
    # errors if the dependencies are not installed (such errors should happen
    # only when the code is really called)
    import numpy as np
    from filelock import SoftFileLock, Timeout
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
except ImportError:
    logging.info(
        f"Please install benchmark-specific dependencies ({Path(__file__).parent / 'requirements.txt'})"
    )
try:
    from apex import amp
except ImportError:
    print("Failed to import apex. You can still train with --precision {float|double}.")

from syne_tune import Reporter
from syne_tune.config_space import randint, uniform, loguniform, add_to_argparse
from syne_tune.utils import (
    resume_from_checkpointed_model,
    checkpoint_model_at_rung_level,
    add_checkpointing_to_argparse,
    pytorch_load_save_functions,
)


METRIC_NAME = "val_loss"

RESOURCE_ATTR = "epoch"

MAX_RESOURCE_ATTR = "epochs"


_config_space = {
    "lr": loguniform(1e-6, 1e-3),
    "dropout": uniform(0, 0.99),
    "batch_size": randint(16, 48),
    "momentum": uniform(0, 0.99),
    "clip": uniform(0, 1),
}


DATASET_PATH = "https://raw.githubusercontent.com/pytorch/examples/master/word_language_model/data/wikitext-2/"


def download_wikitext2_dataset(root):
    import urllib

    path = os.path.join(root, "wikitext-2")
    for fname in ("train.txt", "valid.txt", "test.txt"):
        fh = os.path.join(path, fname)
        if not os.path.exists(fh):
            os.makedirs(path, exist_ok=True)
            urllib.request.urlretrieve(DATASET_PATH + fname, fh)


class Dictionary(object):
    def __init__(self):
        self.word2idx = {}
        self.idx2word = []

    def add_word(self, word):
        if word not in self.word2idx:
            self.idx2word.append(word)
            self.word2idx[word] = len(self.idx2word) - 1
        return self.word2idx[word]

    def __len__(self):
        return len(self.idx2word)


class Corpus(object):
    def __init__(self, path):
        self.dictionary = Dictionary()
        self.train = None
        self.valid = None
        self.test = None
        if not self.load_cache(path):
            self.train = self.tokenize(os.path.join(path, "train.txt"))
            self.valid = self.tokenize(os.path.join(path, "valid.txt"))
            self.test = self.tokenize(os.path.join(path, "test.txt"))
            self.save_cache(path)

    def load_cache(self, path):
        for cache in ["dict.pt", "train.pt", "valid.pt", "test.pt"]:
            cache_path = os.path.join(path, cache)
            if not os.path.exists(cache_path):
                return False
        self.dictionary = torch.load(os.path.join(path, "dict.pt"))
        self.train = torch.load(os.path.join(path, "train.pt"))
        self.valid = torch.load(os.path.join(path, "valid.pt"))
        self.test = torch.load(os.path.join(path, "test.pt"))
        return True

    def save_cache(self, path):
        torch.save(self.dictionary, os.path.join(path, "dict.pt"))
        torch.save(self.train, os.path.join(path, "train.pt"))
        torch.save(self.valid, os.path.join(path, "valid.pt"))
        torch.save(self.test, os.path.join(path, "test.pt"))

    def tokenize(self, path):
        """Tokenizes a text file."""
        assert os.path.exists(path)
        # Add words to the dictionary
        with open(path, "r", encoding="utf8") as f:
            for line in f:
                words = line.split() + ["<eos>"]
                for word in words:
                    self.dictionary.add_word(word)

        # Tokenize file content
        with open(path, "r", encoding="utf8") as f:
            idss = []
            for line in f:
                words = line.split() + ["<eos>"]
                ids = []
                for word in words:
                    ids.append(self.dictionary.word2idx[word])
                idss.append(torch.tensor(ids).type(torch.int64))
            ids = torch.cat(idss)

        return ids


def get_batch(source, i, bptt):
    seq_len = min(bptt, len(source) - 1 - i)
    data = source[i : i + seq_len]
    target = source[i + 1 : i + 1 + seq_len].view(-1)
    return data, target


def batchloader(train_data, bptt):
    for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
        yield get_batch(train_data, i, bptt)


def batchify(data, bsz, device):
    # Work out how cleanly we can divide the dataset into bsz parts.
    nbatch = data.size(0) // bsz
    # Trim off any extra elements that wouldn't cleanly fit (remainders).
    data = data.narrow(0, 0, nbatch * bsz)
    # Evenly divide the data across the bsz batches.
    data = data.view(bsz, -1).t().contiguous()
    return data.to(device)


def setprec(t, precision):
    if precision == "half":
        # do nothing since this is handled by AMP
        return t
    elif precision == "float":
        return t.float()
    elif precision == "double":
        return t.double()
    else:
        raise ValueError(f"invalid precision string {precision}")


def download_dataset(config):
    path = config["input_data_dir"]
    os.makedirs(path, exist_ok=True)
    # Lock protection is needed for backends which run multiple worker
    # processes on the same instance
    lock_path = os.path.join(path, "lock")
    lock = SoftFileLock(lock_path)
    try:
        with lock.acquire(timeout=120, poll_intervall=1):
            # Make sure files are present locally
            download_wikitext2_dataset(path)
            corpus = Corpus(os.path.join(path, "wikitext-2"))
    except Timeout:
        print(
            "WARNING: Could not obtain lock for dataset files. Trying anyway...",
            flush=True,
        )
        # Make sure files are present locally
        download_wikitext2_dataset(path)
        corpus = Corpus(os.path.join(path, "wikitext-2"))
    return corpus


def evaluate(model, valid_data, criterion, config, ntokens):
    # Turn on evaluation mode which disables dropout
    model.eval()
    bptt = config["bptt"]
    total_loss = 0.0
    with torch.no_grad():
        for i in range(0, valid_data.size(0) - 1, bptt):
            data, targets = get_batch(valid_data, i, bptt)
            output = model(data)
            output = output.view(-1, ntokens)
            total_loss += len(data) * criterion(output, targets).item()
    return total_loss / (len(valid_data) - 1)


def train(model, train_data, optimizer, criterion, config, ntokens, epoch):
    # Turn on training mode which enables dropout
    model.train()
    bptt = config["bptt"]
    precision = config["precision"]
    log_interval = config["log_interval"]
    total_loss = 0.0
    epoch_loss = 0.0
    start_time = time.time()
    first_loss = None
    for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
        data, targets = get_batch(train_data, i, bptt)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        optimizer.zero_grad()
        output = model(data)
        output = output.view(-1, ntokens)
        loss = criterion(output, targets)
        if torch.isnan(loss):
            exit(0)
        if precision == "half":
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()
        clip = config["clip"]
        if clip > 0:
            # ``clip_grad_norm`` helps prevent the exploding gradient problem in RNNs / LSTMs.
            if precision == "half":
                params = amp.master_params(optimizer)
            else:
                params = model.parameters()
            torch.nn.utils.clip_grad_norm_(params, clip)
        optimizer.step()
        total_loss += loss.item()
        epoch_loss += len(data) * loss.item()
        if batch % log_interval == 0 and batch > 0:
            cur_loss = total_loss / log_interval
            elapsed = time.time() - start_time
            print(
                "| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.5f} | ms/batch {:5.2f} | "
                "loss {:5.2f} | ppl {:8.2f}".format(
                    epoch,
                    batch,
                    len(train_data) // bptt,
                    config["lr"],
                    elapsed * 1000 / log_interval,
                    cur_loss,
                    np.exp(cur_loss),
                )
            )
            total_loss = 0
            start_time = time.time()
            if first_loss is None:
                first_loss = cur_loss
    return epoch_loss / (len(train_data) - 1), first_loss


def create_training_objects(config, ntokens, device):
    precision = config["precision"]
    d_model = config["d_model"]
    model = TransformerModel(
        ntokens,
        ninp=d_model,
        nhead=config["nhead"],
        nhid=d_model * config["ffn_ratio"],
        nlayers=config["nlayers"],
        dropout=config["dropout"],
    )
    model = model.to(device)
    model = setprec(model, precision)
    criterion = nn.NLLLoss()
    if config["optimizer_name"] == "sgd":
        optimizer = torch.optim.SGD(
            model.parameters(),
            lr=config["lr"],
            momentum=config["momentum"],
        )
    elif config["optimizer_name"] == "adam":
        optimizer = torch.optim.Adam(
            model.parameters(),
            lr=config["lr"],
            betas=(config["momentum"], 0.999),
        )
    else:
        raise ValueError(f"optimizer_name = {config['optimizer_name']} not supported")
    # half-precision black magic
    if precision == "half":
        model, optimizer = amp.initialize(
            model, optimizer, opt_level="O1", min_loss_scale=0.0001, verbosity=0
        )
    return model, optimizer, criterion


def objective(config):
    torch.manual_seed(config["seed"])
    use_cuda = config["use_cuda"]
    if torch.cuda.is_available() and not use_cuda:
        print("WARNING: You have a CUDA device, so you should run with --use-cuda 1")
    device = torch.device("cuda" if use_cuda else "cpu")
    # Download data, setup data loaders
    corpus = download_dataset(config)
    ntokens = len(corpus.dictionary)
    train_data = batchify(corpus.train, bsz=config["batch_size"], device=device)
    valid_data = batchify(corpus.valid, bsz=10, device=device)
    # Used for reporting metrics to Syne Tune
    report = Reporter()
    # Create model and optimizer
    model, optimizer, criterion = create_training_objects(config, ntokens, device)
    # [3]
    # Checkpointing
    state_dict_objects = {
        "model": model,
        "optimizer": optimizer,
    }
    if config["precision"] == "half":
        state_dict_objects["amp"] = amp
    load_model_fn, save_model_fn = pytorch_load_save_functions(
        state_dict_objects=state_dict_objects,
    )
    # [2]
    # Resume from checkpoint
    resume_from = resume_from_checkpointed_model(config, load_model_fn)

    for epoch in range(resume_from + 1, config[MAX_RESOURCE_ATTR] + 1):
        train(model, train_data, optimizer, criterion, config, ntokens, epoch)
        val_loss = evaluate(model, valid_data, criterion, config, ntokens)
        print("-" * 89)
        print(
            f"| end of epoch {epoch:3d} | valid loss {val_loss:5.2f} | "
            f"valid ppl {np.exp(val_loss):8.2f}"
        )
        print("-" * 89)
        # [1]
        # Write checkpoint
        checkpoint_model_at_rung_level(config, save_model_fn, epoch)
        # Report validation loss back to Syne Tune
        report(**{RESOURCE_ATTR: epoch, METRIC_NAME: val_loss})


if __name__ == "__main__":
    # Temporarily leave PositionalEncoding module here. Will be moved somewhere else.
    class PositionalEncoding(nn.Module):
        r"""Inject some information about the relative or absolute position of the tokens
            in the sequence. The positional encodings have the same dimension as
            the embeddings, so that the two can be summed. Here, we use sine and cosine
            functions of different frequencies.
        .. math::
            \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
            \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
            \text{where pos is the word position and i is the embed idx)
        Args:
            d_model: the embed dim (required).
            dropout: the dropout value (default=0.1).
            max_len: the max. length of the incoming sequence (default=5000).
        Examples:
            >>> pos_encoder = PositionalEncoding(d_model)
        """

        def __init__(self, d_model, dropout=0.1, max_len=5000):
            super(PositionalEncoding, self).__init__()
            self.dropout = nn.Dropout(p=dropout)

            pe = torch.zeros(max_len, d_model)
            position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
            div_term = torch.exp(
                torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)
            )
            pe[:, 0::2] = torch.sin(position * div_term)
            pe[:, 1::2] = torch.cos(position * div_term)
            pe = pe.unsqueeze(0).transpose(0, 1)
            self.register_buffer("pe", pe)

        def forward(self, x):
            r"""Inputs of forward function
            Args:
                x: the sequence fed to the positional encoder model (required).
            Shape:
                x: [sequence length, batch size, embed dim]
                output: [sequence length, batch size, embed dim]
            Examples:
                >>> output = pos_encoder(x)
            """

            x = x + self.pe[: x.size(0), :]
            return self.dropout(x)

    class TransformerModel(nn.Module):
        """Container module with an encoder, a recurrent or transformer module, and a decoder."""

        def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
            super(TransformerModel, self).__init__()
            try:
                from torch.nn import TransformerEncoder, TransformerEncoderLayer
            except ImportError:
                raise ImportError(
                    "TransformerEncoder module does not exist in PyTorch 1.1 or lower."
                )
            self.model_type = "Transformer"
            self.src_mask = None
            self.pos_encoder = PositionalEncoding(ninp, dropout)
            encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
            self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
            self.encoder = nn.Embedding(ntoken, ninp)
            self.ninp = ninp
            self.decoder = nn.Linear(ninp, ntoken)

            self.init_weights()

        @staticmethod
        def _generate_square_subsequent_mask(sz):
            mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
            mask = (
                mask.float()
                .masked_fill(mask == 0, float("-inf"))
                .masked_fill(mask == 1, float(0.0))
            )
            return mask

        def init_weights(self):
            initrange = 0.1
            nn.init.uniform_(self.encoder.weight, -initrange, initrange)
            nn.init.zeros_(self.decoder.bias)
            nn.init.uniform_(self.decoder.weight, -initrange, initrange)

        def forward(self, src, has_mask=True):
            if has_mask:
                device = src.device
                if self.src_mask is None or self.src_mask.size(0) != len(src):
                    mask = self._generate_square_subsequent_mask(len(src)).to(device)
                    self.src_mask = mask
            else:
                self.src_mask = None

            src = self.encoder(src) * math.sqrt(self.ninp)
            src = self.pos_encoder(src)
            output = self.transformer_encoder(src, self.src_mask)
            output = self.decoder(output)
            return F.log_softmax(output, dim=-1)

    root = logging.getLogger()
    root.setLevel(logging.INFO)

    parser = argparse.ArgumentParser(
        description="PyTorch Wikitext-2 Transformer Language Model",
        formatter_class=argparse.RawTextHelpFormatter,
    )
    parser.add_argument(
        "--" + MAX_RESOURCE_ATTR, type=int, default=40, help="upper epoch limit"
    )
    parser.add_argument("--use_cuda", type=int, default=1)
    parser.add_argument(
        "--input_data_dir",
        type=str,
        default="./",
        help="location of the data corpus",
    )
    parser.add_argument(
        "--optimizer_name", type=str, default="sgd", choices=["sgd", "adam"]
    )
    parser.add_argument("--bptt", type=int, default=35, help="sequence length")
    parser.add_argument("--seed", type=int, default=1111, help="random seed")
    parser.add_argument(
        "--precision", type=str, default="float", help="float | double | half"
    )
    parser.add_argument(
        "--log_interval",
        type=int,
        default=200,
        help="report interval",
    )
    parser.add_argument("--d_model", type=int, default=256, help="width of the model")
    parser.add_argument(
        "--ffn_ratio", type=int, default=1, help="the ratio of d_ffn to d_model"
    )
    parser.add_argument("--nlayers", type=int, default=2, help="number of layers")
    parser.add_argument(
        "--nhead",
        type=int,
        default=2,
        help="the number of heads in the encoder/decoder of the transformer model",
    )
    add_to_argparse(parser, _config_space)
    add_checkpointing_to_argparse(parser)

    args, _ = parser.parse_known_args()
    args.use_cuda = bool(args.use_cuda)

    objective(config=vars(args))
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Figure 1: Illustration of how PASHA stops early if the ranking of configurations has stabilized. Left:
the ranking of the configurations (displayed inside the circles) has stabilized, so we can select the
best configuration and stop the search. Right: the ranking has not stabilized, so we continue.
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